
WINTER 2018

AUTOMATION’S ROLE IN THE FALL

OF SOFTWARE TESTING

Are we becoming too dependent on

test a
utomation?

BUILDING AUTONOMOUS DEVOPS

CAPABILITY IN DELIVERY TEAMS

There is a better way to structure

DevOps for success

JUNE 3–8, 2018
LAS VEGAS, NV
CAESARS PALACE

What are Past Attendees Saying?

“I very much enjoyed being
able to cross-attend the
varying topics to gain a
large content of ideas.”

Tim Robert, Systems Analyst,
State Farm

“Excellent conference. The
tutorials were invaluable to
me and my group.”

Jennifer Winkelmann, Business
Analyst, TD Ameritrade

“The keynotes were inspiring! There
were several practical talks. Gave me
time to think and network to develop
actionable takeaways.”

Pete Lichtenwalner, Sr. Engineer Manager, Verint

“Great speakers that show they are
passionate about what they do. Plus they
are open to share ideas and experiences.”

Verita Sorsby, QA Manager, Tio Networks

about the TOPICS
about the KEYNOTES

about the SPEAKERS
about the TUTORIALS

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | B S C W E S T . T E C H W E L L . C O M

Agile Dev topic areas:

• Scaled Agile Development
• Agile Testing
• Agile Implementation
• Career & Personal Development
• Agile Teams & Leadership
• And More

Better Software topic areas:

• Digital Transformation
• Process & Metrics
• Software Quality & Testing
• Requirements & User Stories
• Project Management
• And More

DevOps topic areas:

• Architecture & Design
• Configuration Management
• DevOps and Test/QA
• Continuous Delivery
• Continuous Integration
• And More

Register by
April 4, 2018

with code CWBSM
 to save up to
$800 o� your
conference*

*Discount valid on packages over $400

https://well.tc/wdbv

 void ITestModule.Run()
 {
Report.Log(ReportLevel.Info,
"Website", "Opening web site 'http://www.ranorex.

Report.Log(ReportLevel.Info,
"Mouse", "Mouse Le� Click at {X=10,Y=20}.", new RecordItemIndex(1));

Report.Log(ReportLevel.Info, "Keyboard", "Key sequence 'admin'.", new RecordItemIndex(2));

https://www.ranorex.com/?utm_source=techwell&utm_medium=print&utm_campaign=en_2017-09_fullpagead-bsm-fall

Europe’s fun and widely popular agile
testing festival is coming to North
America as Agile Testing Days USA. This
event will feature over 50 of the top agile
testing enthusiasts speaking in Boston.

https://agiletestingdays.us

SUPER EARLY
LOBSTER
SAVINGS
WHEN YOU
REGISTER BY
APRIL 27, 2018

SAVE THE DATE FOR THE INAUGURAL EVENT!

JUNE 25–29, 2018
BOSTON, MA

https://well.tc/wd9s

Volume 20, Issue 1
WINTER 2018

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

06	 Mark Your Calendar

07	 Editor's Note

08	 Contributors

11	 Interview with an Expert

30	 TechWell Insights

34	 Ad Index

DepartmentsColumns

Features

5 Ways to Pair Developers with
Testers
Some agile practices stress the
importance of pairing team members
together to achieve better team
performance. Try these five suggestions
for pairing key resources.
by Jeffery Payne

Adopt an Innovative Quality
Approach to Testing
How much testing is really enough?
Given resources, budget, and time,
the goal of comprehensive testing
seems impossible to achieve. It’s time
to rethink your test strategy and start
innovating. by Rajini Padmanaban

Automation’s Role in the Fall of
Software Testing
Has the rise in test automation resulted
in product releases of lesser quality?
Besides adopting more comprehensive
automated scripting, there are process
and organizational dynamics to
consider. by John Tyson

Agile outside the Development
Team
Most developers have tough encounters
with business-oriented nondevelopers.
An expert business analyst shows how
an understanding of each others’
perspective will result in project success.
by Ron Healy

Building Autonomous DevOps
Capability in Delivery Teams
After setting up a DevOps team and
adopting continuous delivery practices,
product releases may not be as smooth
as they could be. The missing ingredient
requires empowerment and autonomy.
by Miiro Juuso

09 TECHNICALLY SPEAKING 32 THE LAST WORD

INSIDE

2318 27

13

What Testers Need to
Know about Continuous
Testing
Thanks to the trend toward
DevOps and continuous
delivery, traditional testing
isn’t enough. Including test
automation in your strategy is
a good start, but your testing
approach needs to change.
by Wayne Ariola

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

Feb. 27–Mar. 1, 2018
Chicago, IL

Mar. 6–8, 2018
Dallas, TX

Mar. 6–8, 2018
Atlanta, GA

Mar. 20–22, 2018
San Jose, CA

Mar. 20–22, 2018
Washington, DC

Apr. 10–12, 2018
Detroit, MI

Apr. 10–12, 2018
Salt Lake City, UT

May 1–3, 2018
Philadelphia, PA

Feb. 20–23, 2018
Boston, MA

Mar. 20–23, 2018
Chicago, IL

Conferences

Software Tester Certification—Foundation Level
http://www.sqetraining.com/certification

Agile Testing Training Week
http://www.sqetraining.com/agile-week

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

June 3–8, 2018
Las Vegas, NV

LEARN MORE

Apr. 29–May 4, 2018
Orlando, FL

LEARN MORE

June 25–29, 2018
Boston, MA

LEARN MORE

Sep. 30–Oct. 5, 2018
Anaheim, CA

LEARN MORE

Nov. 4–9, 2018
Orlando, FL

LEARN MORE

Oct. 14–19, 2018
Toronto, ON

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 6

http://www.sqetraining.com/certification
http://www.sqetraining.com/agile-week
https://adc-bsc-devops-west.techwell.com
https://stareast.techwell.com
https://agiletestingdays.us
https://starwest.techwell.com
https://bsceast.techwell.com/
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT/CEO
Wayne Middleton

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITORS
Josiah Renaudin
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGERS
Cristy Bird
Patrice Johnson
MARKETING ASSISTANT
Allison Scholz

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

CONTACT US

E D I T O R ’ S N O T E

2018 Is the Year to Trust Your Customer
In each issue of our magazine we try to provide inspiration for making “better” software. Yet I contin-

ue to be discouraged with how software vendors manage end-user licensing. In our industry’s quest

to protect IP and revenue, vendors often ignore the impact it has on the customer and the end-user.

As commercial software apps migrate toward subscriptions, this can be a win for the software pro-

vider and a win for the end-user—as long as the app continues to provide value.

But the administration imposed by subscription models on end-users and technical support individ-

uals can be painfully irritating. You, as a software developer or tester, may not even hear about it.

Most of us have had frustrating experiences attempting to resolve licensing issues. There is a careful

balance between protecting your company’s investment and simplifying the end-user experience.

Designing a trusting, easy-to-administrate software licensing mechanism cannot be an afterthought.

Enough of my rant. Let’s talk about this issue of Better Software.

Our featured article by Wayne Ariola, “What Testers Need to Know about Continuous Testing,”

presents a wonderful introduction to how modern testing is changing. By using test automation and

frequent evaluation of business risk, you can determine the best time to deliver.

As a practicing business analyst, Ron Healy shows how agile is perceived in “Agile outside the Devel-

opment Team.” If you are struggling to get nondevelopers to accept your agile practices, this is just the

“secret sauce” you need to know. Has the rise in test automation resulted in poor quality? John Tyson

seems to think so in his provocative “Automation’s Role in the Fall of Software Testing.” John gives

good advice on how to right the ship. In Miiro Juuso’s “Building Autonomous DevOps Capability in

Delivery Teams” article, you’ll learn the best way to structure your DevOps organization for success.

If you haven’t had success providing quality in your software products, consider following Jeffery

Payne’s advice in “5 Ways to Pair Developers with Testers.” In “Adopt an Innovative Quality Approach

to Testing,” Rajini Padmanaban offers new perspective on testing in production.

If you like Better Software, please spread the word via Twitter and Facebook. And let us and our au-

thors know what you think of the articles by leaving your comments. We value your feedback.

F O L L O W U S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 7

http://jborders.com
mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://techwell.com
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
http://techwell.com

Wayne Ariola, CMO of Tricentis, is a recognized thought leader on continuous testing, risk-based testing,
service virtualization, and API testing. He has been a contributor to the software testing space for more than
fifteen years and in the software industry for more than twenty. Wayne has created and marketed products
supporting dynamic software development, test, and delivery. He has driven the design of many innovative
technologies and received several patents for his inventions. Reach Wayne at w.ariola@tricentis.com.

Ron Healy has had a diverse fifteen-year career as a senior business analyst, product owner, entrepreneur,
innovator, lecturer, and corporate trainer. Ron has helped organizations with agile software development,
e-commerce, Internet of Things, and legacy modernization. He is a keen proponent of using agile techniques
only when it makes sense and is a firm believer in lifelong learning. Contact Ron at ronhealyx@gmail.com.

Miiro Juuso is a sysadmin turned software engineer, turned salesman, and returned to sysadmin. As the
DevOps lead at AND Digital in London, he helps Financial Times Stock Exchange 100 companies build DevOps
capability and deliver better software. In his spare time, Miiro blogs about DevOps tools, methodologies, and
practices (getintodevops.com). Reach Miiro at miiro.juuso@gmail.com.

As vice president, Rajini Padmanaban leads the engagement and relationship management for some of QA
InfoTech’s largest and most strategic accounts. She has over sixteen years of professional experience, pri-
marily in software quality assurance. Rajini actively advocates software quality assurance through evangelistic
activities including providing insights and blogging on test trends, technologies, and best practices. Contact
Rajini at rajini.padmanaban@qainfotech.com.

