
THE AGILE MINDSET
Avoid simply going

through the motions

THE AMAZING CUCUMBER
Automate customer

acceptance tests

FALL 2016 www.TechWell.com

The Evolution
of Software
Monetization

http://www.TechWell.com

Seamless Integration

Any Technology

Cross-Technology | Cross-Device | Cross-Platform

Broad Acceptance

Robust Automation

Quick ROI

License
1

All Technologies.All Updates.

RECORD MODULES

MOUSE

BROWSER

KEY

VALIDATE

USER CODE

ATTRIBUTE EQUAL

MY_METHOD

SEQUENCE

CLICK

OPEN

RECORDING_1

RECORDING_1MY_METHOD

void ITestModule.Run()
 {
 Mouse.DefaultMoveTime = 300;
 Keyboard.DefaultKeyPressTime = 100;
 Delay.SpeedFactor = 1.0;
 }

www.ranorex.com/try-now

All-in-One
Test Automation

http://www.ranorex.com/?utm_source=Techwell&utm_medium=magazine&utm_campaign=FullPageAd-BSM-03-2016

Seamless Integration

Any Technology

Cross-Technology | Cross-Device | Cross-Platform

Broad Acceptance

Robust Automation

Quick ROI

License
1

All Technologies.All Updates.

RECORD MODULES

MOUSE

BROWSER

KEY

VALIDATE

USER CODE

ATTRIBUTE EQUAL

MY_METHOD

SEQUENCE

CLICK

OPEN

RECORDING_1

RECORDING_1MY_METHOD

void ITestModule.Run()
 {
 Mouse.DefaultMoveTime = 300;
 Keyboard.DefaultKeyPressTime = 100;
 Delay.SpeedFactor = 1.0;
 }

www.ranorex.com/try-now

All-in-One
Test Automation

Your Name
Delegate

Nov. 13–18, 2016

Orlando, FL

Hilton Orlando

Lake Buena Vista

2016

BSCEAST.TECHWELL.COM

Benefit from a
custom week
of learning and
discovery through
all aspects of the
development
lifecycle with:

• Comprehensive
tutorials

• Exceptional
concurrent
sessions

• Inspiring keynotes

• Pre-conference
training and
certification
classes

• Networking
activities

• The Expo

• And more

*Discount valid on packages
over $400

Special Offer for
Better Software
Subscribers:
Register using
promo code
BSMCE to
save up to an
additional
$200 off*

WE LOOK FORWARD TO SEEING
YOU IN ORLANDO THIS FALL!

http://www.ranorex.com/?utm_source=Techwell&utm_medium=magazine&utm_campaign=FullPageAd-BSM-03-2016
https://bsceast.techwell.com/?utm_source=BSM_1pg_CollE&utm_medium=BSM&utm_campaign=Marketing-EB

Dive Deeper
into Developing

and Testing
Software for

Mobile and The
Internet of Things

https://well.tc/MobileIoTComingSOON

April 24–28, 2017
Westin San Diego | San Diego, CA

M A R K Y O U R C A L E N D A R S

https://well.tc/39se

14

 20 THE MINDSET OF THE AGILE DEVELOPER
Most software development teams these days adopt an agile approach to
guide projects through their lifecycle. But, according to Gil Broza, embracing
popular practices is not enough. To work effectively in an agile environment,
developers must change their mindset.
by Gil Broza

CONTINUOUS PROCESS IMPROVEMENT USING BALANCE
AND FLOW
Finding a balance between too much and too little process can be quite a chal-
lenge. Tom Wessel shows how to apply lean change management and kaizen
principles to achieve continuous process improvement. Also, Tom suggests
the use of simple metrics to verify that improvements are actually taking place.
by Tom Wessel

26

26

CONTENTS

Volume 18, Issue 4 • Fall 2016

38 THE LAST WORD
WHAT IF SOMEONE STEALS YOUR CODE?
Bob Zeidman, an expert in software forensics, provides a great overview
of how to protect your software from predators. You'll learn the difference
between copyrights, trade secrets, and patents.
by Bob Zeidman

20

Better Software magazine brings you the
hands-on, knowledge-building information

you need to run smarter projects and deliver
better products that win in the marketplace

and positively affect the bottom line.
Subscribe today at BetterSoftware.com or

call 904.278.0524.

Mark Your Calendar

Editor's Note

Contributors

Interview with an Expert

TechWell Insights

Ad Index

in every issue
6

7

8

12

36

40

columns
9 TECHNICALLY SPEAKING

USE DEVOPS TO DRIVE YOUR AGILE ALM
Successful DevOps operations assume that your team has the ability to adjust
with constant change. To succeed at continuous integration and deployment, a
comprehensive agile plan is needed. Bob Aiello and Leslie Sachs identify four
critical success factors that you should employ.
by Bob Aiello and Leslie Sachs

WHAT IS CUCUMBER AND WHY SHOULD I CARE?
If there ever were a game changer to energize a development team,
Cucumber just may be it. An open source tool, Cucumber helps in the running
of automated customer acceptance tests. Matt Wynne, a cofounder of
Cucumber Limited, delivers a brilliant introduction to this tool.
by Matt Wynne

32

features
COVER STORY
THE EVOLUTION OF SOFTWARE MONETIZATION
End-users are demanding anytime, anywhere access to software apps on their
devices. These changes are shifting the way software vendors conduct business.
Michael Zunke uses the results of industry surveys to show how software prod-
ucts and services should be licensed.
by Michael Zunke

14

 www.TechWell.com FALL 2016 BETTER SOFTWARE 5

http://www.stickyminds.com/resources/magazine-articles
http://www.TechWell.com

software tester
certification

mobile
application
testing

MARK YOUR CALENDAR

conferences

training weeks
Testing Training Week
http://www.sqetraining.com/trainingweek

October 17–21, 2016
Tampa, FL

November 7–11, 2016
San Francisco, CA

http://www.sqetraining.com/certification

October 23–25, 2016
Toronto, ON

October 24–26, 2016
Chicago, IL

November 1–3, 2016
Salt Lake City, UT

November 7–9, 2016
San Francisco, CA

November 8–10, 2016
Washington, DC

November 13–15, 2016
Orlando, FL

November 29–
December 1, 2016
Atlanta, GA
Phoenix, AZ

www.sqetraining.com/map

October 19–20 2016
Tampa, FL

October 23–24, 2016
Toronto, ON

November 9–10, 2016
San Francisco, CA

STARCANADA
https://starcanada.techwell.com
October 23–28, 2016
Toronto, ON
Hyatt Regency Toronto

Agile Dev, Better Software & DevOps East
https://bsceast.techwell.com
November 13–18, 2016
Orlando, FL
Hilton Orlando Lake Buena Vista

Mobile Dev + Test and IoT Dev + Test
https://mobiledevtest.techwell.com
April 24–28, 2017
San Diego, CA
Westin San Diego

STAREAST
https://stareast.techwell.com
May 7–12, 2017
Orlando, FL
Rosen Centre Hotel

Agile Dev, Better Software & DevOps West
https://bscwest.techwell.com
June 4–9, 2017
Las Vegas, NV
Caesars Palace

6 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.sqetraining.com/trainingweek
http://www.sqetraining.com/certification
http://www.sqetraining.com/map
https://starcanada.techwell.com
https://bsceast.techwell.com
https://mobiledevtest.techwell.com
https://stareast.techwell.com
https://bscwest.techwell.com
http://www.TechWell.com
http://www.sqetraining.com

Editor’s Note

Intellectual ProPerty and Software ProtectIon

To protect intellectual property of computer software, software
developers need to go to great lengths to prevent misuse. For most
of us who have properly purchased apps and complied with software
vendors’ licensing rules, it can be very frustrating when the app fails to run
due to a licensing issue.

This issue’s feature article reminds us how software vendors misfire in an attempt to balance protection
of their intellectual property with complicated software licensing schemes that frustrate the end-user. In
his article “The Evolution of Software Monetization,” Michael Zunke presents a detailed analysis of how
end-users really feel about software protection methods. And for another perspective, Bob Zeidman gives
a fascinating inside look at how difficult it is to determine if your code has been compromised in “What If
Someone Steals Your Code?”

If you ever wanted to know what the open source tool Cucumber is all about, read Matt Wynne’s
article “What Is Cucumber and Why Should I Care?” He shows you a better way to automate customer
acceptance tests.

In “The Mindset of the Agile Developer,” Gil Broza presents a perspective of what really motivates
software developers. Tom Wessel offers a pragmatic approach for teams struggling to achieve consistent
results in “Continuous Process Improvement Using Balance and Flow.”

DevOps continues to be a very important theme, and if you aren’t sure how it fits into your lifecycle
workflow, you must read “Use DevOps to Drive Your Agile ALM” by Bob Aiello and Leslie Sachs.

We truly value your feedback. Let us and our authors know what you think of the articles by leaving your
comments. I sincerely hope you enjoy this issue! And please use social media to spread the word about
Better Software magazine.

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

Publisher
TechWell Corporation

President/CEO
Wayne Middleton

Director of Publishing
Heather Shanholtzer

Editorial

Better Software Editor
Ken Whitaker

Online Editors
Josiah Renaudin

Beth Romanik

Production Coordinator
Donna Handforth

Design

Creative Director
Jamie Borders

Advertising

Sales Consultants
Daryll Paiva

Kim Trott

Production Coordinator
Alex Dinney

Marketing

Marketing Manager
Cristy Bird

Marketing Assistant
Allison Scholz

CONTACT US
Editors: editors@bettersoftware.com

Subscriber Services:
info@bettersoftware.com
Phone: 904.278.0524, 888.268.8770
Fax: 904.278.4380
Address:
Better Software magazine
TechWell Corporation
350 Corporate Way, Suite 400
Orange Park, FL 32073

FOLLOW US

 www.TechWell.com FALL 2016 BETTER SOFTWARE 7

mailto:kwhitaker@techwell.com
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
https://www.linkedin.com/company/2718416?trk=tyah
https://twitter.com/TechWell
https://plus.google.com/u/0/+Techwell/posts
https://www.facebook.com/TechWellCorp
http://www.techwell.com
http://www.TechWell.com

Contributors

Consultant and software engineer BoB Aiello specializes in software process improvement, configuration management and DevOps.
Bob is an author, the editor of the Agile ALM DevOps Journal (http://agilealmdevops.com) based upon his latest book Agile Application
Lifecycle Management – Using DevOps to Drive Process Improvement and chair of the IEEE P2675 DevOps Standards Working Group.
Contact Bob at Bob.Aiello@ieee.org or link with him at http://linkedin.com/in/BobAiello.

Gil BrozA helps software organizations build and lead engaged, solid, high-performance agile development teams. Gil guides teams and
their leaders in creating effective, humane, and responsible work environments so they truly delight their customers and make a positive
impact. He works at all organizational levels and coaches clients in both technical and leadership behaviors. Gil authored the books The
Agile Mind-Set and The Human Side of Agile. Contact Gil at gil@3pvantage.com.

