
DevOps
 and the Culture of Code

Test-Driven Service Virtualization
The simulation techniques you need
for quality software delivery Scrum: Back to Basics

Renew your knowledge of Scrum
with this pictorial “walkabout”

Plus

https://testmanagement.qmetry.com/#/register

JUNE 3–8, 2018
LAS VEGAS, NV
CAESARS PALACE

What Are Past Attendees Saying?

“I very much enjoyed being
able to cross-attend the
varying topics to gain a
large content of ideas.”

Tim Robert, Systems Analyst,
State Farm

“Excellent conference. The
tutorials were invaluable to
me and my group.”

Jennifer Winkelmann, Business
Analyst, TD Ameritrade

“The keynotes were inspiring! There
were several practical talks. Gave me
time to think and network to develop
actionable takeaways.”

Pete Lichtenwalner, Sr. Engineer Manager, Verint

“Great speakers that show they are
passionate about what they do. Plus they
are open to share ideas and experiences.”

Verita Sorsby, QA Manager, Tio Networks

about the TOPICS
about the KEYNOTES

about the SPEAKERS
about the TUTORIALS

T O R E G I S T E R , C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | B S C W E S T . T E C H W E L L . C O M

Agile Dev topic areas:

• Scaled Agile Development
• Agile Testing
• Agile Implementation
• Career & Personal Development
• Agile Teams & Leadership
• And More

Better Software topic areas:

• Digital Transformation
• Process & Metrics
• Software Quality & Testing
• Requirements & User Stories
• Project Management
• And More

DevOps topic areas:

• Architecture & Design
• Configuration Management
• DevOps and Test/QA
• Continuous Delivery
• Continuous Integration
• And More

Register by
May 4, 2018,

with code CWBSM
 to save up to
$600 off your
conference*

*Discount valid on packages over $400

https://well.tc/weyq

ATD USA

Europe’s fun and widely popular agile
testing festival is coming to North
America as Agile Testing Days USA. This
event will feature over 50 of the top agile
testing enthusiasts speaking in Boston.

https://agiletestingdays.us

SUPER EARLY
LOBSTER
SAVINGS
WHEN YOU
REGISTER BY
APRIL 27, 2018

SAVE THE DATE FOR THE INAUGURAL EVENT!

JUNE 25–29, 2018
BOSTON, MA

https://well.tc/wetv

DevOps
 and the Culture of Code

B E T T E R S O F T W A R E T e c h W e l l . c o m 14

Volume 20, Issue 2
SPRING 2018

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

06 Mark Your Calendar

07 Editor's Note

08 Contributors

12 Interview with an Expert

32 TechWell Insights

35 Ad Index

DepartmentsColumns

Features

Building a Test Automation
Strategy
QA departments always feel the
pressure to start testing quickly, even if
the ever-changing software being tested
isn’t ready. A bought-in test automation
strategy can keep a project on track.
by Justin Rohrman

The Unspoken Truth about IoT
Test Automation
The internet of things (IoT) continues to
proliferate as connected smart devices
become critical for individuals and
businesses. Even with test automation,
performing comprehensive testing can
be quite a challenge. by Rama R. Anem

Test-Driven Service Virtualization
Because enterprise applications are highly interconnected,
development in stages puts a strain on the implementation
and execution of automated testing. Service virtualization can
be introduced to validate work in progress while reducing the
dependencies on components and third-party technologies
still under development. by Alexander Mohr

Scrum: Back to Basics
So you think you know Scrum? Using the whimsical notion
of farm animals and light-hearted visuals, take a refreshing
review of the entire Scrum lifecycle as an intuitive set of roles,
responsibilities, and handoffs. Particular attention is placed on
what the ScrumMaster and product owner are expected to do
at each handoff. by Brian Rabon

09 TECHNICALLY SPEAKING 34 THE LAST WORD

INSIDE

19 26

14

DevOps and the Culture
of Code
Migrating an organization to
continuous integration requires
adoption new processes, tools,
and automation. DevOps relies
on dramatic culture change to
encourage total transparency
and collaboration among all
project stakeholders.
by Patrick Turner

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

April 9–13, 2018
Virtual classroom

April 29–May 1, 2018
Orlando, FL

May 1–3, 2018
Philadelphia, PA

May 15–17, 2018
San Diego, CA

May 15–17, 2018
Denver, CO

June 5–7, 2018
Nashville, TN

June 5–7, 2018
Jersey City, NJ

June 19–21, 2018
Austin, TX

April 16–20, 2018
Washington, DC

May 7–11, 2018
Seattle, WA

Conferences

Software Tester Certification—Foundation Level
http://www.sqetraining.com/certification

DevOps Week
https://www.sqetraining.com/training-events/devops-week

Lean Kanban Week
https://www.sqetraining.com/training-events/lean-kanban-week

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

June 3–8, 2018
Las Vegas, NV

LEARN MORE

Apr. 29–May 4, 2018
Orlando, FL

LEARN MORE

June 25–29, 2018
Boston, MA

LEARN MORE

Sep. 30–Oct. 5, 2018
Anaheim, CA

LEARN MORE

Nov. 4–9, 2018
Orlando, FL

LEARN MORE

Oct. 14–19, 2018
Toronto, ON

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 6

http://www.sqetraining.com/certification
https://www.sqetraining.com/training-events/devops-week
https://www.sqetraining.com/training-events/lean-kanban-week
https://adc-bsc-devops-west.techwell.com
https://stareast.techwell.com
https://agiletestingdays.us
https://starwest.techwell.com
https://bsceast.techwell.com/
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT/CEO
Alison Wade

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITORS
Josiah Renaudin
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGERS
Cristy Bird
MARKETING ASSISTANT
Allison Scholz

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

CONTACT US

E D I T O R ’ S N O T E

Coworking Communities Are Changing How Software
Is Developed
The traditional office workspace is a dinosaur. Software professionals want a different work-life bal-

ance. They want the freedom to work from home but still have the experience of working in a team

setting. Small-town tech hubs and coworking are the future. Steve Case, cofounder of the Washington,

DC-based venture capital firm Revolution LLC, started a crusade with Rise of the Rest®, a nationwide

traveling initiative to support and promote entrepreneurs in emerging startup ecosystems.

As Josh Dorfman, the director of entrepreneurship at Venture Asheville and managing director at

Asheville Angels, told me “One of the greatest values of coworking is serendipity. It is very likely that

you will be sitting down next to others who can benefit your business. I see it all of the time.” J.D.

Claridge, the CEO of software-powered drone maker xCraft, embraces coworking at the Innovation

Collective located in Coeur d’Alene, Idaho. It isn’t just because of the amazing espresso bar and the

central presentation conference center. “The coworking office environment gives us flexibility,”

Claridge said. “We use it as a hub to manage a diverse team throughout the US and with contractors

in other parts of the world.” Living and working where we want to be is a dream come true.

Now, I’d like to switch gears and present the content of the Spring 2018 issue of Better Software. Our

featured cover article is Patrick Turner’s “DevOps and the Culture of Code,” which emphasizes the

importance of organizational culture required to embrace continuous DevOps operations.

Service virtualization is taking off, and testing requires special considerations. Alexander Mohr walks

you through the entire testing lifecycle in “Test-Driven Service Virtualization.” After years leading ag-

ile teams, I thought I knew Scrum—until I read Brian Rabon’s “Scrum: Back to Basics.” And if you’re

interested in test automation, Justin Rohrman gives great advice in “Building a Test Automation

Strategy” and Rama Anem shows how intelligent devices need to be tested in “The Unspoken Truth

about IoT Test Automation.”

We truly value your feedback. Let us and our authors know what you think of the articles by leaving

your comments. I sincerely hope you enjoy reading this issue as much as we enjoy working with

these wonderful authors. Don’t forget to spread the word and let people know about TechWell and

Better Software magazine.

F O L L O W U S

B E T T E R S O F T W A R E T e c h W e l l . c o m 7

mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://techwell.com
https://www.revolution.com/entity/rotr
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
http://techwell.com

Rama R. Anem has more than thirteen years of testing experience and is a test architect at Sunpower Corpo-
ration. At AMD, she managed the enterprise-wide data platform quality practice and was responsible for build-
ing its first center of excellence. At IBM, Rama lead multiple teams and served as one of the brand ambassa-
dors for DB2. In addition to writing articles in a variety of technical journals, she also presents advanced topics
at international software conferences and workshops. Rama can be reached at rama.anem@gmail.com.

Starting as a developer, Alexander Mohr has been working in software development since 2000 in a variety
of roles. Since then he has worked as a product owner, business analyst, test manager, architect, and project
manager. Recently, Alexander introduced test-driven service virtualization for a large Austrian telecommu-
nication provider as a groundbreaker for “shift left.” Now, he works for Tricentis as an evangelist for service
virtualization and agile transformation. Alexander can be contacted at a.mohr@tricentis.com.

Brian Rabon is the president of The Braintrust Consulting Group, a worldwide leader in agile transforma-
tions. Throughout his seventeen years of IT industry experience, Brian has applied agile methods in order to
successfully deliver working products to his customers. When not in the classroom, Brian can be found around
the globe evangelizing the benefits of agility. Brian is the author of Scrum for the Rest Of Us and an avid blog-
ger. To contact Brian, please email him at brian.rabon@braintrustgroup.com or join him on LinkedIn.