A frequent TechWell contributor, Jeffery Payne is CEO and founder of Coveros, Inc. Since its inception in 2008,
Coveros has become a market leader in secure agile principles and recognized by Inc. magazine in 2012 as one
of the fastest growing private companies in the country. Jeffery has published more than thirty papers on soft-
ware development and testing. He has testified before Congress on issues of national importance including
intellectual property rights, cyber terrorism, and software quality. Reach Jeffery at jeff.payne@coveros.com.

A longtime freelancer in the tech industry, Josiah Renaudin is now a web-content producer and writer for
TechWell Insights, StickyMinds.com, and Better Software magazine. He wrote for popular video game journal-
ism websites like GameSpot, IGN, and Paste Magazine and now acts as an editor for an indie project published
by Sony Santa Monica. Josiah has been immersed in games since he was young, but more than anything, he
enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

A software testing and QA professional with more than twenty years of testing experience, John Tyson con-
siders himself fortunate to have worked mostly in agile environments. A proponent of lean software develop-
ment, John makes extensive use of black box and exploratory testing. His clients include startups, the public
sector, non-profits, Fortune 500, and multi-national corporations. Reach John at jmt_research@yahoo.com.

C O N T R I B U T O R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 8

mailto:w.ariola@tricentis.com
mailto:ronhealyx@gmail.com
mailto:miiro.juuso@gmail.com
mailto:rajini.padmanaban@qainfotech.com
mailto:jeff.payne@coveros.com
mailto:jrenaudin@techwell.com
mailto:jmt_research@yahoo.com
http://techwell.com

TECHNICALLY SPEAKING

Even though the agile movement is nearly two decades old,

many organizations still struggle with how to get their develop-

ers and testers working together. In my experience, some types

of software developers, including front-end, business logic, back-

end, and UI/UX designers, have figured out how to comfortably

work together. However, developers and testers often are more

aligned within their functional silos, causing sprints to operate

more like mini-waterfalls than collaborative teams.

Until this gap between developers

and testers is closed, teams operating

like this will continue to struggle to

complete estimated work in sprints.

Instead of addressing the underlying

gaps between developers and testers,

teams often place a bandage on prob-

lems by increasing the duration of their

sprints or shifting some portion of the

testing process out into future sprints.

Both of these tactics result in longer

feedback loops that only decrease pro-

ductivity and increase rework. The

only way to truly solve this problem is

to change the way software developers

and testers work.

There is a simple developer-tester

pairing approach to solve this problem.

Pairing developers and testers on each user story forges stronger

relationships, and this collaboration and communication results in

better software.

Based on my experience, I have five suggestions for pairing de-

velopers with testers.

1. Define User Story Acceptance Tests
Acceptance tests that satisfy user story acceptance criteria ide-

ally should be created before a story is implemented so its devel-

oper can verify that the code works as expected. Software testers

are often tasked with defining acceptance tests early in each sprint,

either individually or in conjunction with other testers.

Having a developer and tester work together to define accep-

tance tests is a great way to get them on the same page. This collab-

oration around each user story results in a clear understanding of

what needs to be implemented to satisfy customer needs.

Some who have been schooled on the importance of indepen-

dence between developers and testers may bristle at the idea of

developers and testers working so closely together to define test

cases. In practice, the benefits of this

collaboration far exceed any danger

that developers and testers will miss

important defects.

2. Code Review Unit and
Integration Tests

Typically, developers are respon-

sible for creating unit tests for their

code, and testers are responsible for in-

tegration testing new stories with oth-

er code. Why not have them help each

other in the process?

Many developers are not effective

testers and can benefit from walking

through their unit tests with a profes-

sional tester. Testers can help them

with several considerations, such as

boundary conditions that may not be fully tested or risky areas of

the code that need additional testing, and they also can ask crit-

ical questions about the tests that can push the developer to im-

prove their testing approach. In addition, testers can help assure

that developers don’t focus too much on code coverage (and any

other exit criteria used for unit testing) instead of on the quality

of the code.

In terms of integration testing, developers often understand

the overall structure and design of the application better than tes-

ters and can suggest additional integration tests that are necessary

to exercise integration points and object relationships.

5 Ways to Pair
Developers with Testers
THERE IS AN ART TO TEAM ORGANIZATION, AND YOU’LL GET THE BEST OVERALL
QUALITY RESULTS BY PAIRING DEVELOPERS WITH TESTERS.
by Jeffery Payne | jeff.payne@coveros.com

Pairing developers
and testers on
each user story
forges stronger

relationships, and
this collaboration

and communication
results in better

software.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 9

mailto:jeff.payne@coveros.com
http://techwell.com

TECHNICALLY SPEAKING

3. Perform Exploratory Testing on User
Stories

Often the amount of testing performed to validate acceptance

criteria for user stories is insufficient to ensure quality. Explorato-

ry testing is a great way to supplement acceptance testing and find

more bugs prior to code check-in.

Getting developers and testers to perform exploratory testing

together before declaring a user story done not only finds addition-

al bugs but also builds a quality culture for the entire team. Explor-

atory testing helps teach developers how to think critically about

testing, and that helps them test more effectively in other areas.

To encourage developers and testers to test together more of-

ten, consider including timeboxed exploratory testing as part of

the definition of “done” for all user stories.

4. Extend Pair Programming to Include
Testers

Since the creation of Extreme Programming, pair program-

ming has been advocated as a way to increase productivity and

reduce rework through constant collaboration during code imple-

mentation. Development organizations may employ traditional de-

veloper-developer pairing, but they often overlook the advantages

of having developers and testers pair up.

While testers may not actually code, having a tester listen as

the developer talks through what they are implementing has tre-

mendous benefits. This collaboration can help identify coding mis-

steps, uncover ambiguities in understanding, and give the tester

more context for how the application works. Set aside some time

for pair programming between the developers and testers paired

on user stories—it can make a difference in product quality.

If software testers have software development experience, you

can take this approach to another level by having developers and

testers periodically switch roles while pair programming. Doing

so will increase collective code ownership on your teams and im-

prove product quality.

5. Approach Test Automation
Development Differently

As your codebase grows, it gets more difficult to completely

regression test any code changes during sprints without using au-

tomation. To support a continuous integration model, automation

tests need to be created along with the code it tests instead of after

the fact. Consider having your developers and testers work together

to automate user story acceptance tests during story development.

Leverage behavior-driven development (BDD) tools such as Cu-

cumber or SpecFlow to provide a way for developers and testers

to participate in automation. The software tester takes responsi-

bility for defining the acceptance criteria in a BDD language such

as Gherkin that can be automatically executed by one of the tools

mentioned above.

The developer creates the fixtures necessary to hook Gherkin

tests to the application so the proper methods are executed during

test runs. Of course, if your developers and testers all have soft-

ware development skills, there are other ways to pair and get test

automation done.

Start Pairing Your Team
So now that you know how to pair successfully, get started! Pick

a task, grab a teammate, and give it a go. Set a goal to try and pair

with each of your teammates at some point during each sprint.

Make a game of it if it helps. Create a pairing board and track who

successfully pairs with everybody else first. Remember, having

your developers and testers collaborate day to day on a variety

of activities not only builds stronger relationships between team

members and breaks down silos but also improves the quality of

your applications. You won’t be sorry that you did.

TechWell is always looking for authors interested in getting their
thoughts published in Better Software, a leading online magazine focused
on the software development/IT industry. If you are interested in writing
articles on one of the following topics, please contact me directly:

I’m looking forward to hearing from you!

Ken Whitaker
Editor, Better Software magazine | kwhitaker@techwell.com

• Testing
• �Agile methodology
• DevOps

• �Project and people management
• �Continuous testing and continuous

development/integration

WA N T E D ! A F E W G R E AT W R I T E R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 10

mailto:kwhitaker@techwell.com
http://techwell.com

Sam Kaufman
	Years in Industry: 	 12

	 Email: 	 sam@bugreplay.com

	 Interviewed by: 	 Josiah Renaudin

	 Email: 	 jrenaudin@techwell.com

“If you’ve got a faulty
product, there is a large
likelihood your users will
just go elsewhere instead of
taking the time and effort
to tell you about a problem
they’re experiencing.”

“I do see that mentality
a lot, of shipping first to
meet a deadline and fixing
problematic issues later. It
shouldn’t be that way,
but the race to release
something new takes
precedence over the need to
have all flaws ironed out.”

“I think the average company
does not take bug reporting
seriously, as you can see if
you’ve ever tried to report a
website problem and couldn’t
find any ways on a website to
submit feedback or contact a
person who could make a fix.”

“Agile is definitely a double-
edged sword in regards to
bugs. Just the name says a lot
about the actual goal, which
is shipping a lot of software,
fast. There’s simply no way to
ship software fast without also
shipping bugs.”

“Modern browsers have
incredibly complex diagnostic
utilities built right into them,
and you just need a tool that can
plug into the browser and record
all those details whenever a user
encounters a problem.”

“Showing that you actually care about your customers and their
experience using your software is definitely a way to stand out from the
crowd today.”

“Rapid development is why
a lot of agile shops do focus
on writing tests, which
do go a long way towards
catching bugs before they hit
production.”

Why Bug
Reporting Is
More Important
than Ever Before

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 11

Mailto:sam@bugreplay.com
mailto:jrenaudin@techwell.com
https://well.tc/IWAE20-1

STAREAST Testing Conference – April 29–May 4, 2018 – Orlando, FL ...
https://stareast.techwell.com/

Come to STAREAST to get answers to all your toughest software testing questions:

• Testing in DevOps
• Test Transformation
• Test & Release Automation
• Big Data, Analytics, A/I Machine Learning for Testing
• Agile Testing
• Testing for Developers
• Security Testing
• Test Strategy, Planning, and Metrics
• Test Leadership
• Performance Testing & Monitoring

Register early for the best pricing plus a $50 bonus gift card!

search

TOP RESULTS:

SEE PRICING & PACKAGES

where to learn about the hottest topics in testing

https://well.tc/wdak

Wayne

Ariola

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 13

http://techwell.com

ike Lucy and Ethel struggling to keep pace at the chocolate

factory in I Love Lucy, [1] many software testers scramble

to keep pace with accelerated processes—then along comes

the supervisor, proclaiming, “You’re doing splendidly. Speed it up!”