A longtime freelancer in the tech industry, JosiAh renAudin is now a web-content producer and writer for TechWell, StickyMinds.com,
and Better Software magazine. He also writes reviews, interviews, and long-form features for popular video game journalism websites
including GameSpot, IGN, and Paste Magazine. Josiah has been immersed in games since he was young, but more than anything, he
enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

leslie sAchs is the coauthor of Configuration Management Best Practices: Practical Methods that Work in the Real World
(http://cmbestpractices.com), a New York state certified school psychologist, and the COO of CM Best Practices Consulting. Leslie
has more than twenty years of experience in the psychology field, working in varied clinical and business settings. Reach her at
LeslieASachs@gmail.com or link with her https://linkedin.com/in/lesliesachs.

Tom Wessel has more than twenty years of software development experience in the banking, healthcare, cable, satellite, and graphics
industries. Tom's experience spans the entire end-to-end software development lifecycle with expertise in the areas of program and
project management, quality assurance and control, configuration management, knowledge management, release management, devel-
opment, and technical support. Tom has worked with technology organizations to plan, implement, and train them on agile principles and
evolve their agile discipline. Contact Tom at twessel@eliassen.com.

Programming professionally since the late 1990s, mATT Wynne got involved in the Cucumber project at its inception in 2007—first as
a user, later as a contributor. He published The Cucumber Book, co-authored with Cucumber’s creator Aslak Hellesøy. In 2013, they co-
founded Cucumber Limited with Julien Biezemans, the creator of Cucumber-JS. Matt’s colleagues elected him CEO of Cucumber Limited
in 2016. Reach Matt at matt@cucumber.io.

BoB zeidmAn is the president of Zeidman Consulting and Software Analysis and Forensic Engineering Corporation. An entrepreneur and
inventor with twenty-two patents to his name, Bob is a member of the Independent Inventors of America. In 2015 he was recognized
by the Santa Clara Valley Section of the IEEE with its Outstanding Engineer Award for his pioneering work in the field of software
forensics. His expertise has informed rulings in more than 150 high-profile court cases in disputed intellectual property. Reach Bob at
Bob@ZeidmanConsulting.com.

michAel zunke is vice president and chief technology officer for Gemalto’s Sentinel Software Monetization Solutions. Michael joined
Gemalto through its acquisition of SafeNet in 2015 and previously held senior research, development, and technology roles at
Aladdin Knowledge Systems. He holds several patents in software security and is a specialist in application security for licens-
ing, protection against reverse engineering, and automated technologies to integrate security into applications. Contact Michael at
michael.zunke@gemalto.com.

8 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://agilealmdevops.com
mailto:Bob.Aiello@ieee.org
http://linkedin.com/in/BobAiello
mailto:gil@3pvantage.com
mailto:jrenaudin@techwell.com
http://cmbestpractices.com
mailto:LeslieASachs@gmail.com
https://linkedin.com/in/lesliesachs
mailto:twessel@eliassen.com
mailto:matt@cucumber.io
mailto:Bob@ZeidmanConsulting.com
mailto:michael.zunke@gemalto.com
http://www.TechWell.com

practice, this approach requires that your team understand
the deliverables and how they can potentially impact the work
being performed by the rest of the team. Most technology pro-
fessionals are learning that it is essential to embrace DevOps
best practices such as continuous integration and delivery.

Identify stakeholders: It can be challenging to identify all
project stakeholders, let alone keep up with what each team
member is accomplishing on a daily basis. For any project,
there is always an initial effort to define requirements, often
through agile stories and other descriptive documents. Require-
ments can—and frequently do—change; therefore, it is an in-
dustry best practice to use test cases to supplement the require-
ments document because the testing documentation needs to be
kept up to date and may even vary by release.

The best way to understand
what each group is doing is to take
a collaborative and cross-functional
approach. Enhancing communica-
tion and teamwork is exactly where
DevOps principles and practices are
most valuable. With large systems,
there are usually many complex de-
pendencies, and DevOps teaches us
to take a broad systems view to un-
derstand the entire system from end
to end. We also need to recognize
the value of workflow automation
in providing both the transparency

to understand precisely what each team member is doing and
the traceability to track tasks and key dependencies as they are
completed.

In some cases, this approach can help identify resource con-
straints that could potentially result in delays or other chal-
lenges.

Model your workflow: To be successful, you must be able
to model and discuss your workflow with the stakeholders and
then use automation to track which tasks are completed and
which are still being worked on. It is common to use a scrum
meeting to discuss the work being completed and any potential
barriers that need to be removed. Most organizations also use a
ticketing system to track requests, especially those involving the

Developing enterprise applications can be a very complex task
involving many essential milestones, stakeholders, and depen-
dencies—many of which can be almost impossible to track on
a daily basis. Technology professionals who have been in the
game for a while will likely reminisce that years ago it was
common to use a software development lifecycle (SDLC) that
defined all the tasks required to create a system. These steps
were often executed in a sequential fashion that came to be
known as a waterfall methodology. Although agile and lean de-
velopment have attained an almost mythical status, the folks
performing the day-to-day work may not fully understand the
advantage of one methodology over another.

Application lifecycle management (ALM) expands the scope
of the traditional waterfall lifecycle to include all stakeholders
involved in creating and maintaining
complex enterprise systems. This en-
compasses a much wider scope than
the traditional waterfall method-
ology. Success requires the wisdom
found in an agile methodology and
the tactics learned from DevOps
best practices. This article will show
you how to enable collaboration be-
tween development and operations
to ensure a robust agile ALM that
includes information from all essen-
tial subject matter experts.

The goal of any comprehensive
SDLC is to define and communicate all steps required to get
the work done in a timely manner with minimal risk of error.
The SDLC should provide transparency and traceability so that
each team member understands how his work impacts others,
including any dependencies and potential impact to deliver-
ables.

Agile ALM takes a much broader view than the traditional
SDLC. It usually involves many more stakeholders and, more
importantly, embraces agile principles and practices to enhance
developer velocity with improved quality and productivity.
The ultimate goal of having a nimble and efficient software
development process is to thrill your customers by delivering
business value as quickly as makes sense for the end-user. In

Technically Speaking

You want just enough process

to avoid mistakes, while

spurning the red tape that

motivates people to bypass

the process, which can lead to

many other problems.

Use DevOps to Drive
Your Agile ALM
To achieve continuous integration and deployment, agile ALM provides
the framework as long as you follow these simple rules.

by Bob Aiello and Leslie Sachs | bob.aiello@ieee.org | leslieasachs@gmail.com

 www.TechWell.com FALL 2016 BETTER SOFTWARE 9

mailto:bob.aiello@ieee.org
mailto:leslieasachs@gmail.com
http://www.TechWell.com

operations team. A workflow automation tool can be used to
provide just enough information to get the job done and com-
municate dependencies to the folks charged with completing
required tasks. A common challenge is that workflow automa-
tion tools are often difficult to use—and even more difficult to
tailor to the group’s needs. So make sure that you spend time
evaluating and selecting the right tools for your specific effort.

Integrate processes: Integrating operation and development
processes is another critical success factor. Your change con-
trol processes should be as light as possible but still capable
of successfully identifying and helping mitigate any technical
risk. It is essential to first identify change requests that can be
classified as routine or even preapproved, remove them from
the change control meeting’s agenda, and then focus the change
control effort on discussing what could potentially go wrong
(e.g., technical risk) if a particular change is implemented (or
even the risk if the change request is not implemented). [1] We
find that it is especially effective to integrate agile retrospectives
with the operational post mortems often held when an outage
has occurred. You want to integrate your incident and problem
management processes to act as a feedback loop, while itera-
tively improving your development process.

As always, you want just enough process to avoid mistakes,
while spurning the red tape that motivates people to bypass the
process, which can lead to many other problems.

Comply with requirements: Your agile ALM should enable
IT controls that ensure you comply with your regulatory and
audit requirements while also providing enough feedback to se-
nior management to facilitate IT governance. [2]

Establishing an effective agile ALM requires that you take
an agile iterative approach and fully understand agile principles
and practices. You always want to build in quality from the
very beginning. [3] Iteratively defining your process is usually
the most effective way to have just enough guidance to avoid
costly mistakes without getting bogged down in verbose, time-
consuming ceremony. In the beginning of your development ef-
fort, it is usually best to start with the bare minimum of process
and then iteratively add controls as you get closer to a delivery
date and have a clearer idea of what rules are necessary to
avoid costly mistakes.

The two main points to keep in mind are that (1) agile ALM
accelerates velocity, and (2) DevOps ensures that you broaden
the effort to include all key stakeholders in the most productive
and efficient manner possible. {end}

Can’t attend a teChWell
ConferenCe? no time for

formal training?
We’ve got You Covered.

Check out the TechWell Happenings
Channel on YouTube.

Hundreds of interviews, lightning talks,
and STAREAST, STARWEST, and Better
Software conference presentations are
grouped by topic, so it’s simple to take
control of your learning experience.

Covering software testing and
development topics ranging from
mobile testing to enterprise-level agile
development and pretty much everything
in between, TechWell Happenings
Channel deliver expert-level knowledge
directly to you—for free—whenever you
want it.

Visit well.tc/TWHapps to subscribe to
the TechWell Happenings Channel
so you won’t miss out on the latest
interviews and TechWell conference
presentations.

Technically Speaking

CLICK FOR
THIS STORY'S R E F E R E N C E S

10 BETTER SOFTWARE FALL 2016 www.TechWell.com

https://well.tc/twplaylists
https://well.tc/TWHapps
https://well.tc/twplaylists
http://www.stickyminds.com/sticky-note/references-212
http://www.TechWell.com

S T A R T P L A N N I N G

YOUR WEEK OF LEARNING
AT S TA R EAST

May 7–12, 2017
Orlando, FL
https://well.tc/SE17MYC

Pre-Conference Training Classes Begin

Full- and Half-Day Tutorials

Full- and Half-Day Tutorials,
Welcome Reception

Keynotes, Concurrent Sessions, the
Expo, Networking Events, and More

Keynotes, Concurrent Sessions, the
Expo, Networking Events, and More

Relax!

Testing & Quality Leadership Summit,

Women Who Test, & the Workshop on

Regulated Software Testing (WREST)

https://well.tc/SE17MYC

“We see chaos engineering as a new

discipline within software engineering,

designed to surface systemic effects in

distributive systems, particularly like ours—

where we do have so many subscribers,

where we are running at scale.”

“Even when we have a very

popular show release, our

control plane is generally scaled

well enough to handle a burst in

traffic. Because we have so many

users across so many regions

around the globe, a large burst

for us tends to not be as ‘bursty’

as for other businesses.”

For the full interview, visit
https://well.tc/IWAE18-4

Interviewed by: Josiah Renaudin

Email: jrenaudin@techwell.com

How Netflix Embraces Complexity without Sacrificing
Speed: An Interview with Casey Rosenthal
Years in Industry: 15

Email: crosenthal@netflix.com

“Chaos engineering and intuition

engineering, and traffic engineering

for that matter, are all services

that are designed to help

embrace complexity and allow the

organizations to still move quickly.”

“Because we don't have process, because we

actually go out of our way to avoid process, there's

no mechanism for us to even evaluate whether

everyone is following agile—let alone recommend

or enforce that on engineering teams.”