A longtime freelancer in the tech industry, Josiah Renaudin is now a web-content producer and writer for
TechWell Insights, StickyMinds.com, and Better Software magazine. He wrote for popular video game journal-
ism websites like GameSpot, IGN, and Paste Magazine and now acts as an editor for an indie project published
by Sony Santa Monica. Josiah has been immersed in games since he was young, but more than anything, he
enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

Justin Rohrman has been a professional software tester since 2005. In addition to being technical editor of
StickyMinds.com, Justin is a consulting software tester and writer working with Excelon Development. He also
serves on the Association for Software Testing board of directors. As president, Justin helps facilitate and de-
velop programs like BBST, WHOSE, and the CAST conference. Contact Justin at rohrmanj@gmail.com.

Patrick Turner discovered a passion for computers at the age of ten on a trip to a local Radio Shack with his
brother. He has more than twenty years of experience producing software solutions for a broad range of
business needs. In addition to being an accomplished public speaker, Patrick is the CTO of Small Footprint and
oversees a unique model of blending experienced American software development professionals with talented
Romanian software engineers. Patrick can be reached at pturner@smallfootprint.com.

C O N T R I B U T O R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 8

mailto:rama.anem@gmail.com
mailto:a.mohr@tricentis.com
mailto:brian.rabon@braintrustgroup.com
http://www.linkedin.com/in/bmrabon
mailto:jrenaudin@techwell.com
mailto:rohrmanj@gmail.com
mailto:pturner@smallfootprint.com
http://techwell.com

TECHNICALLY SPEAKING

It is the end of a sprint and we still don’t know much about

the overall quality of the product. For the past decade, the popu-

lar approach to this problem has been to batch up the test ideas

we created in this sprint, add some from the last few releases,

and perform them all. Ideally, we find

a bunch of surprising problems that

were introduced over the course of

the past sprint. This process, known

as regression testing, usually takes a

few days to perform. From a manag-

er’s perspective, the only good thing to

do with regression testing is to make it

take less time.

I have been employed at more than

one company where this scenario leads

to a group of testers—usually with lit-

tle to no programming experience—

attempting to build a UI automation

solution. After a year of development,

they have a build that took three hours

to complete and tests that passed or

failed unpredictably. Understandably,

management is shocked and disappointed when the automation

project ends up as a mess.

When testing legacy software, UI automation may make perfect

sense as the basis of your automation strategy. [1] However, in most

cases, you can find information about your product quality easier

and faster by exploring other parts of your product first. Let’s take

a look at why that is.

Code Design and Feedback
Testers think of automation in terms of testing. Because devel-

opers do the vast majority of testing with code, they may have a

slightly different take.

Developers are in the business of taking something that works

at the moment and then adding a bunch of changes that introduce

risk. Whenever code changes, there is potential for something

new to go wrong in surprising parts of the product. Developers

want quick feedback to know if their code is doing what they ex-

pect and to know if they broke anything that was already working.

Some developers will create small tests that run a bit of code to

simply check a value. In an ideal world,

a developer makes a change and then

runs a test. This results in receiving

feedback from that test within seconds.

If the test fails, they check their code.

If the test passes, they can refactor the

code to make it perform faster, be more

readable, or conform to company code

standards.

For most projects, testing with code

is better done by the people who are

writing the production code. Develop-

ers have the context for what will help

with their code and are usually motivat-

ed to take action when a test fails. They

know what parts of the code base have

coverage and what needs to be tested.

Providing Automation in Layers
The company I am working with now has its automation

spread out over several layers in the product.

At the base is a set of tests built in RSpec that work as unit

tests. These check granular things in the code like the status on

a checkbox when a page loads and the value of a variable after a

calculation is performed. Tests at this level create a nearly instant

feedback loop that helps with code design and refactoring, which

helps a developer know when they are done with a code change.

On top of that, we have a suite of tests built in Jasmine that

validates the UI. These test slightly larger amounts of code and ask

questions: Does this button become enabled under certain condi-

tions? Does this page refresh to display a confirmation message

after we save?

Another level up from testing UI code are ChromeDriver

Building a Test
Automation Strategy
TEST AUTOMATION IS OFTEN VIEWED AS THE PANACEA THAT SOLVES ALL QUALITY
ISSUES. BUT LIKE OTHER TESTING, TEST AUTOMATION REQUIRES A STRATEGIC PLAN.
by Justin Rohrman | rohrmanj@gmail.com

For most
projects, testing

with code is
better done by
the people who
are writing the

production code.

B E T T E R S O F T W A R E T e c h W e l l . c o m 9

mailto:rohrmanj@gmail.com
http://techwell.com

TECHNICALLY SPEAKING

tests that run through the Cucumber be-

havior-driven development framework.

These tests check even larger pieces of

code and create a feedback loop around

simple but important scenarios that a

user might perform. These are things that

absolutely must work for our software to

be useful.

Given more time and resources, we

want to add more testing at the service

layer. This would be a great place to test a

lot of data permutations very quickly.

I often hear from testers that auto-

mation makes the computer perform re-

petitive work so that testers can work on

more important, exploratory work. I don’t

agree. Automation requires a specific

skill set and is usually a time-consuming

and expensive activity. In my experience,

automation helps developers deliver

high-quality builds the first time. As an ex-

ample, automation catches those obscure

code issues like field length or null text entry conditions. Layer-

ing tests against the unit level, services, and the UI will produce a

much better build and make bugs harder to find.

When a tester gets a build to test from development, they

should work hard to find problems instead of spending all their

time on finding the easy, “low-hanging fruit” defects.

Where Do I Start?
If test automation can help a problem in your development

process, the first step is to figure out how to start. My recommen-

dation would be to focus as close to the code as possible, most

likely with unit tests at the service layer. Testing at this level is

generally fast and relatively easy to create and perform, but it also

gives the development team fast feedback about changes they are

making in the code. Once that is in place, then and only then, start

looking at how to automate testing the UI.

There is usually an optimal way to test each layer in your prod-

uct. Take a look at your product and your staff. The question of

where to start automating should be easy to answer.

REFERENCESCLICK FOR THIS STORY'S

TechWell is always looking for authors interested in getting their
thoughts published in Better Software, a leading online magazine focused
on the software development/IT industry. If you are interested in writing
articles on one of the following topics, please contact me directly:

I’m looking forward to hearing from you!

Ken Whitaker
Editor, Better Software magazine | kwhitaker@techwell.com

• Testing
• Agile methodology
• DevOps

• Project and people management
• Continuous testing and continuous

development/integration

WA N T E D ! A F E W G R E AT W R I T E R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 10

www.stickyminds.com/sticky-note/references-235
mailto:kwhitaker@techwell.com
http://techwell.com

Get

Inspired
at the

premier event
for

software Testing
Professionals

Sept. 30–Oct. 5, 2018
Anaheim, CA

click to learn more

https://well.tc/wevk

Jennifer Scandariato
 Years in Industry: 24

 Twitter: @JScan

 Interviewed by: Josiah Renaudin

 Email: jrenaudin@techwell.com

“There is a bias that manual
testing is something that
provides less value. I believe
a strong engineer knows
that there’s a level of critical
thinking that is required to
‘break’ things and ensure
they are built robustly.”

“Last year when I spoke
about the need to upskill
testing abilities, there was
an attendee in the audience
who voiced a concern that if
they did that, then perhaps
that person would leave his
company. So, there is a fear
about attrition.”

“Everyone is driving toward
efficiencies and automation
with methods such as CI/CD
where you test early and often,
to reduce the number of defects
found late in the software
delivery lifecycle.”

“On a great team, you have
diverse skillsets where everyone
complements each other, and
you might even alternate roles
such as paired programming
where one person is developing
and the other performs the
validation or peer review.”

“I’ve met with various leaders
who think automation is the
magic pill, but it’s not. How you
automate and how much you
automate is the key.”

“My belief is that the entire team is accountable for the quality, not just
the QA engineer, test engineer, or SDET.”

“The idea of high performing
and best-in-class software as
a service (SaaS) is focused for
everyone in an agile team and
not just the testing arm.”

How Manual
Testers Are
Evolving into
Automation
Engineers

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

B E T T E R S O F T W A R E T e c h W e l l . c o m 12

mailto:jrenaudin@techwell.com
https://well.tc/IWAE20-2

Convenient, Cost Effective Training by Industry Experts

LEARN ANYWHERE!
LIVE, INSTRUCTOR-
LED PROFESSIONAL
TRAINING COURSES

Live Virtual Courses:

 » Agile Tester Certification
 » Software Tester Certification—Foundation Level
 » Fundamentals of Agile Certification—ICAgile
 » Foundations of DevOps—ICAgile Certification
 » Performance, Load, and Stress Testing
 » Mastering Business Analysis
 » Essential Test Management and Planning
 » Finding Ambiguities in Requirements
 » Mastering Test Automation
 » Agile Test Automation—ICAgile
 » Generating Great Testing Ideas
 » Exploratory Testing in Practice
 » Mobile Application Testing
 » and More

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/LIVE-VIRTUAL

Live Virtual Package Includes:
• Easy course access: Attend training right from your computer and easily connect your audio via computer or phone. Easy and

quick access fits today’s working style and eliminates expensive travel and long days in the classroom.