As expectations associated with testing change, legacy testing

platforms simply aren’t keeping up due to their heavy approach to

testing. They rely on brittle scripts; deliver slow, end-to-end regres-

sion test execution; and produce an overwhelming level of false

positives. As a result, legacy testing achieves limited success with

test automation.

According to industry sources, the overall test automation rate

is well below 20 percent and feedback I’ve received shows that the

results of test automation are just “so-so.” [2]

Traditional Testing Isn’t Enough
Recent changes across the industry demand more from test-

ing while making test automation even more difficult to achieve.

There are several reasons for this:

• �Application architectures are increasingly more distributed

and complex. They embrace cloud, APIs, and microservices,

creating virtually endless combinations of different protocols

and technologies within a single business transaction.

• �Thanks to agile, DevOps, and continuous delivery, many appli-

cations are now released anywhere from every two weeks to

thousands of times each day. As a result, the time available for

test design, maintenance, and especially execution decreases

dramatically.

• �Now that software is the primary interface to the business, an

application failure is a business failure. Even a seemingly mi-

nor glitch can have severe repercussions if it impacts the user

experience. As a result, application-related risks have become

a primary concern for even nontechnical business leaders.

Given that software testers face increasingly more complex

applications, they are expected to deliver trustworthy, go/no-go

decisions at the new speed of modern business. Traditional testing

approaches won’t get us there. We need to transform the testing

process as deliberately and markedly as we’ve transformed the

development process. This transformation requires a different ap-

proach altogether: continuous testing.

What Is Continuous Testing?
Continuous testing is the process of executing automated tests as

part of the software delivery pipeline. It provides rapid feedback on

the business risks associated with a software release candidate.

Test automation is designed to produce a set of pass/fail data

points, correlated to user stories or application requirements.

Continuous testing, on the other hand, focuses on business risk

and provides insight on whether the software can be released. To

achieve this shift, we need to stop asking “Are we done testing?”

and instead concentrate on “Does the release candidate have an

acceptable level of business risk?”

Table 1 shows the key attributes of continuous testing.

Continuous Testing Is More than Test
Automation

The differences between continuous testing and test automa-

tion can be grouped into three categories: risk, breadth, and time.

BUSINESS RISK SHOULD BE CONSTANTLY
EVALUATED

Businesses today not only have exposed many of their internal

applications to the end-user, but also have developed vast amounts

of additional software that extends and complements those appli-

cations. For example, airlines have gone far beyond exposing their

once-internal booking systems. These systems now let customers

plan and book complete vacations, including hotels, rental cars,

and activities. Exposing more innovative functionality to the user

is now a competitive differentiator. However, there is a major

downside. This additional functionality can dramatically increase

the number, variety, and complexity of potential failure points.

Large-scale software failures can have such severe business re-

percussions that application-related risks have become prominent

components of a public corporation’s financial filings. [3] Given

that notable software failures resulted in an average 4.06 percent

decline in stock price, it’s not surprising that business leaders are

taking note. This equates to an average $2.55 billion loss of market

capitalization, and management expects IT leaders to take action.

Table 1: Five key characteristics of continuous testing

Assesses business risk coverage as its primary goal

Establishes a safety net that helps the team protect the user ex-
perience

Requires a stable test environment to be available on demand

Integrates seamlessly into the software delivery pipeline and
DevOps toolchain

Delivers actionable feedback appropriate for each stage of the
delivery pipeline

We need to transform
the testing process as
deliberately and markedly
as we’ve transformed the
development process.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 14

http://techwell.com

If your test cases weren’t built with business risk in mind, your

test results won’t provide the insight needed to assess risks. Most

tests are designed to provide low-level details on whether user sto-

ries are correctly implementing the requirements—not high-level

assessments of whether a release candidate is too risky to release.

Would you automatically stop a release from taking place based

on test results? If not, your tests aren’t properly aligned with busi-

ness risks.

This doesn’t mean that low-granularity tests aren’t valuable.

Instead, it suggests more action is needed to stop high-risk candi-

dates from going out into the wild unchecked. Table 2 shows what

testers need to do in order to address risk.

THE BREADTH OF TEST COVERAGE COUNTS
Even if a business manages to steer clear of large-scale software

fails that make headlines, seemingly minor glitches can still cause

trouble. If any part of the user experience fails to meet expectations,

you run the risk of losing that customer to a competitor. You also risk

brand damage if that user decides to expose issues to social media.

Just knowing that a unit test failed or a UI test passed doesn’t

tell you whether the overall user experience is impacted by recent

application changes. To protect the end-user experience, run tests

that are broad enough to detect when an application change inad-

vertently impacts functionality that users have come to rely on.

There are several techniques, shown in table 3, that I’ve found in-

valuable when addressing testing breadth.

TESTS SHOULDN’T IMPACT TIME TO MARKET
As the speed at which organizations ship software has become

a competitive differentiator, the vast majority of organizations are

turning to agile and DevOps to accelerate their delivery processes.

When automated testing emerged, it focused on testing inter-

nal systems that were built and updated according to waterfall

development processes. All systems were under the organization’s

Table 2: What testers need to do to address risk properly

Understand the risks associated with the complete application
portfolio

Map risks to application components and requirements (which
then are mapped to tests)

Use a test suite that achieves the highest possible risk coverage
with the fewest test cases

Always report status that shows risk exposure from business,
technical, performance, and compliance perspectives

Table 3: What testers need to do to address breadth of testing

Define and execute complete end-to-end tests that exercise the
application from the user’s perspective

Provide integrated support for all technologies involved in criti-
cal user transactions (web, mobile, message/API-layer, SAP and
packaged apps, etc.)

Simulate service virtualization for dependent components re-
quired to exercise complete end-to end transactions that aren’t
either available or configurable for repeated testing

Ensure that tests and service virtualization assets are populated
with realistic and valid data every time the tests are executed

Perform exploratory testing to find user-experience issues that
are beyond the scope of automated testing (e.g., usability issues)

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 15

http://techwell.com

control, and everything was completed and ready for testing by

the time the testing phase was ready to start. Now that agile pro-

cesses are becoming the norm, testing must begin in parallel with

development. Otherwise, the user story is unlikely to be tested and

deemed “done-done” within the extremely compressed iteration

time frame.

If your organization has adopted DevOps and is performing

continuous delivery, software may be released hourly—or even

more frequently. In this case, feedback at each stage of the process

can’t just be fast; it must be nearly instantaneous.

If quality is not a top concern for your application (e.g., if there

are minimal repercussions to doing a rollback when defects are

discovered in production), running some quick unit tests and

smoke tests on each release might suffice. However, if the business

wants to minimize the risk of faulty software reaching an end-us-

er, it needs a quick way to achieve the necessary level of risk cov-

erage and testing breadth.

For testing, there are several significant impacts:

• �Testing must become integral to the development process

(rather than a “hygiene task” tacked on when development

is complete)

• �Tests must be ready to run almost as soon as the related func-

tionality is implemented

• �The organization must have a way to determine the right tests

to execute at different stages of the delivery pipeline (smoke

testing upon check-in, API/message layer testing after integra-

tion, and end-to-end testing at the system level)

• �Each set of tests must execute fast enough that it does not cre-

ate a bottleneck at the associated stage of the software deliv-

ery pipeline

• �A way to stabilize the test environment is needed to prevent

frequent changes from causing an overwhelming number of

false positives

Table 4 summarizes what testers need to do to address time

pressures.

Set Up Your Team for Continuous Testing
Success

If you only take away one idea from this article, remember

these two algorithms:

Test automation ≠ continuous testing

Continuous testing > test automation

Even teams that have achieved fair levels of success with tra-

ditional test automation tools hit critical roadblocks when their

organizations adopt modern architectures and delivery methods:

• �They can’t create and execute realistic tests fast enough or

frequently enough

• �The constant application changes result in overwhelming

numbers of false positives and require seemingly never-end-

ing test maintenance

• �They can’t provide instant insight on whether the release can-

didate is too risky to proceed through the delivery pipeline

It’s important to recognize that no tool or technology can in-

stantly give you continuous testing. Like agile and DevOps, contin-

uous testing requires changes that impact people, processes, and

technology. Trying to initiate necessary changes in people and pro-

cesses when your technology is not up to the task will be an uphill

battle from the start, as will only providing new tools without try-

ing to explain the purpose behind continuous testing and getting

your teams on board. In my experience, this ultimately fails.