“At Netflix, we're very averse to process. We

emphasize freedom and responsibility. We don't

have budgets. We only hire senior engineers.

That makes it a really dynamic environment that

moves very quickly and does things very well.”

“As the systems we work

with become more and

more like black boxes

to us, it becomes more

important for quality

assurance people and

testing engineers to have

tools that they can use to

describe the properties

of the black boxes.”

Netflix benefits from only hiring

senior engineers and really

focusing on always raising the

bar in our talent. I understand

that financially, not every

company can do that.

“While I'm sure

that there are

some teams here

that subscribe

to agile

methodologies,

in a lot of cases,

it doesn't even

make sense for

some teams to

adhere to that.”

Interview With an Expert

12 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.stickyminds.com
https://well.tc/IWAE18-4
mailto:jrenaudin@techwell.com
mailto:crosenthal@netflix.com
http://www.TechWell.com

 www.TechWell.com SUMMER 2015 BETTER SOFTWARE 13

Free consultation at infostretch.com/getstarted

Align QA and testing to customer
experience and business assurance

Focus on quality right from ideation
to commercialization

Prioritize testing with predictive
analytics and continuous feedback

Get to market faster by
shifting from QA to QE

http://www.TechWell.com
http://www.infostretch.com/getstarted/

by
Michael
Zunke

by Michael Zunke

The Evolution
of Software
Monetization

14 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

T
oday’s software end-users are increasingly con-
nected and mobile. In addition, they want soft-
ware delivered as a service to the device of their
choice, and they only want to pay for what they

use. These changes are fundamentally shifting the way soft-
ware vendors conduct business.

The adoption of cloud computing, virtualization, advance-
ments in mobile technology, and even day-to-day experiences
using the Internet have impacted software end-users’ expecta-
tions. Whether they’re looking to free themselves from rigid
licensing restrictions, embrace pay-per-use models, or use self-
service entitlement management, the way people want to con-
sume software is rapidly evolving.

Users of all forms of software—from consumer applications
and enterprise services to the software in intelligent devices—
seek “anytime, anywhere” access, user-centric licensing, and
subscription consumption. However, vendors have been slow
to adopt new business models that enable them to deliver the
experience their customers want. Many of those who have been
in the game for a while are still clinging to their on-premise or
traditional hardware roots, but as the demands of a new gen-
eration of users start to shift, these vendors need to embrace
the evolution—or become extinct when users look elsewhere to
meet unfulfilled needs.

What Is Software Monetization?
For many software vendors, monetization simply means col-

lecting revenue by selling rights to use the intellectual property
they’ve developed into valuable code. For them, monetization
challenges revolve around protecting the revenue stream and
defending themselves from piracy, theft, reverse-engineering,
and misuse of software. But, beyond just protecting revenue,
monetization involves enabling and sustaining revenue growth.

Delivering software in ways that customers want to con-
sume it is now a prerequisite in the ultra-competitive software
market. Building relationships based on trust is the key to
selling anything, and traditional software licensing has become
a barrier.

Software vendors need to look at licensing not exclusively
as a rights-enforcement hammer, but rather as a way to dif-
ferentiate themselves from their competitors while providing a
rich user experience—or at least one that doesn’t leave the cus-
tomer feeling cheated or confused.

How Do Users Feel about Licensed
Software?

To take a closer look at software monetization challenges
faced by vendors, as well as software users’ disappointments
with enterprise software vendors, Gemalto commissioned a
survey of six hundred enterprise software users at enterprise
organizations with 500 or more employees from the United
States, United Kingdom, Austria, France, Germany, Japan, and
Switzerland. Close to 200 independent software vendors (ISVs)
with at least ten employees also were surveyed. [1]

The survey research revealed that the vast majority of all
respondents (85 percent) think software vendors need to con-

stantly adapt to evolving market needs. In addition, 83 percent
said that software packaging must be flexible to meet a variety
of customer needs, and 81 percent said that software should
be accessible across multiple devices. An additional 81 percent
agreed that software needs to be future-proof to be successful.

Users Are Frustrated
Of the end-users surveyed, 90 percent said their organiza-

tion is experiencing challenges with their software licenses.
Among the top difficulties cited were inflexible license agree-
ments that don’t meet business needs, usage audits, slow time
to activation (long customer on-boarding), and lost licensing
keys (figure 1).

When the same six hundred end-users were asked how ISVs
could improve their service, most agreed or strongly agreed
that clarity around audits, usage tracking, pricing models, and
license enablement were all areas for improvement, as shown
in figure 2.

In addition, the survey asked enterprise users their opinions
about packaging and delivery options, and separately asked
ISVs about the types of packaging and delivery options they’re
currently providing to their customers. Figure 3 highlights the
two main areas of difference: per feature and metered usage,
where vendors don’t seem to be keeping up with user demand.

Traditional Software Monetization Is Still a
Challenge

While end-users are frustrated, software vendors are facing
challenges monetizing their software, especially with back-of-
fice tasks and licensing enforcement.

Figure 1: Top licensing challenges (source: Gemalto NV)

Figure 2: Biggest areas for improvement (source: Gemalto NV)

 www.TechWell.com FALL 2016 BETTER SOFTWARE 15

http://www.TechWell.com

Among back-office challenges, 83 percent of ISV respon-
dents claimed frustration with the cost of renewing and man-
aging licenses, 82 percent expressed frustration with the time
spent renewing and managing licenses, and 82 percent were
frustrated with the research and development time spent on
non-product-related development.

In addition, 68 percent of ISV respondents said it was some-
what difficult to get visibility into how their products are being
used. A quarter of respondents (24 percent) said it was either
very difficult or extremely difficult to get that visibility.

Among ISV organizations surveyed, no more than half are
using any single type of software monetization tool to ensure
the security, flexibility, and profitability of their offerings.

Licensing Compliance Is Still a Major
Concern

While most software vendors worry about the misuse of
their software—from theft and piracy to unintentional licensing
violations—almost half of enterprise respondents (48 percent)
report that their organization has been out of compliance with
at least one of their software licenses shown in figure 4.

This same group of respondents estimated that slightly more
than a quarter of their software (27 percent) was unlicensed,
half of them (47 percent) saying it’s because license agreements
are inflexible.

When asked how ISVs could improve their services, 80 per-
cent of user respondents think software vendors could provide
more clarity about processes and audits, and 72 percent think
software vendors could improve usage tracking and audits.

Monetizing the Internet of Things
Gartner estimates that 6.4 billion intelligent devices will be

connected in 2016, up 30 percent from 2015. [2] While this
growth is not news, software vendors are still struggling to
identify how to monetize the Internet of Things (IoT). When
Gemalto asked software vendors and enterprise end-users
about monetizing the IoT, 69 percent of respondents said they
think it could provide their organization with new monetiza-
tion opportunities. However, 69 percent think there is a lack of
clarity about how organizations can monetize the IoT.

Twenty-one percent of respondents to Gemalto’s State of
Software Monetization survey are already exploring IoT mon-
etization opportunities. Fifty percent of them will explore op-
portunities within the next year, and 80 percent will explore
them within three years. According to the survey, companies
are being held back from exploring IoT monetization opportu-
nities due to security concerns (48 percent) and lack of exper-
tise (25 percent).

The Only Constant Is Change
The software market is undergoing a fundamental change.

On-premise software, software as a service, and intelligent de-
vices are increasingly being deployed and consumed in cloud-
connected environments, changing the customer experience
and disrupting industries. As software vendors adapt their of-
ferings to meet the evolving needs of the market, several key
themes have emerged.

Anywhere, anytime access: Customers expect access to
software applications from any device at any time, whether de-

Figure 3: Licensing models (source: Gemalto NV)

16 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

ployed on premise, in the cloud, or across hybrid environments.
User-centric licensing: With end-users looking to access

software from any device, licensing mechanisms need to evolve
to become user-centric. License delivery and enforcement need
to be connected to the individual rather than to the device
they’re using or the company they work for.

Usage tracking: The growing demand for pay-per-use is
driving ISVs to implement tools to track usage to enable usage-
based licensing and business analytics.

Common user experience: End-users expect a single li-
censing experience, regardless of how or where they access
software. From the user’s perspective, licensing should be con-
sistent across on-premise, cloud, and hybrid environments.

The Future of Software Monetization
It’s clear that today’s software vendors are not living up

to users’ expectations. Survey respondents clearly stated that
they’re out of compliance in part because of inadequate li-
censing models, and that this is negatively impacting software
vendors’ monetization initiatives.

Future software monetization solutions need to be able to
handle multiple delivery methods and license models with a
single back end and enforcement technology. They need to en-
able granular packaging, incremental revenue mechanisms, and
capture usage data—all via the cloud, whether or not the soft-
ware is cloud-based. These solutions will help software vendors
deliver user-centric, à la carte pricing that will provide better
experiences and increased monetization.

From an execution perspective, the best licensing solution
should have the ability to manage, modify, and update entitle-
ments in real time or near real time via automated services—
whether updates are made by the user or the vendor—thus

minimizing engineering involvement. Integration with enter-
prise resource planning, customer relationship management,
and billing systems will be the next level of licensing automa-
tion.

Offering flexible license models, tracking and controlling
usage, and managing entitlements are common challenges for
software vendors providing on-premise software, software as a
service, intelligent devices, and even IoT solutions. As software
vendors look to adapt their offerings, ISVs need to look toward
the future, too. And it is imperative that they make sure the
tools and processes they implement today will provide the flex-
ibility to adapt to evolving needs. It’s clear that changes cur-
rently taking place in the industry are just the beginning. {end}

michael.zunke@gemalto.com

Figure 4: Software monetization tools used by independent software vendors (source: Gemalto NV)

CLICK FOR
THIS STORY'S R E F E R E N C E S

 www.TechWell.com FALL 2016 BETTER SOFTWARE 17

mailto:michael.zunke@gemalto.com
http://www.stickyminds.com/sticky-note/references-208
http://www.TechWell.com

SOFTWARE TESTER
CERTIFICATION

• Basics of testing—goals and limits,
risk analysis, prioritizing, and
completion criteria

• Testing in software development—
unit, integration, system, acceptance,
and regression testing

• Test management—strategies and
planning, roles and responsibilities,
defect tracking, and test deliverables

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/CERTIFICATION

eLearning

Public

2016 SCHEDULE

Professional certifications are a tangible way to set
yourself apart. SQE Training offers accredited training
for the most recognized software testing certification
in the industry—ISTQB® International Software Testing
Qualifications Board.

Foundation Level Certification
An international survey of test engineers and managers* reports

that the majority of Test Managers believe that participating

in the ISTQB® certification scheme will positively impact

testing quality in their projects and will enable them to provide

a positive career path to their employees. SQE Training’s

accredited Software Tester Certification—Foundation Level
course goes above and beyond the ISTQB® syllabus, giving you

practical knowledge you can apply now.

Advanced Level Certification
ISTQB® Advanced Level qualification is aimed at professionals—

testers, test analysts, engineers, consultants, test managers,

user acceptance testers, and software developers—who have

achieved an advanced point in their careers. No matter which

advanced path you are following—Test Manager, Test Analyst,

or Technical Test Analyst—you can trust SQE Training’s years of

experience to extend your knowledge and help you prepare for

the board exams.