• Live, expert instruction: Instructors are sought-after practitioners, highly-experienced in the industry who deliver a professional
learning experience in real-time.

• Valuable course materials: Courses cover the same professional content as our classroom training, and students have direct
access to valuable materials.

• Rich virtual learning environment: A variety of tools are built in to the learning platform to engage learners through dynamic
delivery and to facilitate a multi-directional flow of information.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide hands-on exercises, group activities, and breakout sessions.

• Real-time communication: Communicate real-time directly with the instructor. Ask questions, provide comments, and participate
in the class discussions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live Virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than four hours per day. This schedule makes it
easy to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live Virtual courses are limited in small class size to ensure an opportunity for personal interaction.

https://well.tc/wn9m

DevOps
 and the Culture of Code

Patrick Turner BY

B E T T E R S O F T W A R E T e c h W e l l . c o m 14

http://techwell.com

ver the past twenty-five years, the software develop-

ment industry has seen a lot of change. But not since

the ’90s and the prevalence of the web have we seen

such a significant shift in our world. Agile changed how the core

development team works together, improving collaboration and

having a distinctive impact on organizational culture.

DevOps is extending the same cultural shift to the rest of the

software development lifecycle and the rest of the organization.

It is my experience that DevOps leverages tools and processes to

enable teams to row in the same direction more naturally.

Transparency is naturally built in when teams fully implement

DevOps best practices. This results in opening up a team’s ability

to innovate by creating an environment where the feedback cycle

and sharing of ideas is transparent, fast, and expected. Everyone

takes on the responsibility of quality, as teams are fueled by posi-

tive reinforcement rather than cover-ups and catching errors.

We know culture can determine the success of any initiative,

but it may hit home more to hear that culture can determine the

failure of any initiative, too. DevOps tackles this problem through

process, tools, and building a viable team value system.

Extending the Agile Culture Shift
Many technology companies talk about transparency—a fancy

term for everyone knowing what’s going on. It sounds simple, but

getting past organizational inefficiencies and poor communication

can be a huge challenge. If you’ve ever said, “Well, it worked on

my machine …” then you understand how vital collaboration is

and how working in silos can damage culture and yield lackluster

results. When you work in a silo, company culture suffers because

people don’t know what’s going on and they go numb to the collec-

tive goal protecting their own assets.

DevOps is about implementing tools, but the biggest opportuni-

ty is the culture shift that occurs when people simply know what’s

going on. Using traditional software development methods, devel-

opment doesn’t know what to build and can’t articulate what to

test or how to deploy. QA doesn’t know what to test or where to test

it, and operations isn’t given instructions on how to deploy the soft-

ware when it’s ready. It doesn’t take long before the finger-pointing

starts. Successful DevOps implementation aligns the culture so col-

laboration can happen.

As developers, our goal is to deliver the best possible software.

Agile taught the development team to work better together, and if

you’ve implemented agile, your team should already be talking to

each other and taking ownership of their work.

Similarly, the secret to implementing DevOps is to realize it’s

not just about tools. It’s really more about building a culture of

DevOps as an extension of what we’ve learned with agile by elim-

inating traditional inefficiencies to streamline the communication

and collaboration in an organization.

DevOps integrates and automates processes, creating transpar-

ency so people can build the best possible software. Agile allowed

for the integration of engineering and quality into the software de-

velopment process. The next step is for DevOps to help extend that

agile culture shift upstream to the product and downstream to the

operations organization.

To start, think about how DevOps changes development. With

automated builds and continuous integration, developers now

must focus on unit tests where code tests code. In fact, unit test

coverage is critical to a successful DevOps implementation. This in

itself becomes a cultural challenge because developers have grown

accustomed to throwing a build over the wall to QA and letting

them find the problem. Achieving great unit test coverage requires

developers to take a more direct role in ensuring the quality of the

software product.

Source Code Management Is the
Foundation

Before feature branching, all the developers in a group worked

on the same code set. Keeping track of what was ready to go live

and keeping the code organized was tough. The communication

challenges presented a real problem, especially across distribut-

ed teams. Branching source code was common, but the entire de-

velopment team typically worked in the same branch. As a result,

toes were being stepped on regularly and the blame game culture

ensued.

With feature branching, development teams can decide which

features (or user stories) make sense to the group, keeping them

distinct so that go-live decisions become easier to make. It also

helps create a self-organizing culture for the code and the teams so

they take ownership of their areas. This approach allows the team

to move quickly and independently without having to consult with

everyone in every part of the development organization before

they make decisions.

It usually takes a while for team members to really understand

why they should invest time in developing branching strategies as

DevOps is about
implementing tools, but
the biggest opportunity
is the culture shift that
occurs when people
simply know what’s
going on.

B E T T E R S O F T W A R E T e c h W e l l . c o m 15

http://techwell.com

plication. As a result, testers spent forty hours a week just trying

to break the application. They were going through screen after

screen and manually hunting down bugs.

These days, however, testing is becoming a more automated

process, with test scripts and automated tests able to run end-to-

end testing without human intervention. In addition to finding

bugs, automation can also be used to test performance and securi-

ty by letting the system do all of the grunt work of the traditional

manual tester.

The automation around DevOps, such as automated regression

testing and performance testing, allows QA to focus more on testing

new features, which is where they add the most value to the proj-

ect. QA can spend more time communicating quality feedback with

project managers, product owners, and end-users. When the team

builds software that users actually want, the customer benefits.

Ultimately, the culture shift is toward QA becoming a true part

of the value proposition, not just the folks responsible for breaking

the software. With DevOps, QA has the opportunity to find more

ways to add value by focusing on other areas, such as user experi-

ence acceptance testing.

Continuous Integration and Continuous
Delivery Are a Must

When most people think about DevOps, they usually focus on

deployment. We see deployment as an activity that happens at

multiple points in the process, not just when you are going live.

Along with improved collaboration and communication, it’s key to

the shift to transparency.

part of their overall development plan. Just because you’ve moved

your code into Git doesn’t necessarily mean that you’re solving

source code management problems. It’s important to spend time

on good branching strategies up front and throughout the course

of the project, as it makes for cleaner builds. Ultimately, the result

is easier deployment and less finger-pointing. This represents a

real cultural impact.

In the past, a bug fix meant making a quick—and usually ugly—

decision about how to integrate that hot fix into the code and de-

ciding how to make it go live. With feature branching, the process

becomes a lot easier by keeping unique parts of the coding process

segregated, which ensures that handling even hot fixes becomes

less stressful for the team members. It also ensures only clean

code makes it to the production environment. This approach helps

achieve the goal of delivering high-quality software to end-users.

Using planned branching strategies on a distributed source

code repository creates a culture of transparency. It helps ensure

that everyone knows what features are going to be in a specific

product release. The team’s comfort level increases with better

odds that only clean code is going into production.

The Role of QA, from Software Breaker to
Value Maker

With DevOps, automation enables QA to add more value to the

process. It actually changes the QA role and improves the impact

they have on the software.

Traditionally, a tester was just a power user—maybe someone

from customer service who was pretty good at breaking the ap-

Quality
assurance

B E T T E R S O F T W A R E T e c h W e l l . c o m 16

http://techwell.com

The use of continuous integration involves producing a clean

build every time new code is ready for testing. The process, simply

stated, grabs the code from the source code repository and com-

piles it into a build ready for testing. That process itself may break

the build as it is running unit tests, integration tests, automated

tests, and security tests during the build process, so that by the

time it gets to QA, it’s ready to go. The cultural mindset needs to be

focused on delivering code that is always ready for QA and stake-

holder review. It eliminates the “it worked on my machine” excuse.

When you incorporate continuous delivery (builds that are au-

tomatically deployed to targets), QA can actually test the next build

without having to wait on a developer or questioning what’s in the

build. It’s tied to their test case management tool, which is tied to

user stories in the practice management tool.

Continuous integration and continuous delivery are yet anoth-

er way to improve an organization’s culture. It eliminates excuses

between developers, QA, and system administrators by improving

transparency and communication. Everyone knows what’s being

delivered and where the build will be deployed.

Defining the Operations Environment
When it comes to operations, DevOps has a huge impact. Infra-

structure-as-code, where an environment is described as code, and

containers, which bundle all of an application’s dependencies into

a package, allow a software architect and system administrator to

define the server environment collaboratively. They ensure pre-

dictability so that environments remain exactly the same for devel-

opment, QA, stage, and production. As a result, an application will

function the same in every environment, every time. Once you’ve

spent the time writing those initial scripts, one of the beneficial side

effects includes the simplification of onboarding new developers.

Orchestration is an approach to systematically managing pro-

duction environments, including load balancing (which automat-

ically does real-time horizontal scaling), spinning up production

instances with new releases, and bringing down instances with old

releases in a controlled way. Sophisticated orchestration can even

be used to spread your environments across multiple services si-

multaneously, such as your local data center and design or other

target environments.

The beauty of this is that if the server or an entire environment

fails, the system can graciously recover. Tools can be implemented

that even bid automatically, in real time, for the most cost-effective

environment. Rolling out new versions, which is key, via methods

such as feature switching and canary staging (a version of soft-

ware that has not been tested) can be handled automatically.