If your organization is starting or scaling continuous testing

automation efforts, there are two recent research studies by Gart-

ner and Forrester Research for you to review. [4, 5] Both reports

provide insight into continuous testing and test automation trends

as well as how the top continuous testing tools compare.

w.ariola@tricentis.com

REFERENCESCLICK FOR THIS STORY'S

Table 4: What testers need to do to address time pressures

Identify which test cases are critical for addressing top business
risks

Define and evolve tests as the application constantly changes

Rebalance the test pyramid so that most tests execute at the
API layer, which is at least a hundred times faster than UI test
execution

Integrate tests into the delivery pipeline

Run distributed tests across multiple virtual machines, network
computers, or in the cloud, as appropriate

Enlist service virtualization and synthetic data generation or
test data management so that testing doesn’t need to wait on
data or environment provisioning

It’s important to
recognize that no
tool or technology
can instantly give
you continuous
testing.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 16

Mailto:w.ariola@tricentis.com
https://www.stickyminds.com/sticky-note/references-231
http://techwell.com

Convenient, Cost Effective Training by Industry Experts

LEARN ANYWHERE!
LIVE, INSTRUCTOR-
LED PROFESSIONAL
TRAINING COURSES

Live Virtual Courses:

 » Agile Tester Certification
 » Software Tester Certification—Foundation Level
 » Fundamentals of Agile Certification—ICAgile
 » Fundamentals of DevOps Certification—ICAgile
 » Performance, Load, and Stress Testing
 » Mastering Business Analysis
 » Essential Test Management and Planning
 » Finding Ambiguities in Requirements
 » Mastering Test Automation
 » Agile Test Automation—ICAgile
 » Generating Great Testing Ideas
 » Exploratory Testing in Practice
 » Mobile Application Testing
 » and More

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/LIVE-VIRTUAL

Live Virtual Package Includes:
• Easy course access: Attend training right from your computer and easily connect your audio via computer or phone. Easy and

quick access fits today’s working style and eliminates expensive travel and long days in the classroom.

• Live, expert instruction: Instructors are sought-after practitioners, highly-experienced in the industry who deliver a professional
learning experience in real-time.

• Valuable course materials: Courses cover the same professional content as our classroom training, and students have direct
access to valuable materials.

• Rich virtual learning environment: A variety of tools are built in to the learning platform to engage learners through dynamic
delivery and to facilitate a multi-directional flow of information.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide hands-on exercises, group activities, and breakout sessions.

• Real-time communication: Communicate real-time directly with the instructor. Ask questions, provide comments, and participate
in the class discussions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live Virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than four hours per day. This schedule makes it
easy to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live Virtual courses are limited in small class size to ensure an opportunity for personal interaction.

https://well.tc/wd9o

AGILE
OUTSIDE

THE
DEVELOPMENT

TEAM

BY
RON

HEALY
B E T T E R S O F T W A R E T e c h W e l l . c o m 	 18

http://techwell.com

he story of how the Agile Manifesto came about has faded

into legend. More than fifteen years later, a whole gener-

ation of programmers currently practicing their craft in

some form of agile-like methodology may have no idea that there

was ever such an era as BA (before agile).

Most of us, however, wonder about the non-agile mind-set of

those outside the development team. Archaic processes that are

routinely wrapped around projects in enterprises are as quaint

and unfathomable to agile software developers as sundials are to

the smartwatch generation. They’re sort of related—but just barely.

Recognizing the Benefits of Agility
Because of perceived problems with waterfall projects, the Ag-

ile Manifesto was conceived by software engineers, for software

engineers. Like most buzzwords, the term agile has recently be-

come commoditized and homogenized to the point where it is often

thrown around by people who have no idea what it really signifies.

The history of the Agile Manifesto includes two phrases I think

are illustrative: [1]

�“A bigger gathering of organizational anarchists would be hard

to find …”

“Agile approaches scare corporate bureaucrats …”

Despite the fact that I am not technically gifted enough to be a

software engineer, I regularly work closely with software teams.

As a business analyst, I have found that it is important to be com-

fortable when challenging the status quo and dealing with unpre-

dictability. This might explain why the Agile Manifesto appeals to

me and why the groundbreaking philosophical shift that came

out of that meeting scared process-driven, plan-hungry, and mile-

stone-focused project people.

Software development teams have always been quicker than

corporate bureaucrats to identify and adapt the benefits of agile.

Eventually, though, management started to get it. Agile is all about

completing work early with a focus on effective communication,

feedback, and delivery. This often translates to higher return on

investment. Senior managers liked this, and some started to be-

lieve that every part of the software development process must

become agile. But organizations accustomed to structured IT

projects thought they could achieve this by doing little more than

wrapping agile development in familiar, non-agile corporate plan-

ning processes.

Unfortunately, it isn’t that simple.

Worse, some people began to believe that they could devise

a super-agile methodology that was perfect for all kinds of soft-

ware development projects—which is the antithesis of agile—and

doomed both to failure and to rejection by agile proponents. As a

business analyst experienced in both modern and traditional proj-

ects, this was painfully obvious to me.

Exploring Hybrid Agile Alternatives
Software developers are usually not interested in Gantt charts

or budgets, whereas project managers and executives live with

these concepts and associated artifacts. Because the decision-mak-

ers and project planners are generally in the latter group, it is not

uncommon to see agile ceremonies, practices, terms, and buzz-

words used in what are essentially project-centric, even waterfall

processes. These are sometimes referred to as hybrid waterfall-ag-

ile methodologies—“wagile” for short—to make them appear as if

they fit a deliberate structure, when they actually don’t. On a hu-

morous note, some people use the term “frAgile” to refer to these

approaches, which isn’t far from the truth.

Even in these so-called agile environments, delivery deadlines

are sometimes defined months in advance. Budgets and resources

are estimated based on some vague collection of sentences and as-

pirations in a high-level, requirements-like document.

AS A BUSINESS ANALYST, I HAVE

FOUND THAT IT IS IMPORTANT

TO BE COMFORTABLE WHEN

CHALLENGING THE STATUS

QUO AND DEALING WITH

UNPREDICTABILITY.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 19

http://techwell.com

going to consume before it is delivered. By the time each require-

ment is delivered, the team probably survived a range of epics,

dozens of user stories, and hundreds of tests. Reverse-engineering

the implementation cost of requirements can help stakeholders

understand the individual cost of each requirement. While this

won’t make the problem go away, it should make stakeholders less

frivolous with their demands in the future and more open to ne-

gotiating an acceptable compromise during detailed analysis and

design phases.

However, stakeholders must be careful not to misuse this in-

formation, particularly in agile environments. Calculating the ac-

tual implementation cost of requirements delivered is not the pre-

ferred way to estimate the cost of each upcoming requirement, no

matter what estimating techniques are used. In other words, past

performance may not be an indicator of future results.

Why Agile Is Important to the Enterprise
Sure, there are agile methodologies such as Scrum, kanban,

and DevOps that organizations can experiment with, using small,

non-critical projects as test beds, in order to evaluate whether agile

is suitable. However, there is a huge difference between having a

go at agile to see what happens using a single team on one small

Typically, the plan will even specify the number of sprints in-

cluded! Someone signs off on this fictional plan without having any

idea how it is to be implemented. As ludicrous as this sounds, this

scenario is probably familiar to most of you.

Then, when the technical team gets their hands on the plan

and starts tearing up the Gantt chart with their pesky objections

and warnings, stakeholders are often shielded from the noise.

Even when concerns are escalated, stakeholders often point to

the signed-off plan and insist it get delivered, along with anything

else that might get added along the way. After all, isn’t the freedom

to add requirements to existing projects exactly what agile is all

about?

Agile evangelists might talk about transitioning an entire orga-

nization to agile. However, all they can realistically hope to do is

introduce an agile mind-set to those outside the development team

so they appreciate the benefits of agile and adapt whatever agility

makes sense for them. Agile is simply not suited to every part of

every project or every organization. If everyone were to do every-

thing in an agile fashion, how would anyone know what’s coming

down the tracks?

Agile proponents bemoan the fact that the corporate and proj-

ect world insists on shoehorning agile into processes that are in-

herently nonagile. Others find the flip side equally frustrating—

when agile purists simply don’t understand the need for long-term,

strategic enterprise planning. This is the reason enterprise agile

frameworks have evolved.

There is a range of mechanisms and techniques that can be

used for those outside development to become more agile in their

thinking and planning. For example, project sponsors, subject mat-

ter experts and product managers can benefit by understanding

what happens to their requirements once they have been thrown

over the fence to the development team.

The great thing about requirements, if you are not a developer,

is that they are all about the same size: one sentence. Stakeholders

often have no idea how much effort an individual requirement is

AGILE PROPONENTS BEMOAN

THE FACT THAT THE CORPORATE

AND PROJECT WORLD INSISTS

ON SHOEHORNING AGILE

INTO PROCESSES THAT ARE

INHERENTLY NONAGILE.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 20

http://techwell.com

project, compared to committing the future of an enterprise to

something that nobody is really too sure about. This aversion to

risk in the absence of evidence is not only rational but the correct

and responsible attitude for enterprises to take.

As a result, there has been a growing realization among agile

proponents that, unlike small software teams, large enterpris-

es need a planning framework to incorporate agile development

methodologies into their enterprise planning processes. This has

led to a variety of enterprise-level frameworks being proposed and

becoming more and more common. These frameworks, although

not exactly as agile as eXtreme Programming (XP), help enterpris-

es understand and adopt agile concepts and techniques. (Besides,

project and corporate folk love frameworks!)

Perhaps the most well-known frameworks are the Scaled Ag-

ile Framework (SAFe) [2], Large-Scale Scrum (LeSS) [3], and Dis-

ciplined Agile Delivery (DAD) [4]. As with everything regarding

being agile, adaptability is the key. If it works, it’s right. Any giv-

en technique or task might be right for only one specific project,

but that’s the point of agile. SAFe, LeSS, and DAD offer neat, very

accessible, and understandable medium- and long-term planning

frameworks for enterprises while still retaining the essence of ag-

ile, especially with development teams.

Committing to Agile Where It Makes Sense
Because adaptability is one of the benefits of an agile way of

thinking, adaptation should happen everywhere—as long as it

makes sense. Adapt to whatever works, drop whatever doesn’t, re-

view, rinse, and repeat. Don’t just adapt something for the sake of

adapting something; that’s not agile.

If that means projects become a little less predefined and pre-

scribed than project managers or sponsors might like, then so be

it. Projects are rarely delivered as planned anyway, so all that’s lost

is the stress and pressure of pretending otherwise. If, on the oth-

er hand, it means the development team should adapt and adopt

something less than pure agile, this actually would be the agile

thing to do.