*http://www.istqb.org/references/surveys/istqb-effectiveness-survey.html

Tampa, FL
October 17–19, 2016

Toronto, ON
October 23–25, 2016

Chicago, IL
October 24–28, 2016
(Foundation + Advanced)

Salt Lake City, UT
November 1–3, 2016

San Francisco, CA
November 7–9, 2016

Washington, DC
November 8–10, 2016

Orlando, FL
November 13–15, 2016

Tampa, FL
November 14–18, 2016
(Advanced)

Phoenix, AZ
Nov. 29–Dec. 1, 2016

Atlanta, GA
Nov. 29–Dec. 1, 2016

Live Virtual
December 12–16, 2016

https://well.tc/39sn

SOFTWARE TESTER
CERTIFICATION

• Basics of testing—goals and limits,
risk analysis, prioritizing, and
completion criteria

• Testing in software development—
unit, integration, system, acceptance,
and regression testing

• Test management—strategies and
planning, roles and responsibilities,
defect tracking, and test deliverables

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/CERTIFICATION

eLearning

Public

2016 SCHEDULE

Professional certifications are a tangible way to set
yourself apart. SQE Training offers accredited training
for the most recognized software testing certification
in the industry—ISTQB® International Software Testing
Qualifications Board.

Foundation Level Certification
An international survey of test engineers and managers* reports

that the majority of Test Managers believe that participating

in the ISTQB® certification scheme will positively impact

testing quality in their projects and will enable them to provide

a positive career path to their employees. SQE Training’s

accredited Software Tester Certification—Foundation Level
course goes above and beyond the ISTQB® syllabus, giving you

practical knowledge you can apply now.

Advanced Level Certification
ISTQB® Advanced Level qualification is aimed at professionals—

testers, test analysts, engineers, consultants, test managers,

user acceptance testers, and software developers—who have

achieved an advanced point in their careers. No matter which

advanced path you are following—Test Manager, Test Analyst,

or Technical Test Analyst—you can trust SQE Training’s years of

experience to extend your knowledge and help you prepare for

the board exams.

*http://www.istqb.org/references/surveys/istqb-effectiveness-survey.html

Tampa, FL
October 17–19, 2016

Toronto, ON
October 23–25, 2016

Chicago, IL
October 24–28, 2016
(Foundation + Advanced)

Salt Lake City, UT
November 1–3, 2016

San Francisco, CA
November 7–9, 2016

Washington, DC
November 8–10, 2016

Orlando, FL
November 13–15, 2016

Tampa, FL
November 14–18, 2016
(Advanced)

Phoenix, AZ
Nov. 29–Dec. 1, 2016

Atlanta, GA
Nov. 29–Dec. 1, 2016

Live Virtual
December 12–16, 2016

https://well.tc/39sn
https://www.parasoft.com/bettersoftware2016

the
MINDSET
of the AGILE

DEVELOPER
by GIL BROZA

20 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

M
any software developers find themselves
thrown into an agile (primarily Scrum)
transformation. Everything—practices, ar-
tifacts, roles, team structures, and more—

changes around them. Not enough developers receive
training in applying these moves and mechanics, and far
fewer learn how to perform their craft with agility.

To redress the balance, this article explains how agile
developers think and act—without attachment to any spe-
cific practice, process, or framework.

Doing Agile versus Being Agile
Agile has made serious inroads in software development

worldwide. It comes with attractive promises including de-
lighted customers, quality products, and happy teams.

During its twenty years of evolution, agile has somehow
developed an incorrect reputation as a methodology, a pro-
cess, or a set of best practices—so much so that the default
mode of adopting agile can be viewed as a recipe.

1. Assemble a small cross-functional team and have
them sit together.

2. Designate a business person to be the product owner
and a former manager or project manager as the
ScrumMaster.

3. Write work items on sticky notes or with an electronic
tool.

4. Use planning poker to estimate work.
5. Strive for a continuous integration environment, auto-

mated tests, and regular refactoring of code.
6. Demo the completed work to the stakeholders and

customer every couple of weeks.

This represents the essence of doing agile. There is a false
perception that agile practices suffice for accomplishing
its promised benefits. However, agile is more than a plug-
and-play replacement of methods and steps, akin to the re-

placement of manual labor with electric appliances. Agile is
primarily an approach, a way of working, a mindset that
guides the creation of results.

Table 1 illustrates the mindset’s significance. Consider
the examples of practices, roles, and artifacts associated
with agile, their purpose from an agile standpoint, and
what they amount to when applied with the previously
dominant waterfall mindset.

When you’re being agile, you tend to work in an agile-
minded manner and can reasonably expect the benefits to
accrue. However, going through the motions while holding
onto an incompatible approach will not make you more
agile.

If you’re seriously interested in the benefits of agile, you
must wholeheartedly adopt its mindset.

Introducing the Agile Mindset
One element of a mindset is its principles—standards

that guide choices, decisions, and actions. The fundamental
principles of agile are to have many short, actionable feed-
back loops and to continuously learn—both of which feed
into continuous improvement of product, process, and
teamwork. Agile principles are rooted in the fundamental
belief that you do not—and cannot—have all the answers
up front.

Agile transforms big work into a stream of smaller work
typically by timeboxing or by limiting work in progress.
Team results matter more than individual output, and each
of the team’s small results has to be shippable, or at least
worthy of feedback. It is in service of an outcome—some-
thing that advances the project forward, prioritizing being
effective over being efficient.

During each small work cycle, the team addresses for-
merly deferred items whose time has come, experiments
with researching and implementing ideas, and simplifies
new and previous deliverables.

Table 1: Comparing the agile mindset versus a waterfall mindset

Practice, role, artifact Was designed as … A waterfall mindset sees it as …

Daily standup
Frequent check-in to maximize the
team’s chance of producing value

Daily status meeting to ensure the team
follows the sprint plan

Product backlog
Prioritized list of valuable
deliverables the team might get to

Project plan (whether divided into sprints or not)

Pair programming
Collaboration that minimizes the
risks of employing humans

Underutilization of expensive resources

ScrumMaster
Servant leader who helps the team
succeed together

Project manager in charge of process
compliance

Sprint demo
Opportunity to receive stakeholder
feedback for increased effectiveness

Frequent deadline for sign-off (and ensuring
that people remain busy)

Refactoring
Repayment of interest on technical
decisions that allows the business to
seize opportunities

Penalty for bad design and not thinking ahead

 www.TechWell.com FALL 2016 BETTER SOFTWARE 21

http://www.TechWell.com

Developing Software with the Agile
Mindset

If you’ve worked a certain way for years, applying a
different set of principles takes mindfulness, deliberate
practice, and constant adjustment. In my experience, most
teams new to agile shortcut this learning process by ap-
plying practices that others have found to be useful. In
doing so, they don’t learn to adopt true technical agility:
executing value-adding work in an agile-minded way. Many
developers are familiar with Scrum practices for managing
work and Extreme Programming practices for writing code.
Let’s take a higher level view of technical agility.

Design
Agile reframes and differentiates requirements as prob-

lems or needs you have now, ones you will have later, and
ones that you might have later. Believing that the customer
prefers to keep options open, the mindset guides you to
solve only the problems you have now, without creating a
solution so with likely futures that it soon would be thrown
out. Repeat this planning exercise frequently, looking for
later problems that have materialized as now problems. In
effect, an agile-developed solution evolves. Employ feed-
back loops and learning opportunities to inform this evolu-
tion, which can be incremental (pieces get added) and itera-
tive (pieces get changed). Design the stable and invariant
aspects early and defer design decisions for high-change
items to the last responsible moment. Rely on the team’s
shared wisdom to determine the best timing.

Always Be Finishing, But Redefine What Finish
Really Means

Delivering meaningful results early and frequently is
one of the agile values. If a desired result takes a lot of
work, find smaller meaningful pieces within it. Start with
one, get it to done, and ship it (or get feedback). o work in
practice, the theory of story splitting requires coding each

As figure 1 shows, the team must continuously strive
to increase the quality of deliverables and the cadence of
product deliveries. Thinking ahead, the team should main-
tain high reliability in producing results and a low cost of
likely changes to accommodate changes of work required
to be performed.

Four basic principles allow people to work willingly in
a team: respect, trust, personal safety (expecting no harm
for acting in the perceived interest of the greater good), and
transparency (having easy access to understandable informa-
tion that underlies decisions). To remain productive long-term,
every team member must maximize focus and deliver at a sus-
tainable pace. The team should communicate, self-organize,
and collaborate around the work. This assumes the team mem-
bers share similar approaches in how work is accomplished
and that they reach shared decisions using consensus. Facilitate
and sustain this human system with a heaping dose of servant
leadership, as shown in figure 2.

When the early agile thought leaders joined forces to ar-
ticulate and name a common approach in 2001, they put
down only twelve principles. Still, principles are something
you choose, and you might wonder: Why choose these and
not others? The answer is that they help you accomplish
what you care about—your values. When you employ agile
principles, it’s because you care deeply about people, being
adaptive, delivering value early and frequently, and contin-
uously collaborating with the customer. My expanded prin-
ciples work in harmony—and amplify each other—to up-
hold these values and thereby reach the work’s objectives.

Figure 1: Agile principles regarding work

Figure 2: Agile principles regarding people and interactions

22 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

subitem (increment) to a high standard of care. Make these
increments solid by keeping the design, construction, inter-
faces, behavior, and flow in lockstep, and don’t leave loose
ends or empty placeholders. However, developing big work
this way might not be as efficient. Its real intent is to make
changes easy and cheap. You should constantly think about
design, even as you focus your attention on finishing mean-
ingful pieces.

Team Performance
Most companies hire developers who can finish assigned

work on their own. From an agile standpoint, a more im-
pactful proposition is what more developers can accom-
plish through team collaboration. Agile teams outperform
their individual members by magnifying individual posi-
tives such as creativity, options, knowledge, and experience,
and by reducing individual negatives such as fatigue, tunnel
vision, misunderstandings, and being stuck. To make this
possible, teams cultivate specializing generalists (T-shaped
people), avoid silos, sit together, code together, and gener-
ally talk a lot. This is another example of teams building
resilience to reduce the cost of likely change, rather than
minimizing the cost of current work.

Quality from Day One
Even when agile teams have members who specialize in

testing, quality is everyone’s concern from day one. In addi-
tion to keeping the customer delighted, high quality avoids
expensive surprises (e.g., integration problems and high-
severity defects) and should result in a low cost of change.
Teams keep extrinsic quality high through continuous
learning and feedback, often manifested by critical thinking
and exploratory testing. They also keep the intrinsic quality
of complex pieces high through collaboration and simplifi-
cation. For everything else that tends to be menial, repeti-
tive, and error-prone, use automation.

Safety
Agile practitioners expect to work in a safe organiza-

tional environment—to have autonomy within clear bound-
aries, to act without fear of reprisal, and to retain physical
and psychological health. They want to work safely, which
to software developers basically means not hearing sur-
prising feedback such as “You just broke this other thing”
or “This isn’t what I asked for.” When it comes to increasing
safety, it’s key to decompose large work into small, mean-
ingful elements. By proceeding one element at a time, devel-
opers finish each element quickly and get real-time, useful
feedback from teammates, tools, and practices such as test-
driven development. If that feedback is negative, they can
immediately backtrack or undo that task’s work.