In a DevOps world, you don’t want one person holding ev-

erything together. System administrators have to give up some

control, and developers have to take on new responsibilities. As

a result, tensions between development and operations decrease,

eliminating the culture of finger-pointing.

In addition to orchestration, real-time monitoring is critical. Not

only should the traditional system administration role be involved,

but a DevOps culture should provide visibility to every stakeholder.

Proper orchestration ensures that environments are running, and

monitoring should be set at many levels, from the database tables to

text verification. The DevOps movement also has resulted in many

more sophisticated monitoring tools becoming available.

Ultimately, your goal should be to identify problems before us-

ers even know they’ve occurred, while at the same time ensuring

all stakeholders (the product team, advisors, and customers) are

all in the loop.

Building the Best Culture
Focus on what you hope to achieve with a better DevOps cul-

ture. Should it produce happier, more productive teams? Faster

and more frequent delivery? Do you want higher quality releases,

better communication and collaboration, or higher employee en-

gagement?

Each of these goals has value. Happy, more productive teams

create better software. Faster, higher quality releases are certain-

ly a goal, because no one wants customers to see a bug. Finally,

more frequent delivery provides value faster, creating a shorter

feedback loop from stakeholders on whether the team is doing the

right things.

Finally, DevOps means a serious shift in implementation of

tools. A good DevOps team will support the development organi-

zation, not drive it. But, ultimately, I’d encourage you to view those

tools as a support mechanism for implementing values of positive

culture and collaboration. DevOps tools are vehicles for practicing

transparency and responsibility so that you can harvest real inno-

vation from your team. Keep those values at the heart of your true

goals in delivering the best software, and the tools will help you get

there. pturner@smallfootprint.com

The cultural
mindset needs
to be focused on
delivering code that is
always ready for QA and
stakeholder review.

B E T T E R S O F T W A R E T e c h W e l l . c o m 17

mailto:pturner@smallfootprint.com
http://techwell.com

For more than twenty-five years, TechWell

has helped thousands of organizations

reach their goal of producing high-value

and high-quality software. As part of

TechWell’s top-ranked lineup of expert

resources for software professionals, SQE

Training’s On-Site training offers your team

the kind of change that can only come

from working one-on-one with a seasoned

expert. We are the industry’s best resource

to help organizations meet their software

testing, development, management, and

requirements training needs.

With On-Site training, we handle it all—

bringing the instructor and the course to

you. Delivering one of our 80+ courses

at your location allows you to tailor the

experience to the specific needs of your

organization and expand the number of

people that can be trained. You and your

team can focus on the most relevant

material, discuss proprietary issues with

complete confidentiality, and ensure

everyone is on the same page when

implementing new practices and processes.

8
REQUIREMENTS
& BUSINESS
ANALYSIS
COURSES

40+
TESTING
COURSES

8
PROJECT
MANAGEMENT
COURSES

8
DEV & TESTING
TOOLS COURSES

7
TEST
AUTOMATION
COURSES

25+
AGILE & DEVOPS
COURSES

BRING THE TRAINING TO YOU
Agile Test Automation

Fundamentals of Agile

Foundations of DevOps

DevOps Leadership Workshop

Software Tester Certification

and More!

SQETRAINING.COM/ON-SITE

TRAIN YOUR
TEAM ON

YOUR TURF

8 0 + O N - S I T E C O U R S E S

IF YOU HAVE 6 OR MORE TO TRAIN , CONSIDER ON-S ITE TRAINING

https://well.tc/weyo

Test-Driven Service
Virtualization Alexander

Mohr

B E T T E R S O F T W A R E T e c h W e l l . c o m 19

http://techwell.com

ervice virtualization just celebrated its tenth anniversary.

The technology is still certainly not mainstream, but may-

be it should be. Service virtualization is a simulation tech-

nology that lets you execute tests even when the application under

test (AUT) and its dependent system components cannot be prop-

erly accessed or configured for testing. By simulating these depen-

dencies, tests will encounter the appropriate dependency behavior

every time they are executed.

Service virtualization is typically used if dependent system

components are unreliable, evolving, unstable, not yet developed,

delayed in delivery, challenging to provision (or configure) for test-

ing, or have unsettled scope. It’s also used in cases where consis-

tent test data is too complex to generate. In these cases, service

virtualization helps avoid delays and overcome blockers in test.

But it needs to be positioned more wisely and introduced early not

just as a reaction to a symptom. By that time, it is too late.

Staging and Service Virtualization
In larger enterprises, it’s still fairly common to have water-

fall-like software delivery processes where release cycles last

weeks or months. Because applications are now so highly inter-

connected, it is hard to obtain valuable, quality feedback unless

you can interact with an application’s dependent systems. Usually,

this interaction is achieved through a test lab.

Once the AUT is ready for testing,

operations deploys the applications

and required dependent subsystems

to the test environments. These are

protected by gate acceptance criteria

and supervised by release manage-

ment. Testing can start only when all

required applications are available

and properly configured. Howev-

er, getting the many moving pieces

properly aligned at the same time

can be quite a challenge.

One proposed solution is to use

environment-based service virtu-

alization to work around any con-

straints. With this approach, delayed

applications are supposed to be sim-

ulated until the applications are ac-

tually available. In the case of dependencies that are too unstable

for testing, service virtualization jumps in as needed in a fallback

mode. Service virtualization is also used to reduce interactions

with third-party applications that are expensive to access for test-

ing. In practice, I typically see the required simulation artifacts set

up by dedicated service virtualization teams that are embedded in

the software delivery process right from the planning phase on.

Sounds good, right? But it hadn’t been working so well for

one telecom provider that approached me for help with service

virtualization.

One hundred seventy-five testers verified twenty-five core ap-

plications and a total of two hundred applications in three partly

mounted test environments. Normally, each system integration

and end-to-end test case clearly defines the scope of applications

and verified business cases. What the team did not consider was

that a simulation fallback temporarily diminishes the testing

scope. Tests that ran against the simulation had to be identified

and rerun against the dependent system once it was stabilized. The

joy of having unblocked test cases was quickly marred by the addi-

tional effort required to set the test suite right.

Moreover, predefined service virtualization scenarios required

the team to align on decision criteria such as time windows, test

data segregation, and source applications. All of this ultimately

reduced the available testing time. Using service virtualization

as fallback (and without knowing the exact definition of the test

drivers) required the team to accurately mirror real application

data—in the form of an initial data load and ongoing data sync

to ensure that consistent test data was always available. The team

gained three days in a four-week test period, but this didn’t offset

the added costs and efforts. As a result, they considered the service

virtualization initiative a failure to that point.

This is one of numerous examples I’ve seen where this ap-

proach to service virtualization hasn’t significantly reduced the

team’s time to market, the testing resources required, or the need

to provision and manage test envi-

ronments. I believe this is because

the approach is too little, too late.

Instead of waiting to use service vir-

tualization in a staging test environ-

ment, focus on quality at the most

critical point: early in the software

development lifecycle.

To be fair, there are some valid

use cases for this approach. If you

have an easy way to load, persist, and

sync data changes, it can be a viable

approach for simulating the behav-

ior of applications that are complete-

ly out of the testing scope. However,

in reality, the time required for coor-

dination and orchestration makes it

hard to reach the break-even point

where the value is worth the effort.

Stubs offer another approach to simulation—one on the other

side of the spectrum. Stubs allow developers to mimic the interac-

tion of two applications and reduce dependencies from the per-

spective of their personal desktop. However, those stubs deliver

more of a frame than a full request/response structure.

For example, I recently interacted with a team working on the

checkout procedure of a shopping cart for a food retailer. The stub

provided a successful response from the payment provider, but

not the other variants (such as identifying the credit card payment

Instead of Waiting
to use service
virtualization

in a staging test
environment, focus

on quality at
the most critical

point: early in the
software development

lifecycle.

B E T T E R S O F T W A R E T e c h W e l l . c o m 20

http://techwell.com

type, managing an invalid date or CVV, and declined transactions).

Guess what blocked the integration tests? A defect in handling de-

clined transactions. It took another two weeks and numerous re-

sources to fix the defect, deliver a new package, align with release

management to get the test environment updated, run the gate cri-

teria tests to install the package, have operations installing the new

versions, and rerun the tests.

This is just one example of how stubbing tends to provide a

false sense of security without really closing the quality gap in a

way that’s valuable for today’s applications and teams.

The Benefits of a Test-Driven Approach
On the other hand, acceptance test-driven development (ATDD),

behavior-driven development (BDD), and test-driven development

(TDD) have all proven to be magnificent drivers for quality and ef-

ficiency. Following TDD principles, developers code unit tests first,

followed by classes, functions, and procedures.

Having an automated test case available at the very beginning

of your software process provides an efficient foundation for soft-

ware delivery. In addition, BDD and ATDD expose all possible initial

situations, conditions, and expected results for each requirement

or user story. By thinking through the process from beginning to

end, you ensure that everyone on the team understands what’s ex-

pected, minimizing unwanted surprises and maximizing the arti-

fact’s quality through early availability of test drivers.

Test-driven service virtualization combines the power and

benefits of BDD, ATDD, and TDD with service virtualization.

Let’s assume that our AUT is an online store. Any arbitrary test

driver (UI for the web front-end, API for the online shop middle

layer, and even batch files) can be used to validate the AUT. This

driver would trigger a process that invokes several service re-

quests on dependent third-party components. These invoke a CRM

for customer data, a credit rating, and an order processing system

to orchestrate the order once the user submits it.

Test-driven service virtualization combines test variants from

the input side with outbound third-party service calls. It uses iden-

tical data combinations, allowing testers to execute a fully simu-

lated integration test against the app. These tests cover necessary

business variants such as an acceptable or unacceptable credit rat-

ing, a declined credit card transaction, or additional shipment fees.

Here are the steps:

1. Identify the initial situation, conditions, and expected results.

2. Combine your test cases as a test driver against your AUT

while using service virtualization to simulate dependent ap-

plications’ interfaces (via request and response scenarios).

3. Following TDD principles, create and provide the test driver

and service virtualization artifacts as soon as development

starts coding—establishing a full, simulated unit test, system

test, and sandboxed integration test for your AUT from the

early phases of the delivery cycle.

These steps are essentially the same as those used for many

years in aircraft and Formula 1 simulators: Identify the right be-

havior, then set up tasks by simulating outside conditions. Nev-

ertheless, pilots still get trained on real airplanes, and Formula

1 drivers still drive an incredibly fast two-minute lap at over 200

miles per hour with the real car on a real racing track. It’s the same

in IT: We execute a fast and efficient end-to-end test to prove the

functionality of relevant business processes, and we also test the

real-world interface interaction to identify any anomalies that

might not have been covered or specified in the simulation.

Getting Started with Test-Driven Service
Virtualization

For “greenfield projects” that aren’t restricted by constraints

of prior work, service virtualization scenarios are set up by us-

ing example files or by

interpreting definition

formats (like OpenAPI,

RAML, oData, or WSDL).

An alternative option is

to intercept the network

traffic, record the service

traffic, and provide those

recordings (in combina-

tion with your executed

test case) as a service vir-

tualization scenario.

This recording op-

tion is a perfectly effi-

cient way to get started

for “brownfield projects”

that are based on lega-

cy applications. In this

situation, recording re-
Figure 1: Test-driven service virtualization approach

B E T T E R S O F T W A R E T e c h W e l l . c o m 21

http://techwell.com

verse-engineers a process when documentation is not available.

With service recording, the quality of the results depends on the test

drivers that are selected. This may require considerable research to

identify the input variants that lead to specific outputs from an AUT.

Once the AUT’s schema and request data are verified, data can

be stored, reused, or modified for later service virtualization sce-

nario steps. It is possible to embed string, mathematical, and ex-

ternal functions to make test scenarios more realistic. Advanced

testers use dynamic pattern matching systems to provide different

response scenarios, structures, or failure simulations.

Stateful scenario simulation is a test process against an AUT. It

requires an order to be created, then that order is either reused or

declined.

The simulated back-end system’s response varies based on

where you are in the process. If the service request says, “Give

me data for the specific order 123 after it has been created,” it re-

sponds with an order state of

“active.” After the order has

been confirmed (or declined

due to a negative rating), it

responds to the same request

(“Give me data for the spe-

cific order 123”). This results

in a final state of either con-

firmed or declined. The same

request leads to different re-

sponses based on the process

phase. If the AUT doesn’t per-

sist that order data, the iden-

tical data can be used over

and over again, relieving you

from creating additional test

data in dependent third-par-

ty applications.

When using sandbox testing with stateful scenario simulation,

test-driven service virtualization provides the AUT modified data

during the test process, without persisting real data changes in

third-party components. Assume a test driver that needs to add

a new order, process the order,

approve the order, and add com-

ponents to the order. The AUT

retrieves appropriate test data

during the test process, but in a

way that’s fully independent of

any prior or ongoing data prepa-

ration and modification in exter-

nal components.

The test data repository ei-

ther holds test data variants or

creates appropriate test data on

demand, as shown in figure 3.

Test data include technical

data mappings in the AUT’s da-

tabase, e.g., customer-related

data (1). The specific data record

“John Peter Doe, United States”

(2) is used to execute tests against the application under test via

the UI (3). Next, the outbound service request (4) includes “John Pe-

ter Doe, US.” The service virtualization framework “knows” which

record to expect, verifies against “John Peter Doe, US” (Did the AUT

send the correct data?) and responds with the required customer

detail data. The test driver can then verify this and proceed.

In combination with a dynamic data management repository

that is used consistently by test driver and service virtualization

scenarios, test-driven service virtualization doubles its efficiency

while keeping data in sync. This ensures that the test driver and its

simulation scenario use identical data, which reduces the need for

data preparation in external components.

Figure 2: How stateful scenario simulation works

Figure 3: Combining a test data repository with a test driver and test-driven service virtualization

B E T T E R S O F T W A R E T e c h W e l l . c o m 22

http://techwell.com

The Scope of Service Virtualization
Once you start with service virtualization, you will have to de-

termine what data and service variants to use for the simulation

and decide if the service or consumer side defines the scope. One

simple request-response pair of your PurchaseOrder-Service could

be too little, but a full data copy of 56 million records of your CRM

application would skyrocket your setup and maintenance costs

through the roof.

With test-driven service virtualization, your test cases define

the scope. As a result, it does not matter if you start with a serv-

er-side approach. In one case, the service provider sets up the ser-

vice virtualization variants, then makes them centrally available

and reusable throughout the company and to external partners. In

other cases, the service consumer creates selected

variants based on its usage, then makes the arti-

facts centrally available and reusable for consum-

ers—and, at the same time, extendable and main-

tainable by consumers or service providers.

Let’s assume the flow shown in figure 4.

A simple microservice environment consisting

of a web store connected to an API-Gateway for-

wards service requests and responses via http to

an internal purchase order service. The internal

services are connected via a lightweight enter-

prise service bus (ESB). The ESB provides partly

asynchronous messaging via queuing. The full or-

der process requires an account service, a product

service, and an available CRM service. The CRM

is basically protected by a circuit breaker, which

responds with an error to the client system if the

CRM is not available. Once the order has been cre-

ated, the order service sends status and results

back to the web store.

1. A user enters their data, address, product, and options in a

web application, then the data is sent to an order service via

RESTful service (1, 2).

2. The purchase order triggers internal services via RabbitMQ,

JSON/AMQP to CRM to create or retrieve customer data (3, 4),

and the CRM service is protected via a circuit breaker that

returns an error if the CRM becomes unstable. An asynchro-

nous account creation is triggered, then the account service

notifies the order service event based via RabbitMQ (5).

3. The order service retrieves product data (6, 7), verifies all

data, and stores the created order in its database (8).

4. The result is handed back (9, 10) to the touchpoint.

The goal here is to set up a stateful simulation scenario to cor-

relate input and output parameters, which get verified inside the

order service.

To achieve this, start by defining the initial situation, condi-

tions, and results (local or international customers, consumer or

business service). Next, identify the possible conditions that are

valid options, as well as those that trigger error conditions (such

as an unavailable CRM service). Finally, identify the outcomes cor-

related to successful and unsuccessful orders. For example, an un-

successful order might be correlated with a message such as “Sor-

ry, something went wrong. We apologize for the inconvenience.

Please try again.”

Sandbox testing, another important test technique, allows the

order-service team to retrieve full integration test results on a dai-

ly basis (figure 5).

The AUT is encapsulated in a test-driven approach using test

drivers and test-driven service virtualization artifacts simulat-

ing dependent applications, both of which use the same test data

repository.

Figure 4: A simple microservice with a web store connected to an
API-Gateway

Figure 5: How sandbox testing works

B E T T E R S O F T W A R E T e c h W e l l . c o m 23

http://techwell.com

The API definition is loaded for the API purchase order service

(2) and combined with the data repository. The three following

data definitions for CRM, PROD, and ACC are used to create a state-

ful service virtualization scenario: CRM request and responses (3,

4), asynchronous account creation (5), and product request and re-

sponses (6, 7). The scenarios are applied with the test data reposito-

ry, which allows you to verify the outbound order requests for the

right input data and defines the right JSON response variants for

national, abroad, or active circuit breaker (error condition). The

identical data repository is applied to the purchase order response

(9) to verify the result.

Creating those test scenarios right from the beginning allows

an efficient and fully simulated integration test from the very first

line of code.

The Benefits of Test-Driven Service
Virtualization

As a project manager in the enterprise telecom marketplace,

I’ve seen firsthand how applying this strategy reduces the cost of

fixing defects and quality assurance. There are also other benefits,

including controlling project risks, lowering hardware costs, and

reducing license costs.

On several projects, we’ve measured a 25 percent reduction in

the overall development effort, a 45 percent reduction in testing

time, and up to a 65 percent reduction of the operational and over-

all management costs that typically take place with staging test

processes. In my experience, once service virtualization has been

established at a broader scale, it reduces hardware and license

costs up to an additional 40 percent.

For example, I set up a test-driven service virtualization ap-

proach for a shopping application that had seven forms and elev-

en back-end service calls. It took the team less than three hours

to create the automated UI test driver and only thirty minutes to

create the service virtualization scenario. Once that foundation

was set, test cases could be run completely decoupled from any of

its dependencies. As a result, the team had full quality feedback at

their fingertips every single day during development. Otherwise,

they would have had quality feedback three to four weeks later,

that feedback would have been based just a single execution, and

they would have needed additional resources to set up the staging

environments. Considering the reduced wait time as well as the

benefits of early defect detection, they estimate that this approach

helped them get the project delivered twenty times faster.

Is Test-Driven Service Virtualization for You?
Service virtualization has predominantly been used as a patch

to prevent blockers in staging test environments. This approach is

indeed viable in specific scenarios, but it’s typically applied too late

in the software process to deliver the promised benefits.

Test-driven service virtualization is a different approach that

applies simulation primarily as an enabler for greater test cov-

erage and improving collaboration across agile teams. With this

focus, service virtualization assets are developed and used from

the earliest phases of the software delivery cycle. It provides devel-

opers an always-on virtual test environment and simulates sand-

boxed integration testing.

Although there is a learning curve involved in getting up to

speed with test-driven service virtualization, the time to value

exceeds that of traditional approaches to service virtualization,

and the rapid quality feedback is not able to be estimated.

a.mohr@tricentis.com

Test-driven service
virtualization is a

different approach that
applies simulation primarily
as an enabler for greater

test coverage and
improving collaboration

across agile teams.

B E T T E R S O F T W A R E T e c h W e l l . c o m 24

mailto:a.mohr@tricentis.com
http://techwell.com

MARK YOUR
CALENDAR

STARCANADA

IS COMING
OCT. 14-19

WWW.WELL.TC/STARC18

https://well.tc/weyc

SCRUM:
BACK TO
BASICS

BY BRIAN RABON

B E T T E R S O F T W A R E T e c h W e l l . c o m 26

http://techwell.com

fter pioneering the agile leadership movement and put-

ting on many Scrum workshops, I have noticed a trend.

Many of the workshop attendees have never experi-

enced agile, and one of my tasks has been to present how the agile

movement positively influences leadership. To my delight, there

is something insightful about re-examining the basics—things we

often take for granted. This is especially true for any Scrum practi-

tioner who has been using advanced techniques for a while.

Regardless of whether you are an agile veteran or someone

who is just hearing about Scrum for the first time, this back-to-ba-

sics article explains what Scrum is and why you should be using it

to build better software.

An Introduction to Agile
Probably the best definition of Scrum I have heard is “Scrum is

a fun and profitable way to get work done.” Essentially, Scrum is

a team-based approach to building a product. Before I get into the

fundamentals of Scrum, let’s examine why it is considered one of

the best examples of any agile process.

Agile, as applied to an alternative way of developing software,

was coined in February of 2001. Frustrated with the prevailing

software development paradigms, a team of seventeen software

development experts met and hashed out what is now known as

the Agile Manifesto. [1]

The Agile Manifesto defines what agile software development

should be all about. This includes collaboration, accepting change,

face-to-face interaction, and the benefit of a functional product

over predefined plans, documentation, or rigid processes. Agile

is sometimes referred to as a lightweight process because of its

minimalistic approach, but this doesn’t mean that we don’t plan

or create documentation. Although agility can be tailored to meet

the needs of any work effort, truly agile teams never compromise

its core values.

The primary features of agile support frequent and rapid

change. Instead of defining the detailed end-game for a product

prior to starting work, agile focuses on setting a vision and getting

started with incremental development of small pieces of function-

ality. Thus, a client or customer can change their minds along the

way with minimal disruption or loss of work already performed

on the product. Agile is an empirical process (think inspect and

adapt), whereas traditional methods are based on a defined pro-

cess (a plan-driven approach).

Critics believe that agile ignores good design principles and

process. Proponents, on the other hand, believe that you get ex-

actly the product customers need with incremental development,

inspection, adaptation, and review.

Agile itself is not a discipline or a set of practices. Rather, it is

a philosophy for iterative and incremental product development.

The implementations of agile promote teamwork, collaboration,

and adaptability throughout the lifecycle of product development.

Some of the popular agile frameworks are Scrum, Extreme Pro-

gramming, kanban/lean, Crystal, and feature-driven development.

Scrum is an agile method emphasizing the values and princi-

ples of the Agile Manifesto, with a focus on commitment, focus,

openness, respect, and courage. As Scrum is a way to get work done,

much of its tenets are based on the concept of “Keep it simple, stu-

pid” (KISS).

The approach relies on a few concepts while letting an orga-

nization fill in the gaps. According to a VersionOne survey, Scrum

is the most popular of the agile approaches, with 58 percent of re-

spondents who use agile reporting that they practice Scrum or a

Scrum–Extreme Programming hybrid. [2]

The Pigs and the Chickens
Who would have imagined that farm animals would be used

to describe Scrum projects? The analogy goes like this: A pig and a

chicken are planning to open a restaurant together, but they can’t

decide on a name. The chicken wants to call it Ham and Eggs, but

the pig has concerns. The rub is the pig would be committed, but

the chicken would only be involved (figure 1).

There are key differences between being committed and being

involved.

Figure 1: Committed or involved?

B E T T E R S O F T W A R E T e c h W e l l . c o m 27

http://techwell.com

What does it mean to be committed? In Scrum, we like to talk

about the Scrum team as pigs—they have to be committed to the

product development effort. The Scrum team is in the trenches

every day, making it happen. They are fully committed to the out-

come of their effort. They definitely have “skin in the game.”

Conversely, stakeholders (chickens) are only involved in the

product development effort. Stakeholder input is requested for

strategic planning purposes, during product development as need-

ed, and during sprint reviews. Because stakeholders are not in the

trenches every day, they are considered critical bystanders.

These definitions are not always clear, and there needs to be a

word of caution.

Anyone involved with software development sometimes

abuses the notion of pigs and chickens. Teams have been known

to ostracize and isolate stakeholders from their meetings. I have

witnessed individuals belittling stakeholders with comments such

as, “You are a chicken and you are not allowed to speak.” Please

remember that any development effort is a partnership. The role

of the chickens is no less than that of the pigs. It’s just different.

By recognizing this fact, and treating stakeholders with respect,

the team can be more successful.

The Scrum Walkabout
Figure 2 shows the best way I’ve found to present the overall

Scrum process.

Throughout the Scrum project lifecycle, there are three prima-

ry roles:

Team members (TM): The group of individuals who get the

work done

Product owner (PO): Represents the stakeholders who have

influence on or are impacted by the team

ScrumMaster (SM): The “grease” that keeps everything run-

ning smoothly

Everyone else is considered a stakeholder whose input is val-

ued and needed throughout the process. Everyone’s ideas for the

product go into what we call the product backlog. You can think of

the product backlog as a dynamic entity—an iceberg. New ideas

are constantly coming in and old ideas are falling off the bottom,

melting away.

The product owner maintains the product backlog, solicits and

takes in new ideas, refines existing ideas, and keeps them in prior-

ity order based on everyone’s feedback.

Figure 2: The Scrum process is highly iterative

B E T T E R S O F T W A R E T e c h W e l l . c o m 28

http://techwell.com

Stakeholders usually want to get the prod-

uct built as quickly as possible. Contrary to a

traditional waterfall approach where one de-

velopment phase follows another, Scrum iter-

ates in cycles. This is accomplished by the team

executing sprints. A sprint is a period of time,

typically two to four weeks, at the end of which

we expect to have a potentially shippable prod-

uct increment that is a functional piece of the

final product.

Each sprint begins with a sprint planning

meeting. In this meeting, there are two primary

conversations:

1. The first conversation is when the prod-

uct owner presents the highest-priority

product backlog items to the team. The

team is then expected to figure out which ones they can re-

alistically get done.

2. The second conversation is when the team dives into the

technical work and identifies the tasks necessary to complete

the agreed-upon product backlog Items. Once the scope of

the sprint is set, the team is now ready to start building.

The heartbeat of the sprint is the daily scrum meeting. This

meeting is an opportunity for the team to come together briefly to

discuss their progress, ask for help, and synchronize their efforts.

The team may incorporate other tools in order to promote trans-

parency, like burndown charts and scrum boards.

At the end of the sprint, it’s time to formally inspect and adapt

what the team produced in order to improve. This takes place in

a meeting called the sprint review. This is an opportunity to in-

vite the stakeholders to see a demo and offer their feedback. The

feedback from this meeting becomes new product backlog items.

As an aside, savvy teams are constantly inspecting and adapting

with real-time feedback from their product owner and stakehold-

ers during the sprint. The output of every sprint is a potentially

shippable product increment, another brick in the proverbial wall.

This represents a vertical slice of functionality that is fully tested,

documented, and ready to release to production. Whether to give

this functionality to the stakeholders then becomes a business de-

cision to be made by the product owner.

The directional arrows in figure 2 show that sprints move for-

ward, one after the other, until the product owner calls the devel-

opment effort “done.” This can happen when a targeted date has

been reached, the budget has been depleted, or enough business

value has been delivered to meet the needs of the stakeholders.

Now that you have a basic overview of Scrum, let’s examine a

few parts and pieces in more detail.

The Roles in Scrum
The three Scrum roles each have different responsibilities that

fit into the overall process. A team is ideally composed of five to

nine members—studies have shown that seven is just about perfect.

The team should be cross-functional, self-organizing, and self-man-

aging. Teams that exhibit these characteristics tend to operate at

maximum efficiency.

The product owner serves as the liaison between the team

and the stakeholders. To the team, the product owner is the voice

of the stakeholders, representing their needs, wants, and desires

for the product.

The product owner has strategic oversight of the product from

the organization’s perspective; they own the return on investment

for the product. They are involved in product planning through

visioning, road-mapping, and release planning. In general, the

product owner works with stakeholders and project sponsors to

perform strategic planning.

The product owner is also responsible for the product back-

log. They own it, maintain it, and prioritize it. They always assure

that the needs of the stakeholders are being presented to the team

Figure 3: There are three roles in Scrum

THE OUTPUT OF
EVERY SPRINT IS
A POTENTIALLY

SHIPPABLE PRODUCT
INCREMENT, ANOTHER

BRICK IN THE
PROVERBIAL WALL.

B E T T E R S O F T W A R E T e c h W e l l . c o m 29

http://techwell.com

for implementation within the sprints. ScrumMaster is one of the

most vital roles on a Scrum team. The ScrumMaster facilitates the

Scrum process as servant leader. A ScrumMaster also acts as an

“information radiator” to stakeholders and clears roadblocks out

of the team’s way.

The ScrumMaster serves to help the team effectively execute

sprints and the entire Scrum process. While the ScrumMaster is

not the manager of the team members, they guide the team in their

execution of the Scrum process, coaching, cajoling, nudging, and

sometimes escalating to human resources when necessary.

Ceremonies in Scrum
We’ve already touched on the four main Scrum ceremonies,

or meetings: sprint planning, the daily scrum, sprint review, and

the sprint retrospective. Let’s examine the purpose of each of

these ceremonies.

SPRINT PLANNING
In sprint planning, the work for the next sprint is determined.

Generally, there are two separate conversations in this meeting,

each of which is half of the meeting’s allocated time (figure 4).

The first conversation should be attended by the entire Scrum

team. The items from the product backlog are selected by the

team for inclusion in the upcoming sprint. This is known as the

“what” conversation.

The second conversation is when the team meets to finalize the

sprint backlog. This is done by decomposing the selected product

backlog Items into tasks and estimating each task in ideal man-

hours. This “how” conversation is technical in nature and doesn’t

require the product owner’s full attention.

DAILY SCRUM
The daily scrum meeting, often called the daily standup, is the

most tactical of all the Scrum meetings.

This meeting is held each workday during the sprint and is at-

tended by the team members, the ScrumMaster, and the product

owner. Although morning meetings are often preferred, the best

answer to when a daily scrum should be held is “whatever time

of day the Scrum team can commit to coming together for fifteen

uninterrupted minutes.”

During the daily scrum, each attendee traditionally answers

these three questions:

1. What did I do yesterday?

2. What am I going to do today?

3. What are my roadblocks?

Savvy teams change these questions if there are better alter-

natives.

SPRINT REVIEW
At the end of each sprint, the team should have a working prod-

uct, known as a potentially shippable product increment. In the

sprint review, the stakeholders get to see what was accomplished,

hear what work was accepted or rejected, and provide feedback

and new ideas.

Figure 4: Sprint planning answers the questions What? and How?

THE SCRUMMASTER
SERVES TO HELP THE TEAM

EFFECTIVELY EXECUTE
SPRINTS AND THE ENTIRE

SCRUM PROCESS.

B E T T E R S O F T W A R E T e c h W e l l . c o m 30

http://techwell.com

SPRINT RETROSPECTIVE
At the completion of the sprint, a retrospective meeting is held.

After the stakeholders have left the room, the key individuals (team

members, product owner, and ScrumMaster) meet to inspect and

adapt the process. The Scrum team looks at what worked well and

what needs improvement, and they leave the meeting with tasks

to make changes for their betterment. This meeting benefits the

Scrum team directly, which ultimately benefits the product and

stakeholders as a whole.

Once You Scrum, You’ll Never Look Back
I often get asked about what specific benefits my team can ex-

pect to see when we implement Scrum. While only occasionally

realized, executives want to hear examples like:

• Faster delivery

• Less waste

• More productivity

If we don’t always achieve these big ticket items, what are the

benefits? I find that Scrum teams are happier, build better prod-

ucts, and succeed more often. There’s a lot more to share, but I am

out of space in this article. [3]

I hope you enjoyed this back-to-basics look at Scrum.

brian.rabon@braintrustgroup.com

REFERENCESCLICK FOR THIS STORY'S

N E W S L E T T E R S
F O R E V E R Y N E E D !

Want the latest and greatest content
delivered to your inbox? We have a

newsletter for you!

A T E C H W E L L C O M M U N I T Y

AgileConnection To Go has everything you
need to know about all things agile.

DEV PS
B R O U G H T T O Y O U B Y C M C R O S S R O A D S

DevOps To Go delivers new and relevant
DevOps content from CMCrossroads

every month.

StickyMinds To Go sends you a weekly
listing of all the new testing articles

added to StickyMinds.

TechWell Insights features the latest stories
from conference speakers, SQE Training

partners, and other industry voices.

Visit AgileConnection.com, CMCrossroads.com,
StickyMinds.com, or TechWell.com to sign up

for our newsletters.

AFTER THE
STAKEHOLDERS HAVE
LEFT THE ROOM, THE

KEY INDIVIDUALS (TEAM
MEMBERS, PRODUCT

OWNER, AND
SCRUMMASTER) MEET

TO INSPECT AND
ADAPT THE PROCESS.

B E T T E R S O F T W A R E T e c h W e l l . c o m 31

mailto:brian.rabon@braintrustgroup.com
www.stickyminds.com/sticky-note/references-236
http://AgileConnection.com
http://CMCrossroads.com
http://StickyMinds.com
https://www.techwell.com/techwell-insights
http://www.agileconnection.com
http://www.CMCrossroads.com
http://www.stickyminds.com
https://www.techwell.com/techwell-insights
http://techwell.com

5 Tips for Choosing Your First Agile Project
By Jeffery Payne

When transitioning to agile, applying agile methods to a single proj-
ect is a great way to get started. However, care must be taken to ensure
the project you choose is appropriate—it shouldn’t be too large, take
too long, or be too risky. Here are five tips to help you pick the right
project for your agile pilot.

Read More

Think through System Changes to
Anticipate Quality Issues
By Payson Hall

When you replace or significantly modify components of a larger
system, too frequently we focus on whether the code we are building
functions correctly. This is important, but it’s also short-sighted. It’s
easy to introduce errors because we are changing interactions. Coding
bugs are only one quality problem.

Read More

Continuous Exploratory Testing:
Expanding Critical Testing across the
Delivery Cycle
By Ingo Philipp

Continuous testing entails executing automated tests to obtain rap-
id feedback on business risks. Where does that leave exploratory test-
ing? Obviously, it doesn’t make sense to repeat the same exploratory
tests across and beyond a sprint, but exploratory testing can be a con-
tinuous part of each software delivery cycle.

Read More

5 Myths and Misconceptions about
Leadership
By Naomi Karten

It’s a common myth that leaders are born, not made. Even so-called
natural leaders have plenty to learn about handling the kinds of chal-
lenges and problems they’ll have to face, and many others grow into
the role. Let’s explore this misconception and four others to learn that
anyone with the drive can be a leader.

Read More

Featuring fresh news and insightful stories about topics important to you, TechWell Insights is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

An Agile Approach to Change
Management
By Steve Berczuk

Many organizations are reluctant to introduce new tools or tech-
nologies, or even to update existing ones. The reason is often framed
in terms of risk management, but agile teams already have the tools to
manage the risk of change: testing and experiments. These approaches
together eliminate gaps in risk identification.

Read More

Why the Gig Economy Thrives in the
World of DevOps
By Josiah Renaudin

Even if the industry is booming, it’s not easy filling the full-time
DevOps roles. Every software team is vying to find the perfect person to
come in and establish a culture to promote improved software release
cycles, software quality, security, and rapid feedback on product devel-
opment. But it’s not easy.

Read More

4 Trends You’ll See in the Tech Workplace
in 2018
By Beth Romanik

A new year means new technologies changing how we work, and
the software industry is affected by these shifts more than most. Let’s
look at four trends we’re likely to see in tech workplaces in 2018: con-
tinuing education, artificial intelligence and machine learning, data
privacy, and more employee interaction.

Read More

A Tester’s Guide to Choosing a
Programming Language
By Justin Rohrman

Many testers want to learn a programming language, but how
should they decide which one? Justin Rohrman suggests finding an au-
thentic problem to solve and moving from there to determine which
language would be best. You can also ask developer coworkers for sug-
gestions and help—take advantage of available resources.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 32

https://well.tc/wnrg
https://well.tc/wnrd
https://well.tc/wnrm
https://well.tc/wnrs
http://techwell.com
http://techwell.com
https://well.tc/wnre
https://well.tc/wnrn
https://well.tc/wnrh
https://well.tc/wnr7
http://techwell.com

T E C H W E L L I N S I G H T S

Continuous Testing, Continuous Variation
By Hans Buwalda

With the arrival of continuous integration/continuous delivery (CI/
CD), the notion of continuous testing is taking center stage. Knowing
that comprehensive tests are running smoothly can be of benefit for
the CI/CD pipeline. Using the repetitive character of CI/CD for testing
can be a way to address issues.

Read More

4 Ways to Use Virtual Reality in Your
Workplace
By Anthony Coggine

Businesses are adopting virtual reality as a means of strengthening
marketing tactics, increasing collaboration, and connecting with con-
sumers. For those new to VR, it’s important to understand how a virtual
world could be used in your day-today operations. Here are four ways
virtual reality will impact the workplace.

Read More

How Testers Can Collaborate with the
ScrumMaster
By Michael Sowers

ScrumMasters serve the team by providing facilitation and coach-
ing, but they also have many challenges. Those in testing roles are in
a good position to collaborate with the ScrumMaster to improve agile
processes. Here are some ways testers can partner with, support, and
assist the ScrumMaster—and the rest of the team.

Read More

Application Release Automation: Why the
QA Pro Should Care
By Tracy Ragan

The speed of testing depends on a consistent software release pro-
cess that can provide critical information when reporting issues. QA
pros will benefit from a new set of DevOps tooling called application
release automation, which drives continuous release deployment and
provides visibility about what was deployed.

Read More

6 Skills Needed for Exceptional
Exploratory Testing
By Nicholas Roberts

While anyone can claim to be an exploratory tester, only those with
a set of honed skills will discover hard-to-find bugs that could impact
your mobile app or website. Exploratory testers must possess these six
skills if they are to find the edge cases that could derail a successful
software release.

Read More

Why Software Testing Is Key to DevOps
By Alan Crouch

One of the major reasons organizations adopt DevOps practices is
to accelerate delivery of software to production. However, many fail to
include quality components in their practices. Continuous deployment
without quality is just delivering continuous bugs. Here’s why software
testing is an essential part of DevOps.

Read More

Scrum Isn’t the Only Path to Agility
By Tom Stiehm

Scrum can really help a team to become more agile. But that doesn’t
mean it is the only way for a team to become agile. Agile is all about
self-organizing teams collaborating to find what works for them, so if a
nontraditional approach helps your team get started, then you’re just
forging a new path to agility.

Read More

Testing the Requirements: A Guide to
Requirements Analysis
By Evgeny Tkachenko

Everyone knows testing requirements is important, and everyone
says they do it, but it seems like no one knows exactly how. The best
way to solve this problem is to introduce a requirements analysis stage
that has to be done before coding starts. No one knows a product as
well as a tester who works with it every day!

Read More

Testing Next-Generation Digital Interfaces
By Amir Rozenberg

With chatbots, facial recognition, voice integrations, and more, dig-
ital interfaces have a complex software side. With concrete examples
from the market, Amir Rozenberg offers new approaches for embed-
ding quality and test activities into the development cycle when deal-
ing with this new generation of digital interfaces.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 33

https://well.tc/wnr8
https://well.tc/wnr2
https://well.tc/wnr6
https://well.tc/wnru
https://well.tc/wnrb
https://well.tc/wnra
https://well.tc/wnrz
https://well.tc/wnrr
https://well.tc/wnrj
http://techwell.com

THE LAST WORD

The internet of things (IoT) phenomenon has opened a new

part of a market that will grow dramatically in the next few years.

Forecasts show up to fifty billion connected devices by 2020, all

of which will demand new development tools, frameworks, and

testing techniques. [1]

What Is the IoT?
The IoT is a network of connected electronic devices that incor-

porate sensors, actuators, and any object that can send or receive

data. Each “thing” in this network has a unique identifier to send

or receive data or commands.

Lower costs, higher computing powers, and availability of

Wi-Fi and other wireless networks make these kinds of electronic

devices popular tools to make our lives

easier and more comfortable. IoT devic-

es can save money, as well, if they are

integrated as part of a smart home. One

example is the Nest thermostat, which

can be controlled remotely and adapts to

your lifestyle.

IoT networks generate lots of data,

which impacts the way that data is pro-

cessed and stored. This means IoT devel-

opment and testing is strongly linked to

the methods used to handle big data.

The IoT Requires Different
Test Techniques

Hardware QA approaches vary depending on the type of hard-

ware. For physical products, you use physical property tests, cali-

bers, and hot/cold rooms, depending on the device. For electronics,

tests include “bed of nails” tests and visual inspection before ship-

ping out. A typical example is to run display segment tests to verify

the quality of a display and its connectivity.

Tests for software also vary depending on the platform, type

of application, and reliability requirements. For example, typical

test scenarios and user flows will be very different for web-based,

mobile, and desktop applications. For Java, there can be some sur-

prises with system performance when the garbage collector starts

running. Reliability tests (load tests and stability tests) are rarely

performed on desktop applications, but they are a must-have for

server-side code.

Why does the IoT require such special treatment? IoT testing

combines both software and hardware tests. In many cases, it also

depends on infrastructure, other devices in the network, and envi-

ronmental factors. This results in a greater count and complexity

of test scenarios, as end-to-end tests have many more links on aver-

age. Long end-to-end tests require either

very specific test conditions to validate

every module or a clever logging system

that improves the testability of the IoT

solution. Attention to this type of testing

usually reduces costs and training times

for QA in the long run.

IoT Testing and Test
Automation

I’d like to think that IoT testing, like

other application testing, can always be

automated.

In the traditional waterfall develop-

ment model, automation may not have as

significant an impact on timeline and product quality as it has had

on delivering SaaS products in the agile era. Today, new function-

ality is being added faster, release timelines are more aggressive,

and there is simply no time for manual testing. The product lifecy-

cle is different and requires frequent regression tests. It would be

a nightmare if we couldn’t use test automation.

The Unspoken
Truth about IoT Test
Automation
LESSONS LEARNED FROM TRADITIONAL TEST AUTOMATION TECHNIQUES REQUIRE A
MUCH DIFFERENT APPROACH WHEN TESTING CONNECTED, SMART DEVICES.
by Rama R. Anem | rama.anem@gmail.com

Emulating an
environment is
more critical for
hardware tests,

while infrastructure
emulation is required

to test the device’s
firmware and software.

B E T T E R S O F T W A R E T e c h W e l l . c o m 34

mailto:rama.anem@gmail.com
http://techwell.com

Testing for hardware and software products is well document-

ed and has many approaches that have proven to be highly effi-

cient. But IoT testing is a relatively new task.

One of the main challenges for the IoT is emulating its environ-

ment and infrastructure. Emulating an environment is more criti-

cal for hardware tests, while infrastructure emulation is required

to test the device’s firmware and software. Here are a couple of

examples.

• Emulation of IoT infrastructure: This may be the easiest task

of all because you can use existing services that create IoT

brokers using different protocols. Write simple stub code to

test connectivity and ensure two-way communication. Tests

that enable an IoT device to send data to a server every five

minutes is an example of one-way communication. An ex-

ample of two-way communication is a server being enabled

to send commands to an IoT device that will process and re-

spond to each command.

• Emulation of IoT network: To test an IoT server, you need at

least one emulated or real client. Functional tests can be per-

formed once there is access to raw data sent by the device. If

the system supports many device models and configurations,

it may become difficult (or just inefficient) to keep them all in

a lab for testing. A lab set up to support a wide range of con-

figurations may not be sufficient for all nonfunctional test-

ing, and this test environment will not prepare a system for

actual load conditions. There are two choices you can make:

buy more hardware (switches, extension cords, and other

things), or think of a way to simulate the IoT device network.

The usual recommendation shouldn’t limit simulation tests to

nonfunctional features. However, it is a great chance to do end-to-

end testing by simulating multiple devices. This approach can be

used to validate how the overall system processes data from all

possible device combinations.

Nonfunctional tests covered by a simulator could include:

• Load tests that show how much load the system can take and

where the bottlenecks are

• Scalability tests that show the ability of the infrastructure to

adapt to increasing load

• Interactivity tests that show how the system handles re-

al-time activity and delayed two-way communication

Going Forward with Test Automation
Each project requires special consideration to support your

specific testing goals. Some investments to increase testability of

the solution will likely give benefits in the future, when the num-

ber of clients grows. For the IoT now, however, using a mix of test

automation to validate functional and nonfunctional testing is a

must. Avoid manual testing techniques at all costs!

REFERENCESCLICK FOR THIS STORY'S

THE LAST WORD

 L I N K T O O U R A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is published four

times per year: January, April, July, and October.

Entire contents © 2018 by TechWell Corporation, 350

Corporate Way, Suite 400, Orange Park, FL 32073

USA unless otherwise noted on specific articles. The

opinions expressed within the articles and contents

herein do not necessarily express those of the publisher

(TechWell Corporation). All rights reserved. No material

in this publication may be reproduced in any form

without permission. Reprints of individual articles

available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile Dev, Better Software & DevOps West 3

Agile Testing Days USA 4

QMetry 2

SQE Training—Live Virtual 13

SQE Training—On-Site 18

STARCANADA 25

STARWEST 11

B E T T E R S O F T W A R E T e c h W e l l . c o m 35

www.stickyminds.com/sticky-note/references-237
mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://well.tc/weyq
https://well.tc/wetv
https://testmanagement.qmetry.com/#/register
https://well.tc/wn9m
https://well.tc/weyo
https://well.tc/weyc
https://well.tc/wevk
http://techwell.com