Ensuring that business stakeholders are involved in and com-

mitted to the entire process is also critical to success. It is not

enough to have project managers alone representing the project to

the business from the day that implementation starts. The roles of

business analyst, product owner, and product manager are need-

ed as a bridge between the business and development teams. If

these roles exist solely to insulate others from problems, they add

expense with little value. Agile is all about early and appropriate

feedback— both good and bad—to all project stakeholders.

As a business analyst, I deal with this every day and I appreci-

ate and understand the different perspectives of business stake-

holders and development teams. I have no doubt that the two sides

are not only reconcilable but actually not that far apart. Honest,

forthright, and timely communication of both good and bad news

up and down the project and organizational hierarchy is key to

successful implementation of agile on any given project. Effective

communication is the primary responsibility of a business analyst,

particularly in an agile environment. This is a topic I write regular-

ly about as critical to the success of each and every project I lead.

Ideally, though, everyone critical to defining success should

take an active role. They aren’t expected to write code, as that

would be asking a bit too much, but they should meet frequently

with the team leads rather than just attending routine status meet-

ings with the project manager where bad news tends to be avoided

at all costs.

Everything Is Always Changing!
In any agile project, plans will change, requirements will

change, budgets will change, and priorities will change. In my ex-

perience, requirements will be de-scoped or completely restated,

and new requirements will be added.

However, this is as it always has been in any project work—

especially in software development. Agile was never intended to

solve those problems. By adapting the right mindset, there should

never really be any major surprises to derail a project. Any sur-

prises that do appear—whether from the development team or the

business-oriented stakeholders—can be communicated, evaluated,

and subsequently dealt with quickly and comparatively painlessly.

In short, the core philosophy of agile is to do whatever works to

deliver value early. Agile is about whatever makes sense in the giv-

en scenario at the given time to realize business value. Because the

definition of value differs across roles, prioritization of require-

ments becomes a critically important task. That’s the basis of agile.

Every scenario is different, so every agile project will be dif-

ferent. Anyone who proposes a one-size-fits-all, silver-bullet agile

methodology is either missing the point or trying to sell something.

Blasphemous as it may seem to agile evangelists, “whatever works”

in some cases might not actually be agile. “Adapting to whatever

works” usually is. ronhealyx@gmail.com

REFERENCESCLICK FOR THIS STORY'S

EFFECTIVE
COMMUNICATION
IS THE PRIMARY
RESPONSIBILITY OF A
BUSINESS ANALYST,
PARTICULARLY IN AN
AGILE ENVIRONMENT.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 21

mailto:ronhealyx@gmail.com
https://www.stickyminds.com/sticky-note/references-232
http://techwell.com

The International Software Testing Qualifications

Board (ISTQB) is a non-proprietary organization that

has granted more than 500,000 certifications in more

than 100 countries around the globe. Certification

is designed for software professionals who need to

demonstrate practical knowledge of software testing—

test designers, test analysts, test engineers, test consultants, test

managers, user acceptance testers, developers, and more.

Each of our accredited training courses go above and beyond the

ISTQB syllabus, giving you practical knowledge you can apply now. All

of our courses are led by instructors with an average of 15–30 years of

real-world experience, meaning you can be confident that your learning

experience will be second to none.

Advance your career by adding an internationally-recognized

certification to your resume. Learn more about certification at

sqetraining.com/certification or request a personal consultation with

one of our dedicated Training Advocates by calling 888.268.8770.

Professional certifications are a tangible way to

set yourself apart. SQE Training offers accredited

training courses for the most recognized software

testing certification in the industry—ISTQB®

International Software Testing Qualifications Board.

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/CERTIFICATION

SOFTWARE
TESTER

CERTIFICATION

CERTIFICATION OFFERINGS

LEARNING OPTIONS

Foundation Level
Certification (CTFL)

Foundation Level Agile
Extension (CTFL-AT)

ASTQB Mobile Testing
Certification (CMT)

Advanced Level Test
Manager (CTAL-TM)

Advanced Level Test Analyst
(CTAL-TA)

Advanced Level Technical
Test Analyst (CTAL-TTA)

eLearning

Public

https://well.tc/wd9e

Automation’s Role in the
Fall of Software Testing

by John Tyson

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 23

http://techwell.com

here is a trend in software testing that I don’t like. Devel-

opment teams prefer the speed and shallowness of auto-

mated testing over deeper, more realistic user scenario

testing. Software testers used to be valued in software develop-

ment for their testing skills, but the industry’s obsession with test

automation has now reached the point where it is believed that tes-

ters can be replaced by automated test scripts. As a result, test au-

tomation needs programmers—not testers. Professional software

testers are being driven out if they cannot program test automa-

tion frameworks. This scripting leaves little time to do exploratory

testing and avoids testing the user interface (UI). This trend comes

at the worst possible time—just as software is becoming more com-

plex and more critical.

By overemphasizing test automation, we risk diminishing the

role of professional software testers as valued development team

members. Poor quality software also impacts users, which can be

in the millions or billions of people. High quality software yields

a good user experience while decreasing customer support costs.

From Waterfall to RAD to Agile
When I began my software testing career in the mid-’90s, soft-

ware testing had become mainstream in software development,

although there were still a few problems. Testing followed the wa-

terfall model, even on rapid application development (RAD) proj-

ects starting late into the development cycle, creating a bottleneck.

Testing was often used as a dumping ground for poor program-

mers, perhaps indicating that testing wasn’t that important and

was more of a checkoff item.

In those days software testing was on the rise, with new tools,

new techniques, and better testers. It was acknowledged that test-

ing and developing were two very different skills not often found

in the same person. Defect tracking and test automation tools start-

ed being used. Talk of testing early became common, as did discus-

sions on testability. In addition, there was a commitment to perfor-

mance and load testing, usability testing, and functionality testing.

The future was looking great for software testers. But there was

a problem. All this talk of quality required investment and time.

Test automation was seen as the panacea for the testing bottleneck.

This came with a few warts, according to James Bach’s article “Test

Automation Snake Oil.” [1] Software tool vendors overpromised the

ease and efficacy of their record-and-playback test automation tools.

Testers found their automated test scripts brittle. One small change

in an application could invalidate hundreds of test scripts. People

learned to mitigate these problems by taking a modular, data-driv-

en approach to automated testing, so scripts could be reused and a

change in the application would only result in changing one or two

test scripts. This helped reduce the number of test scripts needed.

But the need for speed in delivering software continued to in-

crease from waterfall to RAD and, now, to agile. Record-and-play-

back test automation tools suffered from requiring the applica-

tion to be completed before scripts could be recorded. Worse, the

scripts relied on the UI, which usually changes late and often in the

development cycle, after users get to see and use their new appli-

cation. To compound matters even further, the more capabilities

added to test automation tools, the more expensive they became.

To remedy all of these issues, a progression of open source tools

evolved, with Selenium WebDriver currently one of the most pop-

ular. Selenium eliminated the licensing cost issue, while other tools

allowed developers to code tests for functions behind the UI. Even

if the UI changed, test scripts would still work because underlying

functions did not usually change. Now test scripts could be devel-

oped as soon as the functions became available instead of waiting

for the application to become available. Ironically, moving testing

earlier and making scripts more robust marked the demise of soft-

ware testing as the emphasis was placed on automated script de-

velopment instead of testing skills.

Should Software Testers Become
Developers?

This brings us to our current situation, where test automation

is still seen as the key to ensuring product quality. However, it is

developers—not testers—who are needed in software testing. In

job postings, the most important skill asked of testers is test auto-

mation, which translates to “Can you program?”

Record-and-playback
test automation tools
suffered from requiring
the application to be
completed before scripts
could be recorded.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 24

http://techwell.com

Either the actual skill and mindset of testing is not considered

important, or it’s assumed that anyone can test.

This will have profoundly bad implications for the future of the

software development industry as things like autonomous vehicles

and the internet of things become commonplace. Replacing testers

with developers may not have started out as an intentional act, but

it has definitely become the trend. The people writing automated

tests, especially using a behind-the-UI approach, usually have de-

velopment skills, so programmers are the natural choice.

Some might say that programming tests with code or scripts is

just another new skill that testers need to learn. This skill can be a

positive thing, allowing testers to move out of testing and into soft-

ware development, where far more jobs are available and pay—

and respect—is higher. But there are many downsides to requiring

testers to become developers. Let’s look at the problems.

Automating tests usually implies shallow testing. Test au-

tomation has been criticized for falling short of expectations. Not

all tests can be automated—some due to technical limitations (like

timing issues), others due to economic considerations. It’s just not

feasible to automate some tests. This means your automated test

suite will be a subset of what can be tested. Chances are good it will

be a shallow, happy-path regression test suite that does not cover

complex scenarios, especially if the tester has to complete the test

within a single sprint.

Test automation usually takes priority over deeper exploratory

testing. This is especially true if the automated tests are included

in the definition of done criteria.

Testing is conflated with checking. Much has been written

about the difference between testing, which requires a highly

cognitive skill to perform, and checking, a static set of steps that

machines execute. [2] James Bach and Michael Bolton quote phi-

losopher Marshall McLuhan, writing, “We shape our tools, and

thereafter our tools shape us.” [3] They also present an analogy:

“We may witness how industrialization changes cabinet craftsmen

into cabinet factories, and that may tempt us to speak of the chang-

ing role of the cabinet maker, but the cabinet factory worker is cer-

tainly not a mutated cabinet craftsman.” Here, the factory worker

acts as a checker, operating a machine, while a craftsman acts as a

tester, choosing not to use damaged or poor-quality wood, investi-

gating why the cabinet wasn’t manufactured correctly.