Code Is for People
If you espouse the agile values of value delivery, collabo-

ration, and adaptability of a team, then you must look be-
yond optimizing any individual’s coding. Instead, ensure the

team’s ability to quickly upgrade, change, or fix code. To
make that happen, all developers must be able to read and
understand any individual’s code quickly. In other words,
code is for people, not only for computers, which is why
agile developers pair up and collaborate to produce intent-
revealing, simple, “gotcha”-free code. Their tests maintain
the single source of truth, and no design is sacred.

Shifting Your Role and Mindset
Following the agile principles makes sense when the

four agile values matter to you. These values are a choice
you make to accomplish work objectives, and taking this
approach requires stakeholders (colleagues, management,
and customers) to make similar choices in order to succeed
together.

This is where attempts at agile often hit a wall. Many
agile practitioners work with stakeholders and senior man-
agers who have a different value system, one aligned with
waterfall values and supported by established methodolo-
gies. In that mindset, getting things right the first time mat-
ters more than incremental value delivery, making early
commitments matters more than adaptation, being on time
and on budget matters more than collaborating and co-cre-
ating with the customer, and a standardized process mat-
ters more than the people who use it.

One reason adopting agile is so difficult is that people’s
values are invisible, subjective, and rarely expressed. These
values are fundamental to being human, and they drive
choice—notably, capabilities and behaviors—and, as a re-
sult, people don’t change values easily. Most companies
only change capabilities through training and behaviors
through adoption of practices.

Over time, and especially when there’s business pressure,
they realize that their approach to work hasn’t changed at
all, and their use of agile hasn’t resulted in expected busi-
ness benefits. To adopt the agile mindset, you need to learn
new capabilities and behaviors, be mindful of your values
and align them with those of your colleagues, and support
one another.

Agile is never the destination; it is a means to an end.
You can never arrive, but you can get closer. Because agile
principles and practices are all chosen in support of the
agile values, you can check yourself and your team against
those values. Ask yourself: Do you adapt your product,
process, and teamwork to change as needed—economically
and without drama? Do you deliver meaningful results fre-
quently enough? Do you collaborate effectively with your
customers to make mutually beneficial decisions?

If you can genuinely answer each of these questions with
a yes, you truly have the mindset of an agile developer.
{end}

gil@3pvantage.com

 www.TechWell.com FALL 2016 BETTER SOFTWARE 23

mailto:gil@3pvantage.com
http://www.TechWell.com

As the leader in software quality tools for teams, SmartBear supports more than four million software professionals
and over 25,000 organizations in 194 countries that use its products to build and deliver the world’s greatest
applications. With today’s applications deploying on mobile, Web, desktop, Internet of Things (IoT) or even
embedded computing platforms, the connected nature of these applications through public and private
APIs presents a unique set of challenges for developers, testers and operations teams. SmartBear's software
quality tools assist with code review, functional and load testing, API readiness as well as performance
monitoring of these modern applications. For more information, visit: http://www.smartbear.com, or for the
SmartBear community, go to: Facebook, Twitter, LinkedIn or Google+.

https://smartbear.com/

For more than twenty-five years, TechWell

has helped thousands of organizations

reach their goal of producing high-value

and high-quality software. As part of

TechWell’s top-ranked lineup of expert

resources for software professionals, SQE

Training’s On-Site training offers your team

the kind of change that can only come

from working one-on-one with a seasoned

expert. We are the industry’s best resource

to help organizations meet their software

testing, development, management, and

requirements training needs.

With On-Site training, we handle it all—

bringing the instructor and the course to

you. Delivering one of our 60+ courses

at your location allows you to tailor the

experience to the specific needs of your

organization and expand the number of

people that can be trained. You and your

team can focus on the most relevant

material, discuss proprietary issues with

complete confidentiality, and ensure

everyone is on the same page when

implementing new practices and processes.

9
REQUIREMENTS
COURSES

40
TESTING
COURSES

7
MANAGEMENT
COURSES

4
DEVELOPMENT
AND TESTING
TOOLS COURSES

17
AGILE
COURSES

2
SECURITY
COURSES

BRING THE TRAINING TO YOU
Software Tester Certification—Foundation Level

Mastering Test Design

Agile Tester Certification

Agile Test Automation—ICAgile

Integrating Test with a DevOps Approach

Mobile Application Testing

And More!

SQETRAINING.COM/ON-SITE

TRAIN YOUR
TEAM ON

YOUR TURF

6 0 + O N - S I T E C O U R S E S

IF YOU HAVE 6 OR MORE TO TRAIN , CONSIDER ON-S ITE TRAINING

https://well.tc/39sh

Continuous Process
 Improvement Using

by Tom Wessel

Balance
 and Flow

26 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

Developed by Jason Little to introduce change into an or-
ganization, lean change management is a lightweight approach
that uses a macro feedback loop with the characteristics shown
in figure 1. [1]

Insights: The process starts by identifying the current state
of the organization via tools such as the ADKAR model, which
stands for the five milestones needed to implement change suc-
cessfully: awareness of the need for change, desire to support
the change, knowledge of how to change, ability to demon-
strate new skills and behaviors, and reinforcement to make the
change stick. [2] The insights are then prioritized based on cost,
value, and impact to determine what changes to introduce to
the organization and in what order.

Options: Each option will have at least one hypothesis and
expected benefits to explore using experiments when the orga-
nization is ready to introduce a change.

Experiments: The organization defines an experiment to in-
troduce to the affected people to see if it has the desired effect
as shown in the “Conduct change experiments” step in figure
1. Each experiment starts with a preparation step to plan the
change and validate it with the affected group. The change is
then introduced by working with the people affected by the
change. In order to minimize impact and maximize learning,
the number of changes introduced in an organization at one
time is limited. The cycle ends when the defined time frame to
introduce the change is complete, and a review occurs to deter-
mine what effect the change has made, what was learned, and
how the process can be improved going forward.

Lean change management is an effective, disciplined ap-
proach to change management and provides several tools—stra-
tegic change canvases, change option canvases, and experiment
tracking canvases—to aid your organization in the change pro-
cess.

Use Kaizen to Identify What Needs to
Change

Any discussion on the topic of continuous improvement
should start with kaizen. Kaizen is a Japanese word that trans-
lates to good change or change for the better and has its roots
in lean manufacturing.

Kaizen was originally introduced by Masaaki Imai in his
book Kaizen: The Key to Japan’s Competitive Success. [3]
Today kaizen is recognized worldwide as an important pillar of
an organization’s long-term competitive strategy by promoting
continuous improvement based on certain guiding principles:

• Good processes bring good results
• Go see for yourself to grasp the current situation
• Speak with data and manage by facts
• Take action to contain and correct root causes of

problems
• Work as a team
• Kaizen is everybody’s business

The spirit of kaizen is that an organization should strive to
continually improve in order to remain relevant. Changes, even
small ones, move an organization over time to the desired fu-

W
hether you are using an agile or traditional,
linear development methodology, success
comes down to balance and flow in the de-
livery of customer value. The challenge is

to determine the right balance of people and process to
optimize the flow. Finding that right balance in an organi-
zation is a challenge that requires the continuous process
of inspection and adaption to determine what works—and
what doesn’t—to generate value efficiently (speed) and
effectively (quality). Continuous process improvement
should be the mantra of any organization that desires to
remain relevant in today’s highly competitive and fast-
paced technology world.

Software development organizations are complex, adaptive
systems that must continue to evolve through inspection and
adaptation to not only survive but thrive in an ever-changing
business ecosystem. People are at the heart of any organization,
and process is the lifeblood that keeps all parts of the organi-
zation functioning in harmony. Too much process can clog up
the organizational arteries, slowing work to a crawl. Organiza-
tions must avoid becoming too slow to deliver value to their
customers or too sluggish to react to competition.

However, too little process is equally as dangerous when
the various departments of the organization don’t function to-
gether well—or at all. This can result in communication break-
down, inconsistent quality, and individual heroics rather than
an orchestrated effort at production release. The organization
may end up getting something to market sooner, but poor
quality results in rework, which reduces customer satisfaction.

The discipline of continuous process improvement provides
the tools for organizations to find the right balance of process
to maximize the flow of value creation.

Lean Change Management
Continuous process improvement involves change, and

change can be painful. One might equate this approach to an
orthodontist applying braces to a patient. The orthodontist can
either use pliers, resulting in extreme pain and suffering but
quickly implemented change, or he can use gradual adjustments
in tension over time to move the teeth in the desired direction.
Most patients would prefer the latter approach—whether it in-
volves pulling teeth or improving the organization.

Figure 1: The lean change management process, defined by Jason Littleby Tom Wessel
 www.TechWell.com FALL 2016 BETTER SOFTWARE 27

http://www.TechWell.com

ture state. Regardless of the size of the change, kaizen means
everyone is involved in making improvements, and those im-
provement efforts—led by senior management as transforma-
tional initiatives—can greatly impact the organization.

Kaizen uses a kaizen event as a tool to identify and imple-
ment meaningful change. These events are small in size, are
attended by the owners of a process, and have the ability to
improve the process.

Continuous improvement entails introspection and retro-
spection. While a demo or review in agile focuses on receiving
feedback on the product or service being created, agile uses the
convention of the retrospective to improve how the team func-
tions effectively to create value. Retrospectives occur on a reg-
ular cadence, either following an iteration in the Scrum meth-
odology or at defined times in the continuous flow approach
of kanban. The focus of these retrospectives is for the team to
identify what is working well and what areas need improve-
ment during the creation process.

The team captures these opportunities for improvement in a
backlog and prioritizes them based on the order in which they
should be addressed.

Find and Manage System Constraints
Every system has constraints that slow down the flow of

value from the customer request to the delivered product. In
his seminal book The Goal, Eliyahu M. Goldratt introduces
his theory of constraints and how using five focusing steps
provides a repeatable approach to resolving constraints in a
system. [4] The premise is that a system can only move as fast
as its slowest part. The steps provide a method to determine the
best way to resolve constraints to optimize flow:

• Identify the system’s constraint
• Exploit the constraint
• Subordinate everything else to the constraint
• Elevate the constraint
• Identify the next constraint in the system and repeat

steps 2, 3, and 4

Let’s take the example of a pizzeria. Our pizzeria doesn’t
produce enough pizza to meet demand during peak hours. Let’s
first identify the constraint in our system. It appears that the size
of the oven is our problem. The oven has a maximum baking
capacity of four pizzas. Next, let’s make sure we fully exploit
the constraint so there are always four pizzas in the oven
during peak hours. Once the constraint has been exploited, it
makes sense to then subordinate all the preceding steps to limit
the amount of unbaked pizza inventory that piles up in front of
the oven. Maybe we decide to have fewer associates prepping
pizzas because they are overproducing and instead assign some
of them to perform other tasks in the pizzeria. Our next step
is to determine if we have enough money to invest in a larger
oven. The constraint of the pizza oven has been elevated, so we
encounter the next constraint in the system.