Checking, instead of testing, also may suffer from the pesticide

paradox. Just as insects eventually build up resistance to a pesti-

cide, repeatedly testing using the same data and the same steps

will most likely miss defects that different data or different steps

would uncover. [4]

There is never enough time. Testers are perpetually in crunch

mode. Part of this is due to the nature of testing’s infinite work-

load versus development’s finite workload. Developer workload

decreases as coding is completed, while tester workload increases

as there are more features to be tested as the deadline approaches.

Testers must learn more, as it’s common for testers to test an app

end to end, whereas developers usually focus on one feature or a

small area of an app.

Another factor affecting the time available for testing is the

number of developers whom testers support. In my experience in

agile development projects, I’ve typically supported four to six de-

velopers. For testers to understand how developed features work,

there is a need for documentation and knowledge transfer from de-

velopers. Because agile deemphasizes the need for documentation,

it is often easier to wander off and seek clarification from the prod-

uct owner consuming more of the tester’s time on non-testing tasks.

The reality is that user stories or task descriptions are rarely

updated. If the tester isn’t informed, time can be wasted testing

something that doesn’t need to be tested. If the tester supports sev-

eral developers, they may have to work at an unsustainable pace,

violating a key agile principle.

Determining whether development is complete isn’t easy.
Does your team have a development freeze deadline? I’ve attended

sprints where developers deliver code on the last day of the sprint,

severely limiting the testing that can be done. Even worse is when

the manager wants testers to do end-of-sprint demos.

Testers are always a scarce resource. Is it easier to find and

hire a tester or a developer? Due to the lack of formal testing cur-

ricula, there is a wide disparity in software testers. Some have pro-

gramming backgrounds, while others have no actual testing expe-

rience at all. This doesn’t mean one is better than the other, but it

makes hiring a good tester difficult. Then there are the testing spe-

cialties, where a tester may be great at usability testing and very

poor at functional testing. Good testers should be able to tell you

what they’re good at testing and, just as importantly, what they’re

not good at testing. In addition to good testing instincts, they need

to be honest, have integrity, possess a strong work ethic, and be

good communicators. This is difficult to evaluate in an interview.

Developers are easier to find, qualify, and hire. Why would you

want to throw away a talented software tester with special, hard-

to-find skills by requiring them to become a programmer?

Testers must learn more, as it’s common
for testers to test an app end to end,

whereas developers usually focus on one
feature or a small area of an app.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 25

http://techwell.com

UI testing gets neglected. If test automation is replacing hu-

man testers and your application is used by humans, who is testing

the UI? Who is getting feedback on the user experience? If the first-

time users get to see the app is during user acceptance testing, you

will have a disaster on your hands. Remember how UI changes are

made often and late in development?

If professional testers aren’t looking at UI and usability issues

early, there will be problems. Testers are often viewed as end-user

advocates within the development team and the link between us-

ers and the development team.

With UI testing being bypassed, would automated test develop-

ers fill this role?

There is a loss of testers. Besides not developing additional

testing skills and application knowledge, this introduces a new

problem—the perpetual loss of testers. [5] Testing will be seen as

an entry-level, temporary position. No testing expertise will be

built up, so apps are likely to be poorly tested.

The New Composition of a Software
Development Team

At a time when more thorough testing is needed, we are getting

more frequent, shallow testing using test automation. Talk of new,

more comprehensive testing techniques has all but disappeared.

Quality-tested software products are an absolute requirement

in the software application industry. We need to recognize the

strengths and weaknesses of automated and exploratory testing,

using the strengths of each while avoiding the weaknesses. We

need to acknowledge testing as a special skill required for all de-

velopment projects.

Test automation is needed. Manual regression testing is terri-

bly boring, slow, and error-prone. As new or changed features are

delivered, automated regression tests are valuable in confirming

that old functionality still works correctly. It also allows for func-

tions to be tested early, providing feedback sooner and reducing

the number of bugs found later. Software development teams need

both professional software testers and test automators. This needs

to become the de facto standard for software development.

Professional software testers will perform exploratory testing

and dig deep. They will test things that automated tests can’t catch,

like timing issues, UI issues, complex scenarios, and things that

aren’t economically feasible to automate. Software development

teams of tomorrow need both test automation specialists and soft-

ware testing specialists. jmt_research@yahoo.com

REFERENCESCLICK FOR THIS STORY'S

N E W S L E T T E R S
F O R E V E R Y N E E D !

Want the latest and greatest content
delivered to your inbox? We have a

newsletter for you!

A T E C H W E L L C O M M U N I T Y

AgileConnection To Go covers all things agile.

DEV PS
B R O U G H T T O Y O U B Y C M C R O S S R O A D S

DevOps To Go delivers new and relevant
DevOps content from CMCrossroads

every month.

StickyMinds To Go sends you a weekly
listing of all the new testing articles

added to StickyMinds.

And, last but not least, TechWell Insights
features the latest stories from conference

speakers, SQE Training partners, and
other industry voices.

Visit AgileConnection.com, CMCrossroads.com,
StickyMinds.com, or TechWell.com to sign up

for our newsletters.

Software development teams
need both professional software
testers and test automators.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 26

mailto:jmt_research@yahoo.com
https://www.stickyminds.com/sticky-note/references-233
http://AgileConnection.com
http://CMCrossroads.com
http://StickyMinds.com
https://www.techwell.com/techwell-insights
http://www.agileconnection.com
http://www.CMCrossroads.com
http://www.stickyminds.com
https://www.techwell.com/techwell-insights
http://techwell.com

by
Miiro
Juuso

Building
Autonomous
DevOps
Capability
in Delivery
Teams

mbarking on the DevOps journey is difficult, and there are lots of opportunities to get it wrong

along the way. But like most things in life, taking risks can yield great rewards.

Recent studies show that enterprise software organizations with established DevOps ways of work-

ing consistently deliver better software. A software team’s ability to reliably deliver value rapidly trans-

lates directly to the success of the business. DevOps capability has become a differentiator that sets the

most successful technology companies apart from the rest.

There are as many ways to implement DevOps as there are teams implementing it. While the DevOps

movement is still relatively new in the world of software engineering, we are starting to recognize

which approaches work well—and which do not.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 27

http://techwell.com

In the past few years, organizations eager to jump on the

DevOps bandwagon have invested in dedicated DevOps teams.

These teams are generally given ownership of delivery pipelines,

setting up monitoring, and manning the on-call shifts. They sit in

the twilight zone between developers and system administrators,

applying a mixed set of skills to fix problems that do not unequiv-

ocally belong to either development or operations. These DevOps

teams are given the mandate to implement continuous delivery

and, in some cases, to ensure that changes are released multiple

times a day. This is a distinct difference from the big and scary re-

leases in the past. Sometimes DevOps can be so fluid that the team

may not even notice frequent releases.

Nothing Comes for Free
Just as some things are too good to be true, there are a num-

ber of problems with this approach. While a DevOps team is often

brought in to bridge the gap between software development teams

and infrastructure operations teams, it nearly always ends up be-

ing an island. Instead of pushing releases over to system adminis-

trators for deployment, the organization now relies on the nearly

magical DevOps team to make sure code reaches production.

Instead of breaking down silos, the DevOps team ends up cre-

ating one of their own.

One of the consequences of this is lack of accountability. When

teams are asked what failed in a release, it’s either application

problems, build pipeline problems, or environment problems. The

challenge is that issues in modern software delivery often span

two or three of these areas, and all of these areas have their respec-

tive owners. When a problem doesn’t have a single owner, fixing

it becomes much more difficult, regardless of shared responsibility

models that might have been implemented.

Another problem is that a silo of people almost always results

in a silo of knowledge. The traditional DevOps problem remains

unsolved when all this knowledge is concentrated within the

DevOps team. Software developers may not know anything about

the infrastructure their application runs on, while system adminis-

trators are none the wiser about the applications they are hosting.

Instead of improving communication and propagation of knowl-

edge across the organization, an isolated DevOps team can inad-

vertently hinder both by simply being another link in the chain.

Where DevOps Approaches Fall Apart
There is no established best practice for a framework of how an

isolated DevOps team should work. In my experience, approaches

differ wildly. Some teams use kanban while others work in sprints.

All of them struggle to balance planned and unplanned work (com-

monly called “firefighting”). Coupled with the fact that DevOps

teams rarely contribute to or even attend delivery team planning

sessions, the amount of unplanned work can be quite large.

Similarly, when software development functions scale, the num-

ber of delivery pipelines grows—and so does the amount of fire-

fighting. The ensuing reactivity instead of proactivity is challenging

to manage from a leadership perspective and easily leads to a state

where whoever shouts the loudest gets their request fulfilled.

A dedicated DevOps team like this can often be better described

as an automation, pipeline, or infrastructure engineering team—

and it suffers from the same dysfunctional, reactive workflows as

any external team. Apart from implementing automation, these

teams do very little to advance the key benefits of a DevOps cul-

ture: reduced external dependencies, improved delivery veloci-

ty, and improved communication. Overall, these are factors that

improve the organization’s maturity in continuous delivery—the

ability to ship small increments of change rapidly and consistently

to production. There are three concepts that are critical to realiz-

ing the true potential of DevOps: delivery team autonomy, consis-

tency through empowerment, and the DevOps teacher model.

Delivery Teams Must Be Autonomous
Instead of building isolated DevOps teams, improving autono-

my of delivery teams is a much better approach. However, it does

come with its own complications: Upskilling software engineers

takes investment, and the initial transformation will adversely

impact delivery velocity. But these downsides are easily offset by

reduced external dependencies, added confidence in continuous

delivery, and improved delivery velocity. The more changes that

can be released to production without relying on other teams, the

better.

Ultimately, DevOps capability should be seen as a feature of ev-

ery delivery team instead of the function of a dedicated team. The

best way to improve the autonomy of a delivery team is to enable

them to own their continuous delivery pipeline—from develop-

ment through production. This means that the delivery team will

need to learn new tricks. Instead of offloading the responsibility

to another team, the DevOps team must take ownership of some

operational aspects themselves.

Increased autonomy of a delivery team does not mean they

should maintain their own kernel patches or reinvent the wheel

every time they need to build a blue/green deployment model.

There is still a role for system administrators and infrastructure

engineering teams. They should concentrate on building frame-

works and automation so that the delivery teams can concen-

trate on releasing changes to production. Defining a deployment

framework and a managed platform as a service is a great place

to start. The good news is that managed services on modern cloud

platforms can make this relatively trivial with tools like Elastic

Beanstalk on Amazon Web Services. Using a platform abstracts

away low-level tasks and enables its users to focus on delivering

application features.

Consistency through Empowerment
One of the underlying causes of excessive external dependen-

cies is a control mindset, commonly introduced as an attempt to

bring order to chaos. Typical symptoms of this mindset are system

administrators not giving access to application servers or QA re-

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 28

http://techwell.com

quiring manual testing of each and every change.

There are better ways to approach this need for consistency. I

have yet to meet a software engineer who deliberately makes bad

decisions, instead of making decisions due to lack of knowledge or

overall context.

Empowering teams to make the right choices yields better re-

sults than imposing strict rules. This can be accomplished by con-

tinuously upskilling the teams, providing tools that encourage best

practices, and making sure the team knows how the thing they’re

building fits in the bigger picture.

From a DevOps perspective, tooling is a natural place to start.

The teams can, for example, be provided a boilerplate

for a build and deployment pipeline that encour-

ages automated testing and deployment to

an environment running on a modern

cloud platform.

To continue on the concept of

delivery team autonomy, a practi-

cal example of empowering deliv-

ery teams to work autonomous-

ly and consistently is building

self-service automation for com-

pleting tasks that were previous-

ly manual and time-consuming.

By automating the management

of testing environments, the teams

can create environments whenever

they need one.

Sometimes tools will need to bend

for the rules. The regulatory environment

might, for example, impose boundaries on how

software can be delivered. It is important to identi-

fy the hard limits and design the tooling and processes to ac-

commodate them. If a delivery team needs business signoff before

making every feature live, implementing feature switches in their

workflow could still enable fully automated continuous deploy-

ment.

The DevOps Teacher Model Works
Upskilling teams requires planning and resources, and pend-

ing major breakthroughs in AI, self-service interfaces do not build

themselves. There is a clear requirement for dedicated DevOps

enablement teams who don’t own delivery pipelines. Instead, de-

livery teams should be empowered to own them. DevOps teachers

should sit within the delivery teams and work within their back-

logs as a member of the delivery team.

First and foremost, a DevOps teacher’s objective is to enable

the team to own their delivery pipeline by upskilling and coaching

team members. When a DevOps teacher does technical hands-on

delivery work, they make sure another team member is equipped

to accomplish the same task in the future. Further, the complete

delivery team must be in a position to support any systems built.

As full-fledged delivery team members, DevOps teachers should

attend agile ceremonies along with the rest of their team. With ac-

tive attendance in the planning stages of new work, DevOps teach-

ers can work proactively and are in a unique position to promote

best practices in testing, deployment, and monitoring. Similarly,

when actively participating in retrospective meetings, the teachers

are able to drive continuous improvement of the delivery pipeline.

DevOps teachers are a great vehicle for cross-pollinating

knowledge across a wider digital delivery function. Teachers

should meet regularly to discuss blockers and dependencies within

their individual teams.

I’ve found that a stand-up once or twice a

week works well, depending on the ma-

turity of the teacher role. Secondarily,

the teachers should be rotated every

three to six months. This enables

the delivery teams to learn from

each other and ensures that

teachers are able to build their

knowledge across all delivery

teams’ products.

The natural question is

how to transform a DevOps

team into a team of DevOps

teachers. When a DevOps team

is accustomed to owning deliv-

ery pipelines, the change in para-

digm can be challenging. The shift

from “doing things” to “teaching oth-

ers how to do things” is always difficult.

The reality is that some people are not able

to make the leap. This reminds me of an adage:

“If you can’t change the people, change the people.”

An established, isolated DevOps team might find a better role as

an infrastructure engineering team, with a new embedded DevOps

teacher team working toward the shift of pipeline ownership.

The Proper Role for DevOps
When we start looking at DevOps as an enablement function

and an instigator of change instead of a team that owns delivery

pipelines, we can realize the true potential of the DevOps move-

ment. There is a place for dedicated DevOps professionals in mod-

ern software delivery functions, but it is not a pure engineering

role that takes sole ownership of delivery pipelines.

With thousands of organizations worldwide looking to hire

DevOps engineers, we should consider the DevOps engineer a nat-

ural phase in the evolution of a software delivery organization.

Treating DevOps as a way of working promotes a cul-

ture of autonomous delivery teams that have full responsi-

bility for the success of their digital products. Ultimately, this

translates to happy customers—and who doesn’t want that?

 miiro.juuso@gmail.com

By automating
the management

of testing
environments, the
teams can create

environments
whenever they

need one.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 29

mailto:miiro.juuso@gmail.com
http://techwell.com

3 Major Continuous Delivery Hurdles
Teams Need to Overcome
By Josiah Renaudin

Teams that leverage continuous delivery and continuous integra-
tion are playing an entirely different game than software teams of the
past—instead of mapping out this major, ridged timeline, data is being
both gathered and used more frequently (and effectively) than before.

Read More

Using Feature Flags to Boost Testing and
Deployment
By James Espie

A feature flag is a configuration setting that lets you turn a given
feature on or off. There is no need for a feature to be complete before
you can start testing—as soon as the first piece of code is merged, you
can turn the flag on in your test environment and begin. This also re-
duces risk.

Read More	

The Need for Well-Formed, Creative
Minds in Software Testing
By Rajini Padmanaban

The need for creativity and innovation is felt in the world of soft-
ware testing more than ever before given how dynamic and fast-paced
it has become. With so many changing technologies and a multitude of
people to interact with, a tester’s job calls for newer and better ways of
accomplishing tasks.

Read More

What We Talk about When We Talk about
Test Automation
By Justin Rohrman

Testers talking about test automation often mean browser automa-
tion. Developers are probably talking about unit testing or something
at the service layer. And operations people are most likely thinking of
monitoring and the guts that control continuous integration. But the
practices are more important than terminology.

Read More

	

Featuring fresh news and insightful stories about topics important to you, TechWell Insights is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

6 Major Challenges of Cloud Computing
By Ray Parker

Companies of all sizes depend on cloud computing to store
important data. However, significant factors such as cost, reliability,
and security must not be overlooked. Here are six common challenges
you should consider—and develop plans to mitigate—before imple-
menting cloud computing technology.

Read More

Insider Threats: What’s the Biggest IT
Security Risk in Your Organization?
By Pete Johnson

Any modern company should give the line-of-business teams the
ability to provision self-service, on-demand resources, but to ensure
security, you have to do so in a way that has the necessary monitoring
built in via automation. One good way is to use a cloud management
platform that helps you keep your app secure.

Read More

Breaking the Cycle of Bad Scrum
By Ryan Ripley

When practiced well, Scrum can empower people, teams, and orga-
nizations to solve complex problems and deliver value to their custom-
ers. But bad Scrum does the opposite. If team members or leaders don’t
embrace Scrum values, it can be oppressive and create tension. Here’s
how you can prevent bad Scrum from taking hold.

Read More

Why Frequently Delivering Working
Software Is Crucial to Agile
By Jeffery Payne

While completing documentation is often an indication that some
progress has been made, until software has been implemented, tested,
and approved by a customer, the amount of progress cannot be mea-
sured. Here are some common reasons agile teams fail to frequently
deliver working software—and how to avoid them.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 30

https://well.tc/wmgm
https://well.tc/wmgs
https://well.tc/wmge
https://well.tc/wmgn
http://techwell.com
http://techwell.com
https://well.tc/wmgh
https://well.tc/wmg7
https://well.tc/wmg8
https://well.tc/wmg2
http://techwell.com

T E C H W E L L I N S I G H T S

Measuring Objective Continuous
Improvement in DevOps
By Logan Daigle

When you’re beginning your DevOps journey, it is incredibly im-
portant to know where you are starting. You will want to know later on
what progress you have made, and you won’t be able to figure that out
unless you have benchmarks from the beginning. Here are six steps to
objectively measure your continuous improvement.

Read More

Troubled Project or Disaster? Understand
What You Can Manage
By Payson Hall

There is a big difference between a troubled project and a disaster,
and not being clear about the distinction is hazardous to decision-mak-
ing. If a project you’re managing is in danger of missing deadlines, that
doesn’t mean it’s out of control—you just need to explain to stakehold-
ers how it can get back on track.

Read More

How You Can Help the Human Animals in
Your Group Thrive
By Isabel Evans

On our teams, we deal with many individuals with diverse perspec-
tives. It’s not always easy, but we are animals, and many animals live
and work—and are only able to survive—in teams. You can look to how
animals interact with and react to each other to see how we, as human
animals, can not just survive, but thrive.

Read More

Transforming Your QA and Test Team
By Sophie Benjamin

Testing professionals are essential to the success of technology proj-
ects. Delivering better, faster, and at a lower cost is not solely done with
automation and development teams—testing professionals are here to
stay and grow. But we have to fight for our place, and that means evolv-
ing with industry requirements.

Read More

FDA Pilots Program to Pre-Certify Digital
Health Software
By Pamela Rentz

As healthcare undergoes a digital transformation, how can the tra-
ditional regulatory process keep pace? The FDA recently announced
the initial participants in a pilot program that will pre-certify digital
health tech companies that meet quality standards for software design,
validation, and maintenance.