Each step in the above process provides incremental im-
provements in throughput, allowing us to meet hungry cus-
tomer demands in an optimal manner.

Implement Change with the J Curve
Keep in mind that size does matter when it comes to change.

Any change effort demands the discipline and planning of ef-
fective change management in order to have any chance of
success. Process improvement initiatives that take too long to
realize benefits risk losing momentum, eventually petering out
and dying as team members give up hope. Smaller, successive
changes enable quicker wins that maintain momentum, mini-
mize impact to individuals, and increase the chance for lasting
change.

Virginia Satir’s change process model introduced the con-
cept of the J curve. [5] The idea is that when a change is intro-
duced to improve the current state of performance, there is a
period of time when performance actually dips before parity

is achieved and, eventually, the change improves performance.
As shown in figure 2, the longer an organization stays in the
bottom of the J—below the current state of performance—the
greater the risk that the organization will abandon the change
and not realize its benefit.

Smaller changes allow for less time spent at the bottom
of the J and for realizing the benefit of the change sooner, al-
lowing the momentum of change to continue. Creating a series
of successive J curves allows an organization to incrementally
improve performance in small steps to achieve greater change
over time.

Use Metrics to Measure Change Results
Metrics are essential to provide an objective measure of

whether the change we implemented is having the desired ef-
fect. There is a plethora of metrics to consider, but I recom-
mend keeping it simple and starting with just three: speed,
quality, and customer happiness.

Starting with speed, it’s essential to determine if we are in-
deed improving the throughput of our system. From the lean
world, two metrics that address throughput are lead time and
cycle time.

Figure 2: How the J curve tracks overall team performance

28 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

The clock starts for measuring lead time when a customer
request is received and stops when the solution is delivered.
The clock starts for cycle time—or more specifically total cycle
time—when we actually begin working on the request and
stops when the solution is delivered. We want to track the av-
erage of these two metrics so we can improve team effective-
ness over time. Ideally, if our change has the desired effect, lead
time and cycle time averages should go down (figure 3).

A key point is that there may be a delay between when a
request is received and when it is started. Improving average
lead time by shrinking the time between when a request is re-
ceived and when work is started can be a great area on which
to focus.

Just because we’re faster doesn’t necessarily mean we’re
better. That’s why it’s also crucial to measure quality, and a
good way to do that is by tracking escaped defects.

To improve the quality of a system and to prevent defects
from occurring in the first place, the goal should be to capture
the number and type of defects that escape into production.
Once an escaped defect has been detected in production, deter-
mine the root cause to prevent its reoccurring.

Defect prevention is a quality assurance initiative that saves
organizations money as the focus shifts from cost of defect de-
tection and correction to an investment in defect prevention.

So far we have talked about speed (efficiency) and quality
(effectiveness). But what about the customers who use what we
create? Are we meeting their needs, and are we making them
happy?

One metric to consider is your net promoter score (NPS),
which determines how likely a user of your product or service is
to recommend it to someone else.

Granted, it may be difficult to determine whether the change
you made in your process was the sole reason that the needle on
customer happiness moved. But NPS is essential and should be
monitored on a regular basis.

NPS uses a simple question, rated on a scale from one to ten,
to gauge customer satisfaction: “How likely is it that you would
recommend a product or service to a friend or colleague?”

Customers who respond nine or ten are considered pro-
moters of your product and will keep buying and using it.
Those who respond with seven or eight are considered pas-
sives and vulnerable to competition. And those who score six
or lower are detractors who are unhappy and can damage
your brand.

NPS is calculated by subtracting the percentage of detrac-
tors from the percentage of promoters (figure 4).

A healthy customer satisfaction score is in the range of
50-80 percent.

Figure 3: How lead time differs from cycle time

Figure 4: Calculating the net promoter score (NPS)

 www.TechWell.com FALL 2016 BETTER SOFTWARE 29

http://www.TechWell.com

Optimize the Whole
Creating a value stream map for each critical process is an

essential exercise to improve organizational efficiency. A value
stream map that defines key steps in a workflow—from cus-
tomer request to delivered value—is shown in figure 5.

Start by identifying a key process that is ideal for optimiza-
tion within your organization. Once the process is identified,
determine the seven to ten high-level steps that capture the cur-
rent state end-to-end process. For each step, determine whether
it adds value from a customer perspective. The average time for
each value-add and nonvalue-add step is quantified. This al-
lows the organization to determine the total time it takes from
customer request to production, how much of that total time
adds value, and how much time is spent not adding value.

Once the current state is defined, identify what nonvalue-
add time can be reduced as either part of a step or wait state.
Then, create a future state value stream map that incorpo-
rates the reduced lead time. The organization then can build a
roadmap to move from the current to the future state.

Conclusion
Agile and lean techniques have proven to be invaluable in

the realm of software development and essential in equipping
organizations to embrace change using inspection and adap-
tion. In any organization the key is to find the right amount of
process to optimize the creation of value. {end}

twessel@eliassen.com

Figure 5: A value stream map showing the key steps in a workflow

Wanted! a feW great Writers!
I am looking for authors interested

in getting their thoughts published

in Better Software, a leading online

magazine focused in the software

development/IT industry. If you are

interested in writing articles on one of

the following topics, please contact me

directly:

• Testing

• Agile methodology

• Project and people management

• DevOps

• Configuration management

I'm looking forward to hearing from you!

Ken Whitaker

Editor, Better Software magazine

kwhitaker@techwell.com

CLICK FOR
THIS STORY'S R E F E R E N C E S

30 BETTER SOFTWARE FALL 2016 www.TechWell.com

mailto:twessel@eliassen.com
mailto:kwhitaker@techwell.com
http://www.stickyminds.com/sticky-note/references-209
http://www.TechWell.com

https://goo.gl/ohPnda

WHAT IS

CUCUMBER

AND WHY

SHOULD

I CARE?
By

Matt
Wynne

32 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

Living Documentation
The previous example illustrates the behavior of a real-

world ATM. The real benefit is when a set of scenarios
forms an executable specification for the software—a
living, breathing document that accurately describes what
the system does. [3] You know it’s accurate because Cu-
cumber tests it for you every day.

Cucumber’s strength is in allowing you to write sce-
narios in plain English. In fact, Cucumber knows the trans-
lation of these keywords in some seventy different spoken
languages, allowing you to write your documentation in
your business stakeholders’ native language.

The only special keywords you need are feature, sce-
nario, given, when, and then. These keywords are known as
Gherkin, the language that Cucumber understands.

The Power of Collaboration
The Agile Manifesto makes a value statement of pre-

ferring individuals and interactions over processes and
tools. [4] We’ve all worked on projects where customers
and developers failed to effectively communicate about the
problem to be solved. It’s miserable and results in rework,
blame, late nights, missed deadlines, and unhappy cus-
tomers. When business stakeholders, testers, and program-
mers work together to try to explain to Cucumber what
they want the system to do, something amazing starts to
happen.

Cucumber is a tool that facilitates better interactions be-
tween individuals. Cucumber requires that a team develop
a shared vocabulary for talking about their system. This
makes every conversation go more smoothly and creates
powerful connections between the business problem do-
main and the solution domain. Classes, methods, and data-
base tables are given more meaningful names, making them
easier to work with in the future.

Artificial barriers between customers, developers, and
testers melt away as everyone collaborates to create the
best specification they can for the system’s behavior.

H
ave you heard of Cucumber? Have you used it,
or perhaps worked on a team that did? With
Cucumber’s user base doubling in number
every two years, there is a good chance that

even if you haven’t yet used it, you soon will. In this article
you’ll learn the basics of Cucumber, its benefits, and how
to make the best use of it.

What Is Cucumber?
Cucumber is an open source tool for running automated

customer acceptance tests. [1] Before a team starts a develop-
ment project, the team works together with the customer to
agree on concrete examples (called scenarios) that describe
the new desired behavior of the system to be developed. A
user scenario describing the behavior of automated teller
machine (ATM) software might look like figure 1.

The team can use Cucumber to guide their development,
testing each scenario regularly against the system being
built.

Figure 2 shows Cucumber’s job is to take the examples
you’ve described, run them against your system, and report
back whether the system is behaving as expected.

When the tests pass, the code should be ready for the
customer. As a result, it can be used to facilitate a process
of acceptance test-driven development (ATDD) or, as it
is called in some software development communities, be-
havior-driven development (BDD). [2]

Figure 1: A user scenario

Figure 2: The Cucumber workflow

 www.TechWell.com FALL 2016 BETTER SOFTWARE 33

http://www.TechWell.com

There’s Nothing Boring about Being
Predictable

Most Scrum teams have suffered from user stories that
were too big to finish in a single sprint, often larger in
scope and more complex than originally expected.

Every new Cucumber scenario that is implemented rep-
resents a small increment in value of something the soft-
ware could do today that it couldn’t do yesterday.

Working with scenarios helps teams learn the skill of
breaking down stories into smaller, yet still valuable, pieces
and identifying luxury items (or unnecessary behavior) that
can be deferred.

This approach enables the team to focus their energy on
implementing the most valuable behavior first and makes
sure they’re able to meet their commitments to the business
in a predictable way.

Flexibility to Automate Anything
Under the hood, Cucumber takes each statement or step

in a scenario and looks for an underlying piece of code to
run. This code is called a step definition (figure 3).

The team has to supply this library of step definition
functions, and it’s here that you connect Cucumber to your
application so it can run tests against it.

Figure 4 shows an example step definition written in
Java.

The Given annotation tells Cucumber the plain-lan-
guage steps that this method will match. When Cucumber
sees a step matching that pattern, it will call the setBal-

anceForBob method.
Although initially implemented for the Ruby program-

ming language, Cucumber can run step definitions on al-
most any modern programming language platform.

This flexibility allows the team to automate their appli-
cation in whatever programming language they choose.

Embracing Open Source
The world of open source is rich with excellent free li-

braries for automating almost any kind of application. You
can call the user interface directly using tools like Selenium
WebDriver for browser-based apps, AutoIT for Windows
apps, or Calabash for mobile apps. You can call web ser-
vice APIs using something like REST Assured or Soap UI,
or even make calls directly into your own application code.
Many of these ideas are documented in Cucumber Recipes.
[5]

Back in 2006, I attended a conference where Dan North
and Joe Walnes spoke about BDD. I learned about the
RSpec open source project, where Dan had been working
with David Chelimsky to prototype some of his ideas for
bridging the gap between business and technology in what
was then known as the RSpec Story Runner. Aslak Hellesøy,
who was working in the RSpec team, decided to rewrite
Story Runner as a standalone open source project and
called it Cucumber. [6]

Through the years, the Cucumber project has grown ex-
ponentially with new products—SpecFlow for C#, Behat
for PHP, Behave for Python, Cucumber-JVM, Cucumber-
JS, and Cucumberish for iOS—as well as the original Cu-
cumber-Ruby, to name a few.

When Cucumber Goes Bad
By now you might be wondering whether Cucumber is

the silver bullet, and sadly, it is not. In fact, it isn’t unusual
for a team to have a bad experience with Cucumber. Every
team is different, and every tool or technique has situations
where it works well and other situations where it doesn’t.

There are several ways Cucumber can fail to deliver the
benefits I’ve described above.

For test automation after the fact: Instead of working
in a behavior-driven way where a scenario is automated
before application code is written, a team only uses Cu-
cumber to automate tests written after the code has been
implemented. This code-and-fix method does little to break
down the silos between specialisms and never gives the team
the opportunity to thoroughly analyze and decompose the
problem into bite-sized pieces before they start the work.

Doing it alone: In these projects, test automation code
and application code are often written by different people.
When testers work alone to add tests to a system, they gen-
erally treat it as a black box and default to writing tests

Figure 3: The scenario and step definitions that produce your app

Figure 4: Step definition sample code

34 BETTER SOFTWARE FALL 2016 www.TechWell.com

http://www.TechWell.com

that exercise the entire application stack. This results in
large numbers of slow, brittle tests that are costly to main-
tain.

Ignoring readability: If the team thinks of their Cucumber
scenarios as nothing more than tests, they never make much
effort to make them work as readable documentation.

That isn’t to say these teams are wrong to use Cu-
cumber. For many, this can be their first step on the path to
full-on BDD.

How Cucumber Will Benefit Your Project
Adopting Cucumber and BDD as part of your team’s

toolkit will help you catch defects before they ever get a
chance to creep into code. You’ll end up with documenta-
tion that’s always up to date with an entire development
team of domain experts.

A Cucumber user with whom I had the pleasure of
working summarized the benefits best:

We’ve found value in the BDD documentation pro-
cess and obtained a shared understanding of what we’re
building before it’s actually built. Having executable
specifications with an automated functional test suite
was icing on the cake.

We realized the value of our process when we by-
passed it in order to quickly deliver a number of features
for a high profile project. We absorbed a new business
analyst, QA team, and developers that were unfamiliar
with BDD. The result of short-cutting the process was
disastrous.

These features had a higher number of defects, did
not meet their delivery timelines, had a lack of auto-
mated testing, and general hesitation from developers in
touching this code in fear of breaking something.

After our experience with these non-BDD imple-
mented features the team (with the support of manage-
ment) committed to full BDD for all new features.

Learning More about Cucumber
The Cucumber website at cucumber.io provides a great

introduction to Cucumber. The site contains comprehensive
documentation, a video tutorial series, and resource links
to online community forums like the mailing list and chat
room. I hope I’ve managed to share some of that enthu-
siasm with you and created enough curiosity for you to give
Cucumber a try on your next project. {end}

 matt@cucumber.io

CLICK FOR
THIS STORY'S R E F E R E N C E S

Visit https://well.tc/JoinSM
and join the conversation!

StickyMinds is one of the first and
most popular online communities
for software professionals. As a
StickyMinds community member,
you’ll get access to:

• Conference presentations and
interviews

• Better Software magazine archive—
with over 120 issues

• A weekly newsletter and more

Learn
Connect

Contribute

 www.TechWell.com FALL 2016 BETTER SOFTWARE 35

http://cucumber.io
mailto:matt@cucumber.io
http://www.stickyminds.com/sticky-note/references-210
https://well.tc/JoinSM
http://www.TechWell.com

Developing and Testing IoT and Embedded
Systems: Questions to Ask
By Jon Hagar

Self-driving cars are the new big thing, and they’re already
being developed by many companies. These “smart” vehicles
have sensors, computers, embedded software running on many
processors, hardware, and communications through the In-
ternet of Things.

The operational and environment scenarios these cars will
encounter are practically infinite. Creating software that is
smart enough to deal with the operations of self-driving cars
in many different situations will take time, a lot of engineering,
and proper testing.

How we should develop and test these systems is a big ques-
tion, and there are no easy answers.

https://well.tc/3j6h

Overcoming the Real Fears behind Behavior-
Driven Development
By Kevin Dunne

Behavior-driven development is one of the hottest trends in
the testing industry today. It promises greater collaboration, in-
creased automation and test case reuse, and less documentation
and waste, just to name a few benefits. It is increasingly seen as
the perfect complement to agile delivery and planning processes,
and the readability of the tests makes it a great counterpart to
DevOps, continuous integration, and continuous delivery, too.

Then why have only 10 percent of respondents to the 10th
Annual State of Agile Report said they’ve tried this technique?

https://well.tc/3j67

How to Use the Mobile Revolution to Bolster
Your Career
By Josiah Renaudin

From the outside, revolutions in technology can be fasci-
nating to watch. Going from PCs to smartphones and now the
Internet of Things, witnessing new pieces of hardware change
the way we communicate, artistically express ourselves, and in-
teract with the world range from novel to inspiring.

However, if you’re a professional within the industry and
fail to take advantage of a sea change like mobile, you’re
wasting a valuable opportunity. It sometimes feels like decades
ago when smartphones came into our lives and turned the
world of software on its head, but its growth curve continues
to spike, and there are still countless ways you can leverage
mobile to inspire fresh career opportunities.

https://well.tc/3j66

Scaling Agile: Reasonable Practices for
Program Management
By Johanna Rothman

It seems as if everyone is talking about “scaling” agile. What
they mean is a strategic collection of projects with one business
deliverable: a program.

We don’t have “best” practices for agile program manage-
ment. However, you might find some reasonable practices help
you use agile or lean even better.

https://well.tc/3j68

Finding a Middle Ground between
Exploratory Testing and Total Automation
By Matthew Heusser

Testers seem to be having the same argument over and
over again.

The automator wants to get rid of human exploration: to
press a button, get a green bar, and ship to production. In some
cases, the tool could commit to version control, have something
else automatically press the button, and automatically ship to
production. This is akin to having robots cut down a forest and
stack the wood. No humans involved.

The explorer, on the other hand, wants a human interven-
tion step. They see tools more like a chainsaw. The chainsaw
allows the human to go ten times faster, but a human is still in
charge, driving the process. The explorer doesn’t want robots
to do everything automatically; they want to be a cyborg, a
six-million-dollar man, to balance the human and the machine.

https://well.tc/3j62

Just Enough Testing at Each Stage of Your
Delivery Pipeline
By Gene Gotimer

The continuous delivery pipeline is the process of taking
new or changed features from developers and getting them de-
ployed into production and delivered quickly to the customer.
To reach that goal, the pipeline must be designed to determine
whether the software is a viable candidate for production—
and if not, then why.

Having frequent quality gates that give feedback about the
quality of the software along the way helps us find that an-
swer quicker. Quality gates are decision points along the pipe-
line where we gather feedback and decide if we want to keep
testing. If the software doesn’t pass a quality gate, then it isn’t
worth continuing with that build, and we go back to the devel-
opers (or to the requirements) for a fix.

https://well.tc/3j6u

TechWell Insights

Featuring fresh news and insightful stories about topics important to you, TechWell.com is the place to go for what is hap-

pening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday to

keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and more.

The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

36 BETTER SOFTWARE FALL 2016 www.TechWell.com

https://well.tc/3j6h
https://well.tc/3j67
https://well.tc/3j66
https://well.tc/3j68
https://well.tc/3j62
https://well.tc/3j6u
http://www.techwell.com
http://www.TechWell.com

Techwell Insights

Bringing the Value of Your Test Automation
Efforts Front and Center
By Michael Sowers

Sometimes, in order to get everyone on board with adopting
test automation, you have to build a business case to highlight
the potential benefits. Once you’ve convinced the organization
to make that investment, you should determine whether it’s ac-
tually yielding the predicted benefits—and you’ll want to keep
these benefits visible to key stakeholders to reinforce the value.

We tend to have many metrics in place to track the prog-
ress of testing and measure the degree of readiness or risks in
our software products. These metrics include test effectiveness,
software quality, test status, resources, issues, and so forth, but
what about metrics for the test automation platform? How do
we frame the quantitative and qualitative benefits of test auto-
mation in a way that links to the organizational objectives and
business goals? This is an important element of planning and
implementing our automation architecture.

https://well.tc/3j6b

Expanded Schedules Pose Project
Management Risks, Too
By Payson Hall

A project manager reflected on the challenges that emerged
when her customer significantly extended her project’s schedule.

The initial goal was aggressive: Get the work done in six
months. This would require intense focus by the project team
and cooperation from other parts of the enterprise. Soon, it be-
came apparent that competing priorities within the enterprise
threatened the project schedule.

The client elected to extend the end date by a year. This “re-
laxed” schedule was expected to give everyone time to create
quality products … but things immediately began to come apart.

https://well.tc/3j6a

Removing the Performance Testing
Bottleneck
By Adam Auerbach

When my company started our journey toward continuous
testing, our first hurdle was functional testing. We were fo-
cused on real-time test automation and ensuring that when
code was checked in there were automated tests that validated
the functionality. As we matured, we realized that while this
was a huge accomplishment, it meant nothing in terms of
speed because our performance tests were holding up our pro-
duction deployments. We needed a new way to think about
performance testing.

Around this same time, we were looking at application
monitoring tools for production that would provide applica-
tion performance insights. In doing our proof of concept,
we realized that these tools would be a great addition to our
non-production testing. We could use them for faster trouble-
shooting of performance issues.

https://well.tc/3j6z

Container-Based Deployments and the Future
of IT Operations
By Bob Aiello

Container-based deployments have quickly become the pre-
ferred approach for managing the build and release of complex
applications. Popular container technologies such as Docker
enable developer velocity by providing a robust environment
closely resembling production that can be constructed in min-
utes, yielding flexible sandboxes from just a few keystrokes.

In practice, containers provide well-formed, readily ac-
cessible environments, from bare operating systems to da-
tabases and other applications. Centralized hubs deliver an
easily accessible repository of secure containers that can be
quickly downloaded and put into use, accelerating the devel-
opment effort. Container-based development is both produc-
tive and compelling, and it reduces the number of moving
parts, which historically was the cause of many mistakes and
system challenges.

https://well.tc/3j6r

The Merits of a Collaborative Manual and
Automation Test Team
By Linda Hayes

In many organizations, the manual and automated test
teams are separate. The manual testers have application exper-
tise, and the automation engineers offer scripting skills.

The test team analyzes the test case inventory to select cases
that are candidates for being automated. These must be doc-
umented explicitly and in enough detail for the engineers to
follow without presuming application knowledge. The rest of
the cases are tested manually.

https://well.tc/3j6j

Work Hard, Play Hard: How Fun Provides
Balance
By Naomi Karten

With so much serious stuff going on in the world and at
work, there’s a role for playfulness in our jobs to serve as a
counterbalance. This is not to say that the work shouldn’t
be treated with all appropriate seriousness, just that a light-
hearted attitude might reduce the intensity of the demands
and pressures.

By playfulness, I don’t mean formal, scheduled timeouts in
the workday for everyone to get together and blow bubbles
(not that there’s anything wrong with that). I’m thinking, in-
stead, of random little things that can lighten the mood and get
people laughing.