Read More

Performance Testing for Our Modern,
DevOps World
By Paola Rossaro

As DevOps-based methodologies are more broadly adopted, we’ll
increasingly move to a continuous testing model. Containerized envi-
ronments and microservices make it easier to optimize your applica-
tion by validating changes to the environment or system configuration,
allowing you to deliver better products faster.

Read More

Balance Technical and Social Skills for
Project Success
By Marcia Buzzella

Software testing is a socio-technical undertaking, which means
that effective test strategies must incorporate a balance of technical
capabilities relating to processes and tools and social capabilities used
for communication and problem-solving. This balance enables true
project success.

Read More

Use Continuous Backlog Grooming to
Refine Agile Requirements
By Susan Brockley

Continuous backlog grooming means systematically refining your
user stories: breaking up larger stories, obtaining detailed require-
ments, writing the requirements in terms of acceptance criteria and
acceptance tests, and sharing and refining these details with the team.
Acceptance test-driven development can help.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 31

https://well.tc/wmg6
https://well.tc/wmgu
https://well.tc/wmga
https://well.tc/wmgz
https://well.tc/wmgr
https://well.tc/wmgj
https://well.tc/wmg9
https://well.tc/wmgy
http://techwell.com

THE LAST WORD

Most testers are stuck in time with testing practices and ap-

proaches that are not aligned to today’s needs. The product land-

scape has changed significantly in the past few years, and the use

of technology is no longer for the few. This is especially true in the

software world, where the impact of quality is significant. There

are now approximately twelve billion users, processes, and devices

connected to the internet. This is expected to reach fifty billion con-

nections by 2020. And by 2022, a majority of people under the age

of twenty-five will be using some sort of digital device or service. [1]

This makes an innovative quality approach more important

than ever to ensure that your software product is truly ready for

the marketplace. Innovative quality does not necessarily mean do-

ing something drastically different. It means:

• �Creating a quality strategy where the

status quo is constantly questioned

and evaluated for ongoing contin-

uous improvement in testing, even

after an app goes live

• �Aligning the quality efforts with

the needs of the day, including us-

er-centric quality and equal focus on

non-functional test attributes

• �Dialing up (or down) an exploratory

test effort and comparing outcomes

to the overall quality goals

• �Demonstrating a willingness to learn

from users, competitors, and the in-

dustry at large while contributing

what you’ve learned back to the quality community

Although it may not always be true, it is my experience that ev-

ery team works within time, cost, and resource constraints. This is

especially true for testers, and it often comes down to the question,

“Just how much testing is enough?”

Not every scenario that needs to be tested can be accommodat-

ed ideally before release. Combine that with outdated testing prac-

tices, and the gap between what end-users expect and the actual

product is only going to widen.

A better approach must bridge this gap by testing in production

and by introducing innovative test practices.

The Importance of Testing in Production
Regardless of how well an application is tested before it goes

live, a team cannot ignore validating under a production scenario.

Traditionally we have known production testing to include mon-

itoring app availability and performance by injecting automated

tests, simulating a live end-user or programmatic usage. These au-

tomated tests are created by the test team

and largely used by the support teams.

This is changing with the use of analytics

tools that make monitoring easy, reliable,

and quick.

However, there is more to testing in

production. The test team needs to play a

very active role in monitoring feedback—

both proactively and reactively—in the

live environment.

A formal approach to testing in pro-

duction should include passive monitor-

ing with real data, active monitoring with

synthesized transactions, experimenta-

tion with real users, and a workload to

simulate live system stress. If production testing isn’t done correctly,

the result can be a double-edged sword— wasting resources and the

team’s effort in a direction that doesn’t yield productive results. [2]

Testing in production is often mapped to merely look at user

feedback and identify what hot fixes or product recommendations

can be taken up in future releases.

Adopt an Innovative
Quality Approach to
Testing
ALTHOUGH IT IS IMPRACTICAL THAT EVERY TEST CONDITION CAN BE VALIDATED,
INTRODUCE INNOVATIVE TEST PRACTICES ALONG WITH TESTING IN PRODUCTION.
by Rajini Padmanaban | rajini.padmanaban@qainfotech.com

The test team needs
to play a very active
role in monitoring

feedback—both
proactively and

reactively—in the
live environment.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 32

mailto:rajini.padmanaban@qainfotech.com
http://techwell.com

But how many projects allow the time and effort for the team

(and testers) to play in the live environment is a big question. This

kind of active monitoring in live scenarios, with synthesized trans-

actions simulating end-users, is equally important.

The product’s test strategy should try to accommodate any huge

mishaps, allowing the tester to immediately switch to a nonlive en-

vironment to debug further. Similarly, an ongoing team of beta or

crowd testers (including actual end-users) is valuable to keep the

testing in production taking place on a formal basis.

Live testing can be a rough zone, especially when dealing with

real end-user data, carrying out tests in the space of performance,

and security that may render the system vulnerable to attacks and

downtimes. However, live production testing has tremendous ben-

efits that outweigh any risks, if the effort is bifurcated enough to

allow specific tests to be run in each environment.

As software products vary greatly, every organization should

create a custom strategy that works best for them, based on their

product, its maturity, user base, and competition—with a specific

focus on what testing should be performed in production.

Rethink and Innovate Your Testing
Innovation often implies rethinking past approaches, but if not

clearly defined, an innovatve approach can be too broad, vague,

and difficult to gain team buy-in. Limiting innovation to such a

high-level view often falls short of a clear implementation strategy,

causing the team to understand the need to innovate but not know-

ing where to start.

Periodic meetings, such as “think week” programs, to brain-

storm with the quality team can help focus on specific areas of in-

novation and gain team support.

Based on my experience, there are a few ideas that will further

promote innovative testing by aligning with user needs while bring-

ing in deep technical focus.

Adopt device performance testing. When the testing focus

is on performance, application-level testing may not be enough.

Sometimes, poor performance may be due to the app’s interaction

with the device or other apps on the device.

In this case, use tools that track device performance and use

data alongside core performance test parameters.

Security testing needs to be more robust. Most of us assume

security testing to be synonymous with the Open Web Application

Security Project (OWASP) top ten vulnerabilities testing. While this

is a good start, there is a clear need to dive deeper into network

and web services layers. The good news is that OWASP has guide-

lines to achieve this, and a lot of open source tools (like FuzzAPI)

are available.

Make your app accessible by everyone. For many industries

that need to conform to the US Government’s Standard 508, acces-

sibility test efforts’ outcomes are still mapped using a voluntary

product accessibility template (VPAT). The VPAT is a very reliable

checklist, but does it give you a good gauge on your accessibility

baseline? Do your executives fully understand the VPAT and have

time to review it to determine what’s next in the space of acces-

sibility? A better approach would include an objective indicator

that shows the accessibility compliance score. Using a scorecard

can not only track progress but also help plan for future release.

Think globally. Designing a robust localization test effort can

be challenging. It usually requires manual testers, local language

experts, and language translation tools. To complicate matters

further, apps may have to be localized to handle complex locale

dialects. As more applications reach out to larger markets around

the world, innovation around localization testing and optimization

becomes critical.

Testers should think like engineers. While there is a lot of

emphasis on test automation today, becoming technical is not just

about automation. There are several other things a tester can and

should do in his path to retaining his independence and at the

same time becoming more technical and valuable to the organi-

zation. A manual tester can first take the path to becoming more

technical with F12 developer tools and plug-ins. These include

products like PageSpeed, Axe, CSSViewer, and Instant Translate

that enable many functional and non-functional quality checks.

Whatever tools are selected, they should relieve the need for end-

less cycles of monotonous manual testing.

What to Do Next
As part of the continuing journey of improving software test-

ing, my company has explored several ideas to adopt production

testing and to innovate. We recently had an internal company con-

ference where several of these topics were covered in detail. [3] As

an active test evangelist myself, I can confidently say that these ses-

sions helped my company improve how we test. Hopefully, you’ll

be inspired to have similar meetings in your company.

REFERENCESCLICK FOR THIS STORY'S

THE LAST WORD

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 33

https://www.stickyminds.com/sticky-note/references-234
http://techwell.com

 L I N K T O O U R A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is published four
times per year: January, April, July, and October.
Entire contents © 2018 by TechWell Corporation, 350
Corporate Way, Suite 400, Orange Park, FL 32073
USA unless otherwise noted on specific articles. The
opinions expressed within the articles and contents
herein do not necessarily express those of the publisher
(TechWell Corporation). All rights reserved. No material
in this publication may be reproduced in any form
without permission. Reprints of individual articles
available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile Dev, Better Software & DevOps West 2

Agile Testing Days USA 4

Ranorex 3

SQE Training—Live Virtual 17

SQE Training—Software Certification 22

STAREAST 12

Check out the TechWell Happenings
YouTube Playlists.

Hundreds of interviews, lightning talks, and STAREAST,

STARWEST, and Better Software conference presentations

are grouped by topic, so it’s simple to take control of your

learning experience.

Covering software testing and development topics ranging

from mobile testing to enterprise-level agile development

and pretty much everything in between, TechWell Happen-

ings Playlists deliver expert-level knowledge directly to you,

for free, whenever you want it.

Visit well.tc/TWHapps to subscribe to the TechWell Hap-

penings Channel so you won’t miss out on the newest

interviews and TechWell conference presentations.

C A N ’ T AT T E N D A T E C H W E L L C O N F E R E N C E ?

WE’VE GOT YOU COVERED!

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 34

mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://well.tc/wdbv
https://well.tc/wd9s
https://www.ranorex.com
https://well.tc/wd9o
https://well.tc/wd9e
https://well.tc/wdak
http://well.tc/TWHapps
https://well.tc/twplaylists
https://well.tc/twplaylists
http://techwell.com