I asked some colleagues for examples of things they do at
work to promote levity.

https://well.tc/3j69

 www.TechWell.com FALL 2016 BETTER SOFTWARE 37

https://well.tc/3j6b
https://well.tc/3j6a
https://well.tc/3j6z
https://well.tc/3j6r
https://well.tc/3j6j
https://well.tc/3j69
http://www.TechWell.com

The Last Word

proving that Facebook’s source code was not stolen from the
Winklevoss twins. I watched that movie many times with dif-
ferent sets of friends, always silent and under instruction from
attorneys on the case not to disclose that I was the consultant
who wrote that report. In that investigation, I scientifically
compared both sets of source code using software forensics
techniques I had developed. If you freeze the movie frame,
zoom in on the report, and use sophisticated photo-enhancing,
you’ll see my name on that report.

Ways You Can Protect
Your Intellectual
Property

Software can encompass three
types of intellectual property (IP):

Copyright: The US Copyright
Office defines copyright as a form
of protection provided by the laws
of the United States for original
works of authorship, including
literary, dramatic, musical, archi-

tectural, cartographic, choreographic, pantomimic, pictorial,
graphic, sculptural, and audiovisual creations. [1] Copyright
refers to the body of exclusive rights granted by law to copy-
right owners to stop others from copying their work without
the owner’s permission.

You (or the company that employs you) owns the copyright
when the code is written, even if you don’t register it with the
copyright office. Many programmers are under the mistaken
impression that software is simply ideas and you have freedom
of thought. While the latter part is true, software is more than
just a thought: It is a specific implementation of that thought.
It’s been developed, debugged, and tested at great expense. So
the owner can protect it, and unless you’re the owner, you can’t
take it with you.

Trade secret: The Uniform Trade Secrets Act defines a trade
secret as information, including a formula, pattern, compila-
tion, program, device, method, technique, or process, that de-
rives independent economic value, actual or potential, from not
being generally known to or readily ascertainable through ap-
propriate means by other people who might obtain economic

Fifteen years ago when CBS first tapped the seemingly bottom-
less well that is the CSI: Crime Scene Investigation television
franchise, no one could have predicted the genre would reach
such heights. Today, entire television networks are devoted to
“whodunit” stories that are solved with modern-day forensics
by a single fiber or a tiny speck of blood. As fascinating as this
area is, most of us will hopefully never be involved in a situ-
ation where we need this level of sophisticated investigative
skills. But we may be involved with cybercrime. In the digital
world, the smoking gun is often digi-
tally encoded and can be identified
by scanning hard disks, log files, and
user accounts for any hint of wrong-
doing.

So, what happens when a digital
crime is committed, and how would
we go about solving it?

Welcome to Software
Forensics

Software forensics is the science
of analyzing software to determine whether intellectual prop-
erty theft has occurred. While it has a lower profile in the news
than the many cyber security breaches we regularly hear about,
it is the centerpiece of lawsuits, trials, and settlements worth
countless billions of dollars when companies are in dispute
over software patents, copyrights, and trade secrets.

Whether your own software is worth thousands, millions,
or billions of dollars, it is worth protecting—especially if it is
key to your business. In valuing your software, take into ac-
count how much of your business’s sales rely on it, but don’t
discount the effort put into its development, debugging, inte-
gration, and testing. All of these add to its value. To replicate
the code from scratch, someone would need to pay developers
to perform all these tasks again.

Perhaps the most well-known example of software foren-
sics comes from the ConnectU v. Facebook lawsuit between
Facebook and the Winklevoss twins, which was portrayed and
made famous in the Academy Award-winning film The Social
Network. One pivotal deposition scene in the movie shows
Mark Zuckerberg (played by Jesse Eisenberg) waving a report

What If Someone Steals
Your Code?
Taking the steps to protect your software intellectual property is often a
low priority. Are you really willing to take that risk?

by Bob Zeidman | Bob@ZeidmanConsulting.com

Whether your own software

is worth thousands, millions,

or billions of dollars, it is

worth protecting ...

38 BETTER SOFTWARE FALL 2016 www.TechWell.com

mailto:Bob@ZeidmanConsulting.com
http://www.TechWell.com

value from its disclosure or use; and is the subject of efforts that
are reasonable under the circumstances to maintain its secrecy.
[2] In other words, a trade secret is something that helps one
business make money and that the business keeps secret, and
that people in similar businesses generally don’t know about.

Software contains trade secrets. So do customer lists, mar-
keting plans, product definitions, and almost anything that
gives your business a competitive advantage. To protect your
trade secrets, you must make reasonable efforts to keep them
secret. You don’t have to lock everything in a vault, but you
should inform your employees that your software contains
trade secrets and that they shouldn’t show the code around to
friends to impress them with the great job they’ve done. As a
programmer, you should put a notice in all your files that the
code is confidential property of the company. If you end up in
court, this will show that you made a reasonable attempt to
protect it.

Patent: A patent for an invention is the grant of a property
right to the inventor, issued by the United States Patent and
Trademark Office. The right conferred by the patent grant is,
in the language of the statute, “to exclude others from making,
using, offering for sale, or selling the invention throughout
the United States or importing the invention into the United
States.” [3] Another way of saying this is that the government
allows an inventor to stop anyone from producing his or her
invention, for a limited time, in return for telling the public ex-
actly how the invention works. In that way, programmers can
understand the patented invention, improve on it, and, in some
cases, create a better way of performing the same function that
does not infringe on the patent.

Software patents are controversial. Some people love them,
and some hate them. One thing to remember is that the gov-
ernment enforces them, and your competitors will probably
have them. So even if you hate software patents, you should get
them as protection. I often tell companies to ask their program-
mers, “What are the hardest problems you had to solve in this
software?” or “What part of the software are you most proud

of?” Those are the first things to patent. If you’re in a small
company, pick your unique, core algorithm and patent it.

How Software Detects IP Infringement
Through forensic analysis it is possible to scientifically de-

termine copyright infringement and many kinds of trade secret
infringement. These two areas lend themselves to source code
comparison, and there are software tools that can compare
millions of lines of code, line by line, for correlation and in-
fringement. In the past, methods of code comparison to find
copying included hashing, statistical analysis, text matching,
and tokenization. These tools compared code and output a
single measure indicating whether code had been copied. How-
ever, this oversimplification wasn’t accurate enough to be us-
able in court.

After years of research, I developed algorithms for multidi-
mensional software correlation that determines which sections
of code are similar for multiple different reasons. Now, an
expert can use an iterative filtering process to decide whether
the correlated code is due to exactly one of the following
reasons: third-party code, code generation tools, commonly
used names, common algorithms, common programmers, or
copying. If the correlation is due to copying and the copying
wasn’t permitted by the copyright or trade secret owner, then
it probably wasn’t legal.

The Future of Software Forensics
Today, it’s not possible to scientifically determine software

patent infringement because software patents cover general
implementation rather than specific source code. For example,
a program that implements a patented invention could be
written in any programming language, using arbitrary func-
tion names and variable names, and performing operations in
different sequences. There are just so many combinations of
ways to implement inventions in software that even the most
powerful modern computer technology can’t consider every
possible combination of code that might infringe a patent.
This work is left to human experts using their knowledge and
experience, but it’s a problem that software forensics experts
continue to find ways to automate with clever algorithms and
simplifying processes.

How Do I Protect My Code?
You should always register your code with the US Copy-

right Office. This can be done over the Internet very inexpen-
sively—only costing thirty-five to fifty-five dollars. And don’t
be worried about disclosing your trade secrets. The registration
procedure only requires you to submit twenty pages of print-
outs of the code, and you can redact any trade secrets in the
code. By registering your code shortly after you complete it,
you get a government record that you are the owner, which not
only provides useful proof in court but also may entitle you to
extra damages and reimbursement of legal fees if you win a
copyright infringement suit.

The Last Word

 www.TechWell.com FALL 2016 BETTER SOFTWARE 39

http://www.TechWell.com

The Last Word

You must decide which algorithms in your code should be
protected with patents and which should be protected as trade
secrets. Patents are disclosed to the public, and twenty years
after the filing date of the application, anyone can use your in-
vention. During that period of time, the government rewards
you for disclosing it by giving you the right to exclude others
from using it. Trade secrets can protect your software indefi-
nitely, but if someone independently discovers your invention,
you have no right to stop them. It’s best to talk to an IP expert
about the tradeoffs before making a decision.

And if you suspect that someone has stolen your code, con-
tact an IP litigation attorney and find a seasoned software fo-
rensics expert.

Conclusion
While CSI: Software may never get the chance to grace the

nation’s television screens, it’s nevertheless gaining traction
among legal professionals and litigation consultants, thanks to
the support of advanced software tools. In any event, program-
mers would be wise to think twice about borrowing a few lines
of code for that next project.

index to advertisers

Better Software (ISSN: 1553-1929) is published four times

per year: January, April, July, and October. Entire contents

© 2016 by TechWell Corporation 350 Corporate Way, Suite

400, Orange Park, FL 32073, unless otherwise noted on

specific articles. The opinions expressed within the articles

and contents herein do not necessarily express those of the

publisher (TechWell Corporation). All rights reserved. No

material in this publication may be reproduced in any form

without permission. Reprints of individual articles available.

Call 904.278.0524 for details.

Display Advertising
advertisingsales@techwell.com

All Other Inquiries
info@bettersoftware.com

Agile Dev, Better Software & DevOps East https://bsceast.techwell.com 3

Infostretch http://www.infostretch.com/getstarted/ 13

Mobile Dev + Test and IoT Dev + Test 2017 https://mobile-iot-devtest.techwell.com 4

Parasoft https://alm.parasoft.com/bettersoftware2016 19

Ranorex https://www.ranorex.com 2

SmartBear https://smartbear.com 24

SQE Training—On-Site Training https://www.sqetraining.com/onsite 25

SQE Training—STF/ADV Certification http://www.sqetraining.com/certification 18

STAREAST https://stareast.techwell.com 11

StickyMinds https://well.tc/StickyMinds 35

TCS https://goo.gl/GmUBcZ 31

NEWSLETTERS FOR EVERY NEED!
Want the latest and greatest content
delivered to your inbox? We have a
newsletter for you!

• AgileConnection To Go covers all things
agile.

• DevOps To Go delivers new and relevent
DevOps content from StickyMinds and
AgileConnection.

• StickyMinds To Go sends you a weekly
listing of all the new testing articles added
to StickyMinds.

• And, last but not least, TechWell
Insights features the latest stories
from conference speakers, SQE Training
partners, and other industry voices.

Visit StickyMinds.com, AgileConnection.com,
CMCrossroads.com, or TechWell.com to sign
up for our newsletters.

CLICK FOR
THIS STORY'S R E F E R E N C E S

40 BETTER SOFTWARE FALL 2016 www.TechWell.com

mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://bsceast.techwell.com
http://www.infostretch.com/getstarted/
https://mobile-iot-devtest.techwell.com
https://alm.parasoft.com/bettersoftware2016
https://www.ranorex.com
https://smartbear.com
https://www.sqetraining.com/onsite
http://www.sqetraining.com/certification
https://stareast.techwell.com
https://well.tc/StickyMinds
https://goo.gl/GmUBcZ
http://www.stickyminds.com
http://www.agileconnection.com
http://www.cmcrossroads.com
http://www.techwell.com
http://www.stickyminds.com/sticky-note/references-211
http://www.TechWell.com

	SQE Training Logo:

