
TEST AUTOMATION
Apply patterns to mitigate

quality issues

DOING DEVOPS
Achieve success by

ignoring the hype

Summer 2015		 www.TechWell.com

http://www.TechWell.com

2	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

BORN TEST
SOFTWARE

to

R E G I S T E R B Y
J U L Y 3 1 , 2 0 1 5
A N D S A V E U P T O $ 4 0 0
G R O U P S O F 3 + S A V E E V E N M O R E

S E P T E M B E R 2 7 – O C T O B E R 2 , 2 0 1 5
A N A H E I M , C A | D I S N E Y L A N D H O T E L | # S T A R W E S T

S T A R W E S T. T E C H W E L L . C O M

CONFERENCE
 ROAD MAP

Choose from a full week of learning,

networking, and more

SUNDAY Multi-day Training Classes begin

MONDAY–TUESDAY In-depth half- and full-day Tutorials

WEDNESDAY–THURSDAY Keynotes, Concurrent Sessions,

the Expo, Networking Events, and more

FRIDAY Testing & Quality Leadership Summit and

Workshop on Regulated Software Testing (WREST)

http://www.TechWell.com
http://starwest.techwell.com?utm_source=BSM_17-3_2pg&utm_medium=BSM&utm_campaign=Marketing-GC

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 3

BORN TEST
SOFTWARE

to

R E G I S T E R B Y
J U L Y 3 1 , 2 0 1 5
A N D S A V E U P T O $ 4 0 0
G R O U P S O F 3 + S A V E E V E N M O R E

S E P T E M B E R 2 7 – O C T O B E R 2 , 2 0 1 5
A N A H E I M , C A | D I S N E Y L A N D H O T E L | # S T A R W E S T

S TA R W E S T. T E C H W E L L . C O M

CONFERENCE
 ROAD MAP

Choose from a full week of learning,

networking, and more

SUNDAY Multi-day Training Classes begin

MONDAY–TUESDAY In-depth half- and full-day Tutorials

WEDNESDAY–THURSDAY Keynotes, Concurrent Sessions,

the Expo, Networking Events, and more

FRIDAY Testing & Quality Leadership Summit and

Workshop on Regulated Software Testing (WREST)

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | S T A R W E S T . T E C H W E L L . C O M

Things That
Really Matter in
Testing—Today
and Tomorrow

Bj Rollison,
Testing Mentor

Testing the
Internet of
Everything
Paul Gerrard,

Gerrard
Consulting Ltd.

Lightning
Strikes the
Keynotes

Lee Copeland,
Software Quality

Engineering

I Don’t Want
to Talk about

Bugs: Let’s
Change the

Conversation
Janet Gregory,

DragonFire, Inc.

The Survival
Guide for

Testers and
Test Managers

Bart Knaack,
Professional

Testing

Critical Thinking for
Software Testers
Michael Bolton, DevelopSense

Selenium Test Automation:
From the Ground Up
Dave Haeffner, The Selenium
Guidebook

Testing under Pressure: A
Case for Session-Based Test
Management
Jon Bach, eBay, Inc.

Six Essential Skills for
Modern Testers
Bart Knaack, Professional Testing

Plan, Architect, and
Implement Test Automation
within the Lifecycle
Mike Sowers, Software Quality
Engineering

Test Design for Better Test
Automation
Hans Buwalda, LogiGear

JUST A FEW OF OUR

IN-DEPTH HALF-
AND FULL-DAY

TUTORIALS

Software and test

managers, QA

managers and analysts,

test practitioners and

engineers, IT directors,

CTOs, development

managers, developers,

and all managers

and professionals

who are interested in

people, processes and

technologies to test

and evaluate software

intensive systems

WHO SHOULD

ATTEND?
SEPT. 30–OCT. 1

THE EXPO
Visit Top Industry

Providers Offering the
Latest in Testing Solutions

TOOLS
SERVICES

TECHNIQUES
DEMOS

FULL THROTTLE KEYNOTES

http://www.TechWell.com
http://starwest.techwell.com?utm_source=BSM_17-3_2pg&utm_medium=BSM&utm_campaign=Marketing-GC
http://starwest.techwell.com?utm_source=BSM_17-3_2pg&utm_medium=BSM&utm_campaign=Marketing-GC

http://www.ranorex.com/?utm_source=SQE&utm_medium=magazine&utm_campaign=FullPageAd-BSM-May15

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 3

20

 20 UNDERSTANDING TEST AUTOMATION PATTERNS
Automated testing is vital for every software development organization's qual-
ity assurance activities. Dorothy Graham and Seretta Gamba demonstrate how
to classify issues that occur during test automation. The authors maintain that
certain test results have root causes that can be categorized as patterns that
require specific mitigation strategies.
by Dorothy Graham and Seretta Gamba

MOVING BEYOND DEVOPS HYPE
DevOps can be characterized as the assembly line of building, testing, deploy-
ing, and updating enterprise applications. Many software development organi-
zations may claim a comprehensive DevOps strategy, but Chris Riley believes
that the only way to be successful is to use a DevOps framework.
by Chris Riley

26

26

CONTENTS

Volume 17, Issue 3 • SUMMER 2015

features
COVER STORY
INCORPORATING USER EXPERIENCE INTO EARLY
AGILE CYCLES
Chris Nodder explores the emerging need to focus on a software app’s user ex-
perience. It doesn’t have to cost a fortune to perform some basic user experience
analysis as long as it is done early and tested throughout a project’s lifecycle.
by Chris Nodder

14

36 THE LAST WORD
DOES YOUR CODE SUFFER FROM BROKEN WINDOWS?
Common practice suggests that lower severity defects shouldn't hold up a
product release. Jennifer Gosden believes that, just as broken windows in
a home can invite crime, letting lower severity defects linger results in poor
overall product quality.
by Jennifer Gosden

14

Better Software magazine brings you the
hands-on, knowledge-building information

you need to run smarter projects and deliver
better products that win in the marketplace

and positively affect the bottom line.
Subscribe today at BetterSoftware.com or

call 904.278.0524.

Mark Your Calendar

Editor's Note

Contributors

Interview with an Expert

FAQ

Ad Index

in every issue
4

5

6

12

35

37

columns
7 TECHNICALLY SPEAKING

DO YOU GIVE YOUR MANAGER WHAT SHE WANTS OR WHAT SHE NEEDS?
High-stress situations arise when you have to respond to management's
never-ending tough questions regarding product delivery. According to
Johanna Rothman, you can properly set expectations without stress simply by
understanding your manager's point of view.
by Johanna Rothman

SIX WAYS TO USE BUSINESS ANALYST SUPERPOWERS IN
AGILE
There are those agilists who believe there is no place for a business analyst on
their team. Joy Beatty and James Hulgan, both experienced agile consultants,
refute this belief and explain how business analysts can enhance the effective-
ness of most any agile team.
by Joy Beatty and James Hulgan

30

http://www.TechWell.com
http://www.stickyminds.com/resources/magazine-articles

4	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

software tester
certification Publisher

Software Quality Engineering Inc.

President/CEO
Wayne Middleton

Director of Publishing
Heather Shanholtzer

Editorial

Better Software Editor
Ken Whitaker

Online Editors
Josiah Renaudin

Beth Romanik

Production Coordinator
Donna Handforth

Design

Creative Director
Catherine J. Clinger

Advertising

Sales Consultants
Daryll Paiva

Kim Trott

Production Coordinator
Alex Dinney

Marketing

Marketing Manager
Cristy Bird

Marketing Assistant
Tessa Costa

CONTACT US

Editors: editors@bettersoftware.com
Subscriber Services:
info@bettersoftware.com
Phone: 904.278.0524, 888.268.8770
Fax: 904.278.4380
Address:
Better Software magazine
Software Quality Engineering, Inc.
340 Corporate Way, Suite 300
Orange Park, FL 32073

MARK YOUR CALENDAR

STARCANADA
http://starcanada.techwell.com
June 21–25, 2015
Vancouver, BC, Canada
Westin Bayshore

STARWEST
http://starwest.techwell.com
September 27–October 2,
2015
Anaheim, CA
Disneyland Hotel

Agile Development Conference East
http://adceast.techwell.com
November 8–13, 2015
Orlando, FL
Hilton Orlando Lake Buena Vista

Better Software Conference East
http://bsceast.techwell.com
November 8–13, 2015
Orlando, FL
Hilton Orlando Lake Buena Vista

DevOps Conference East
http://devopseast.techwell.com
November 8–13, 2015
Orlando, FL
Hilton Orlando Lake Buena Vista

conferences

training weeks
Testing Training Week
http://www.sqetraining.com/trainingweek

September 21–25, 2015
Washington, DC

October 19–23, 2015
Dallas, TX

November 2–6, 2015
San Francisco, CA

http://www.sqetraining.com/certification

Foundation-Level Certification

June 21–23, 2015
Vancouver, BC, Canada

August 25–27, 2015
San Jose, CA

August 31–September 2, 2015
Boston, MA

September 1–3, 2015
Columbus, OH

September 15–17, 2015
Atlanta, GA
Toronto, ON, Canada

Advanced-Level Certification

September 14–18, 2015
Toronto, ON, Canada

http://www.TechWell.com
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://starcanada.techwell.com
http://starwest.techwell.com
http://adceast.techwell.com
http://bsceast.techwell.com
http://devopseast.techwell.com
http://www.sqetraining.com/trainingweek
http://www.sqetraining.com/certification
http://www.sqetraining.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 5

You Could Use Some Better Approaches

You’re probably wondering where Better Software magazine finds its

authors. The best answer is—a whole lot of different ways. Some

people email us article abstracts, some have written for us before, some

are already presenting as speakers at TechWell conferences, and others I

hunt down through social media sites, books they wrote, or even videos I’ve

observed. (My boss calls it stalking; I justify it as simply makin’ friends.)

TechWell provides valuable information to educate software professionals via the outlets that best work for you:

conferences, workshops, eLearning, blogs, and Better Software magazine.

Rather than report the latest happenings with a specific operating system, programming language, or device, Better

Software’s mission is to present information that will better your professional life by giving you the tools so that

you and your team can deliver quality software technology that delights customers. This issue hits home with best

practices that should improve your skills in a variety of subjects including agility, testing, and DevOps.

Ever wonder what makes some software products easy to use and others confusing? As more software technology

runs on a variety of devices—from wearables to tablets to desktops—the importance of a great user experience

(UX) has become a necessary part of any design. In his article, Chris Nodder, an expert in UX, should convince you of

the importance of incorporating UX early in your agile project. The article from Dorothy Graham and Seretta Gamba

presents an innovative approach to applying test automation patterns to identify and mitigate defects. Speaking of

testing, Jennifer Gosden speaks the truth about the risk when low-severity problems aren't properly mitigated.

In keeping with our recent trend of showing how other job functions relate to software development, Joy Beatty

and James Hulgan present a compelling perspective of the importance of business analysis to the success of your

project. If you’re still not really sure how DevOps relates to most every software development project, you’re going

to enjoy Chris Riley’s article. And as if we don't already have enough technical obstacles to contend with, Johanna

Rothman presents some good advice on how to best set expectations to what your manager really wants.

We truly value your feedback. Let us and our authors know what you think of the articles by leaving your comments.

I sincerely hope you enjoy reading this issue as much I enjoyed working with these wonderful authors.

Ken Whitaker

kwhitaker@sqe.com

Twitter: @Software_Maniac

Editor’s Note

http://www.TechWell.com
mailto:kwhitaker@sqe.com

6	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Claire Lohr has been an active professional in the computer field for thirty years, with the past twenty years emphasizing software
process improvement and testing. She currently provides training (design, authoring, and instruction) and consulting services for a
wide variety of both government and commercial clients. Claire was the chair of the Working Group for the revision of the IEEE Std
829-2008 Software and System Test Documentation. She can be reached at clohr@computer.org.

James Hulgan is a business architect at Seilevel, where he is responsible for defining product management strategy and require-
ments architecture for projects with Fortune 500 companies. He also trains and mentors business analysts and product managers
to define requirements and manage scope on their projects. James recently helped a top bank launch a commercial credit card
program from the ground up, and is currently thinking deeply about customer master data management. James can be reached at
james.hulgan@seilevel.com.

Contributors

A long-time freelancer in the tech industry, Josiah Renaudin is now a web content producer and writer for TechWell, StickyMinds,
and Better Software magazine. Previously, he wrote for popular video game journalism websites like GameSpot, IGN, and Paste
Magazine, where he published reviews, interviews, and long-form features. Josiah has been immersed in games since he was
young, but more than anything, he enjoys covering the tech industry at large. Contact Josiah at jrenaudin@sqe.com.

Seretta Gamba has more than thirty years of experience in software development. As test manager at ISS Software GmbH,
Seretta is in charge of improving the test automation process and developed a kind of keyword-driven testing and a framework
to support it. She was invited to contribute to Dorothy Graham's book Experiences of Test Automation. You can contact Seretta at
srttgmb@yahoo.com.

Chris Nodder is a user researcher and interaction designer who runs his own consulting company (www.nodder.com) helping
agile teams learn how to build the systems their users truly need. He wrote Evil by Design, a book of persuasive design pat-
terns, and has produced many Lynda.com video training classes. Learn more about the techniques in this article at his site,
www.questionablemethods.com, and follow him on Twitter @uxgrump.

Joy Beatty is a VP at Seilevel, a business analysis consulting firm whose mission is to redefine the way software requirements are
created. With fifteen years of experience, Joy evolves new business analysis methods and helps customers improve their require-
ments process. She worked with IIBA to develop the third version of their BABOK. She also coauthored Visual Models for Software
Requirements and Software Requirements, 3rd Edition. Joy can be reached at www.seilevel.com and joy.beatty@seilevel.com.

Jennifer Gosden is a software testing manager with Nationwide Insurance. She is responsible for application development testing
activities in Nationwide’s E&S division. Jennifer has more than twelve years of experience in software quality assurance and
software testing practices. Reach Jennifer at jennifer.gosden@gmail.com and follow her on Twitter @JennGosden.

Dorothy Graham has been in software testing for forty years and has coauthored four books: Software Inspection, Software Test
Automation, Foundations of Software Testing, and Experiences of Test Automation. Dot has been on the boards of conferences and
publications in software testing, including program chair for EuroStar. She was a founding member of the ISEB Software Testing
Board, helped develop the first ISTQB Foundation Syllabus, and was awarded the European Excellence Award in Software Testing
in 1999. Dot can be reached at info@dorothygraham.co.uk.

Chris Riley has spent twelve years helping organizations transition from traditional development practices to a modern set of
culture, processes, and tooling. In addition to being a former Gigaom Research analyst, he is a regular industry author, speaker, and
subject matter expert in areas of DevOps strategy, culture, and enterprise content management. He is interested in machine learn-
ing and the intersection of big data with information management. Follow Chris on twitter @hoardinginfo.

Johanna Rothman, known as the “Pragmatic Manager,” provides frank advice for your tough problems. She helps leaders see
problems, seize opportunities, and remove impediments. Johanna has just completed her latest book entitled Predicting the Un-
predictable: Pragmatic Approaches to Estimating Cost or Schedule and has started Agile and Lean Program Management: Scaling
Collaboration Across the Organization. Johanna writes columns for StickyMinds and ProjectManagement.com, writes two blogs on
her jrothman.com website, and blogs on createadaptablelife.com. Contact Johanna at jr@jrothman.com.

http://www.TechWell.com
mailto:clohr@computer.org
mailto:james.hulgan@seilevel.com
mailto:jrenaudin@sqe.com
mailto:srttgmb@yahoo.com
http://www.nodder.com
http://www.questionablemethods.com
http://www.seilevel.com
mailto:joy.beatty@seilevel.com
mailto:jennifer.gosden@gmail.com
mailto:info@dorothygraham.co.uk
http://www.ProjectManagement.com
http://www.jrothman.com
http://www.createadaptablelife.com
mailto:jr@jrothman.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 7

•	 Do you need to know the first release date so that we
can recognize revenue?

•	 Do you need to know the first date we can release some-
thing externally that our customer will find valuable?

•	 Do you need to know when we will fix the problem sup-
port has with the reported user problem?

•	 Do you need to know when we will have this feature or
features to attract specific customers?

•	 Do you need to know when we can capitalize the soft-
ware development expenses?

You see the pattern here. These questions go to the heart of
every agile project: to deliver working product frequently so
you can inspect and adapt.

Your manager might need the an-
swers to these questions. She might
need other answers. How do you
give your manager what she needs,
as opposed to what she wants? And
that’s a different question. Managers
need to understand their options
with agile, and you can help them.

Regardless of the answers to
these questions, your team still needs
to provide working product at a reg-
ular cadence. You can work in itera-
tions or flow—it doesn’t matter as
long as your project’s cycle time be-
tween releases is short. You need to

release something of value frequently. (Note: You can still have
frequent internal releases and release externally when your cus-
tomers are ready. When you have frequent internal releases,
you have a business decision about when to release.)

This is easy with cloud-based or Software-as-a-Service
(SaaS) solutions. It’s more difficult if you deliver client-server,
boxed software, or a hardware device with your product. In
that case, you need to define your minimum viable product
carefully. You have to decide if frequent product releases are
possible or even desirable.

You might need to change the way you think about your
product and your product development. Should you consider
transitioning to a different kind of product?

I bet most of you encounter a common agile project manage-
ment problem: how to provide status information while your
project undergoes constant change. Your managers want to
know when you will finish the project, and that’s a reason-
able request. However, due to the inevitable adjustments of the
team’s backlog, product backlog, and product roadmap, pro-
viding that information is a real challenge.

It’s also a challenge to even estimate. Should you provide a
gross estimate of the maximum time? Should you consider es-
timating a minimum release date? Or do you derive a schedule
with something in the middle of the range? It’s not an easy de-
cision.

As a business, management still needs to know when they
can expect your team to release the product to generate rev-
enue. That’s really the question they
are asking. In waterfall, revenue
isn't usually recognized until the
end of the project. In agile, there is
a possibility of delivering product
incrementally in order to recognize
revenue while the project is still in
flight, before the final release.

In fact, that might be the answer
to your manager’s question.

If you don’t know, ask. That’s
where the transparent culture of
agile smashes into the more tradi-
tional approach of management and
finance. It’s a culture clash and a po-
tential huge disconnect when setting expectations. You might
not be talking the same language as management.

Many managers are still stuck in “What will we get by date
x?” and “Can I get the team to commit to that deliverable by
that date?” The farther out those dates and the larger the deliv-
erables, the less those questions make sense. The product owner
and eagerly awaiting customers will want to adjust things. With
lots of customer participation, change is going to happen. That
flexibility is possible and normal on an agile project.

It doesn’t make sense to tell your manager, “Don’t ask those
questions. They don’t provide any value, and any answer I give
you won’t be correct anyway.” Instead, consider asking these
questions:

Technically Speaking

“You can work with the product

owner to rank those defects

with the features and perform a

gross estimate with confidence or

multiple dates.”

Do You Give Your Manager What
She Wants or What She Needs?
Management needs to know a software product's quality level and

release date. Answering those questions doesn't have to be so difficult.

by Johanna Rothman | jr@jrothman.com

http://www.TechWell.com
mailto:jr@jrothman.com

8	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

dence or a three-date range. You can explain when you will
update your estimate, based on your progress and the backlog.
Your manager should be satisfied with that. This is the same
answer for when you can start capitalizing your effort.

For the first external release: You and the product owner
can together define the backlog for an external release. Now
you do a gross estimate and percentage confidence or three-
date range.

When fixing certain defects or targeting a release for spe-
cific customers: An estimate for release
depends on where in the backlog those
defects are. You can work with the
product owner to rank those defects
with the features and perform a gross
estimate with confidence or multiple
dates.

Maybe you need to consider how
your customers configure your product.
Maybe you need to transition from
client-server to SaaS. Maybe you have a
way to update your product in the field
once you release or ship the hardware.

With agile, you can take advantage
of your ability to update the product
quickly. The question is, should you?
The more you are able to create features
with no technical debt and no defects,
the easier this is. That requires substan-
tial discipline in the team.

Your manager’s questions deserve
consideration. The “When will it be
done?” and “How much will it cost?”
and “What features will I see when?”
questions are not trivial. The answer
that no manager wants to hear is, “It
depends.”

You need to consider providing your
manager with the answers she needs,
not necessarily the answers she wants.
That’s tricky. It will take tact and di-
plomacy. Use your agility to supply an-
swers your manager needs. {end}

Technically Speaking

Don’t ignore your manager’s questions or say, “We can’t es-
timate.” Your manager’s questions can be the start of a conver-
sation about how your organization approaches packaging and
releasing your product and what it means to be agile.

Once you know what your manager needs, you can answer
in these ways:

For the first release date: Once you know what a minimum
viable product is, you can provide an estimate for a release
date. You might need a gross estimate with percentage confi-

According to Namcook Analytics, “a
synergistic combination of defect prevention,
pre-test defect removal, and formal testing
by certified personnel can top 99% in defect
removal efficiency while simultaneously
lowering costs and shortening schedules.”

Add in the potential for lower insurance
costs, and you’ll understand why ISTQB
Certification offers you a mind-boggling ROI.

Start cutting costs today: www.astqb.org/roi

Cut
software development

Bring bugs and budgets under control
with ISTQB Software Tester Certification.

http://www.TechWell.com
http://www.astqb.org/certification-benefits/why-organizations-choose-istqb-for-software-tester-certification/?utm_source=Better-Software-Magazine&utm_medium=Half-Page-

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 9

http://www.TechWell.com
http://tcs.com/assurance

10	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Maximize the impact of your
training by building a custom
week at one of our Testing
Training Weeks. Choose from
16 specialized courses led by
the industry’s most respected professionals. The
more training you take, the greater your savings.

TESTING
TRAINING

WEEKS

FALL SCHEDULE
2015

A

N D S A V E

CO M B I NE

TRAINING WEEK

Green background Indicates
courses pre-approved for Project
Management Institute PDUs.

MOVE YOUR TESTING FORWARD

September 21–25, 2015
Washington, DC

October 19–23, 2015
Dallas, TX

November 2–6, 2015
San Francisco, CA

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Software Tester Certification—Foundation Level Mastering Test Design

Security Testing for Test Professionals Integrating Test with a DevOps Approach
DevOps Test Integration

Workshop

Fundamentals of Agile Certification—ICAgile Agile Tester Certification
Agile Test Automation—

ICAgile

Mobile Application Testing
Mobile Test Automation

Workshop

Essential Test Planning and Management
Measurement & Metrics

for Test Managers
Leadership for Test

Managers
Test Improvement for

Agile

Risk-Driven Software Testing Performance Load and Stress Testing

WITH TRAINING FROM SQE TRAINING

WHO’S BEHIND THE TRAINING?

eLearning

Public

Instructor-led training in
a city near you

Live, instructor-led
classes via your computer

Self-paced
learning, online

Instructor-led training
at your location

For information on our 60+ Public
and 40+ Live Virtual Course Dates
visit www.sqetraining.com

Why Choose SQE Training?

• Expert instructors with 15–30 years of real-world experience
in the software industry

• The most relevant selection of specialized software training
courses available anywhere

• Highly interactive exercises designed to keep you engaged
and help you implement what you’ve learned immediately

• Small classroom workshop environment

• Over 20,000 students trained worldwide who provide
constant valuable feedback on our courses

SQE Training provides the widest selection
of specialized software training courses
available. Developed and taught by
top industry consultants, all courses are
based on the latest industry practices and
are updated regularly to reflect current
technologies, trends, and issues. Find the
training you need for software testing,
development, management, requirements,
and security. www.sqetraining.com

http://www.TechWell.com
http://www.sqetraining.com/training/events/trainingwk?utm_source=FallTestWeeks-062415&utm_medium=BSM&utm_campaign=Marketing-Training
http://www.sqetraining.com/training/events/trainingwk?utm_source=FallTestWeeks-062415&utm_medium=BSM&utm_campaign=Marketing-Training

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 11

Maximize the impact of your
training by building a custom
week at one of our Testing
Training Weeks. Choose from
16 specialized courses led by
the industry’s most respected professionals. The
more training you take, the greater your savings.

TESTING
TRAINING

WEEKS

FALL SCHEDULE
2015

A

N D S A V E

CO M B I NE

TRAINING WEEK

Green background Indicates
courses pre-approved for Project
Management Institute PDUs.

MOVE YOUR TESTING FORWARD

September 21–25, 2015
Washington, DC

October 19–23, 2015
Dallas, TX

November 2–6, 2015
San Francisco, CA

MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY

Software Tester Certification—Foundation Level Mastering Test Design

Security Testing for Test Professionals Integrating Test with a DevOps Approach
DevOps Test Integration

Workshop

Fundamentals of Agile Certification—ICAgile Agile Tester Certification
Agile Test Automation—

ICAgile

Mobile Application Testing
Mobile Test Automation

Workshop

Essential Test Planning and Management
Measurement & Metrics

for Test Managers
Leadership for Test

Managers
Test Improvement for

Agile

Risk-Driven Software Testing Performance Load and Stress Testing

WITH TRAINING FROM SQE TRAINING

WHO’S BEHIND THE TRAINING?

eLearning

Public

Instructor-led training in
a city near you

Live, instructor-led
classes via your computer

Self-paced
learning, online

Instructor-led training
at your location

For information on our 60+ Public
and 40+ Live Virtual Course Dates
visit www.sqetraining.com

Why Choose SQE Training?

• Expert instructors with 15–30 years of real-world experience
in the software industry

• The most relevant selection of specialized software training
courses available anywhere

• Highly interactive exercises designed to keep you engaged
and help you implement what you’ve learned immediately

• Small classroom workshop environment

• Over 20,000 students trained worldwide who provide
constant valuable feedback on our courses

SQE Training provides the widest selection
of specialized software training courses
available. Developed and taught by
top industry consultants, all courses are
based on the latest industry practices and
are updated regularly to reflect current
technologies, trends, and issues. Find the
training you need for software testing,
development, management, requirements,
and security. www.sqetraining.com

http://www.TechWell.com
http://www.sqetraining.com/training/events/trainingwk?utm_source=FallTestWeeks-062415&utm_medium=BSM&utm_campaign=Marketing-Training
http://www.sqetraining.com/training/events/trainingwk?utm_source=FallTestWeeks-062415&utm_medium=BSM&utm_campaign=Marketing-Training

12	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

“The idea behind lean as it’s applied to products

is, instead of increasing the speed that we build

things, instead of increasing that throughput of

working software, we’re increasing the throughput

of knowledge.”

“Wherein traditional user experience

design we'd spend time really

understanding the problems we're solving,

we'd spend time designing, and then we’d

spend time validating our solutions—in

lean user experience, we do a lot of that

all at once.”

For the full interview, visit
https://well.tc/IWAE17-3

Interviewed by: Josiah Renaudin

Email: jrenaudin@sqe.com

Jeff Patton
Years in Industry: 20

Email: jeff@jpattonassociates.com

“One of the core product-thinking

concepts that I want people to

understand is that you choose your

customers. I know people, for instance,

that still think iPhones are stupid or still

don't like them.”

“‘Nail it before you scale it.’ We want to nail it or get it

right with a small subset of our audience before we

roll it out to everybody.”

“If we don't really

think about user

experience and get it

right, our products fail

in the market.”

“You're engaged in the lean process

and if you have a commercial product

or a consumer product, you don't put

it out in front of your whole audience,

especially if it's half-baked. There's

fast, and there's stupid.”

“One of the things that's

fundamentally changed

about user experience

is that user experience

work can effectively

involve whole teams:

developers, QA people,

product managers, business

people, business analysts.

Everybody can be involved

in doing this work with

a good user experience

person as a guide.”

I think we're finally

acknowledging that our

ability to guess right, even with

deep understanding of the

users we’re solving problems

for, they're still our guesses.

Our ability to guess right

isn't so good.

Interview With an Expert

http://www.TechWell.com
https://well.tc/IWAE17-3
mailto:jrenaudin@sqe.com
mailto:jeff@jpattonassociates.com
http://www.stickyminds.com

NEWSLETTERS FOR EVERY NEED!

Want the latest and greatest content

delivered to your inbox every week? We

have a newsletter for you!

•	AgileConnection To Go covers all

things agile.

•	CMCrossroads To Go is a weekly look

at featured configuration management

content.

•	DevOps To Go delivers new and

relevent DevOps content from

CMCrossroads.

•	StickyMinds To Go sends you a weekly

listing of all the new testing articles

added to StickyMinds.

•	And, last but not least, TechWell To Go

features updates on the curated software

development stories that appear each

weekday at TechWell.com.

Visit StickyMinds.com, AgileConnection.com,

CMCrossroads.com, or TechWell.com to

sign up for our weekly newsletters.

Curious About
DevOps? Start Here!
We can trace the beginnings of the
DevOps movement back to a Belgian
named Patrick Dubois. In 2007, Patrick
lamented that the two worlds of
development and operations seemed
miles away from each other, and

there were conflicts everywhere. He observed that development
and operations teams tended to fall into different parts of a
company’s organizational structure (usually with different managers
and competing corporate politics) and often worked at different
geographic locations. Since then the DevOps movement has gained
global momentum and has become a lightning rod for people who
have something to say about how IT is—or should be—running.

The movement found traction online through social media and
discussion boards. DevOps is clearly touching a nerve within
the industry, likely because DevOps is from practitioners, by
practitioners; it’s not a product, specification, or job title. DevOps
is an experience-based movement about cooperation and
collaboration.

In response to the call for more information and resources
about DevOps, TechWell is introducing the inaugural DevOps
Conference West from June 7–12 at Caesars Palace in Las
Vegas. DevOps Conference West will accompany the fifth annual
collocated Agile Development & Better Software West conferences,
the premier event for software professionals. This year’s program is
even more robust, bringing all aspects of the software development
lifecycle to the forefront.

DevOps Conference West features industry practitioners
passionate about the DevOps movement and focuses on topics like:

Why DevOps Changes Everything—Keynote presenter Jeffery
Payne talks about what steps need to be taken to successfully
achieve a DevOps process while avoiding the pitfalls. He’ll also
leave the audience with some take-home ideas about how to
leverage DevOps to advance their careers.

Continuous Delivery: Rapid and Reliable Releases with
DevOps—Bob Aiello explains how to implement DevOps using
industry standards and frameworks in both agile and non-agile
environments, focusing on automated deployment frameworks that
quickly deliver value to the business.

A DevOps Journey: Leading the Transformation at IBM—
Dibbe Edwards describes the journey she went through leading the
DevOps transformation at IBM. She will share her experiences, the
best practices she discovered, what techniques she used, and how
she recommends a software development team get started on the
DevOps journey.

We hope your DevOps journey brings you straight to DevOps
Conference West. See you in June!

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 13

http://www.techwell.com
http://www.StickyMinds.com
http://www.AgileConnection.com
http://www.CMCrossroads.com
http://www.TechWell.com
http://devopswest.techwell.com
http://devopswest.techwell.com
http://devopswest.techwell.com
http://devopswest.techwell.com
http://devopswest.techwell.com
http://devopswest.techwell.com
http://www.TechWell.com

14	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 15

B
ig design up front performed at the early stages
of a project’s lifecycle is the bane of agile
teams, but no design up front is a recipe for di-
saster. Done right, a little bit of upfront user
experience (UX) work can provide a plan for
the whole release, improve the team’s under-

standing of the project goals, provide useful tracking metrics,
and significantly reduce rework.

User-centered design (UCD) is a technique for finding users’
pain points—the things they most need your software to help
them with—and then validating the solutions you build as
early and often as possible. Frequent end-user interactions give
you confidence that the designs you flesh out from your early
UX work stick to design guidelines you created and end up
truly delighting your customers.

Along the way, this focus on resolving user pain points
during the build and validating phases of a project’s lifecycle
gives the team a common vocabulary to describe what’s wrong
with the current process, to prioritize the backlog, and to de-
fine “done.”

Who Are Your Users?
UCD starts by identifying your users, who often have very

different roles from your customer. Your customer pays you
money to fix their problem, and the user is the person who
works with the solution you provide.

Often, the first time true end-users are involved in a project
is during user acceptance testing. UCD turns this on its head by
ensuring that the whole development team observes different
end-users working with their current processes, preferably in
their typical work environment. The only equipment you need
for this activity is a notepad, pen, and a roll of duct tape. The
duct tape is for the development team’s mouths. The primary
instruction to the team members is “Shut up and watch.”

Mapping the Experience
Even a couple of hours of observing six to eight users will

yield enough high-priority pain points to keep the development
team busy for months. [1] Figure 1 shows what can happen
when you get the team to plot out their observations using
sticky notes on a wall-sized experience map. [2]

This orders users’ tasks across the top of the page and de-
scribes the process and issues for each subtask vertically. Team
members get to dot-vote the issues into a rank-order list of
pain points they feel most need attention. This ordered list be-
comes the focus for the next release.

Because each team member observes different users, the
experience-mapping exercise is an opportunity to share obser-
vations and find common threads. The resulting pain points
can easily be turned into user goals, and the team can agree
on metrics to determine what successful completion of a goal
might look like.

As an example, say that several developers observe users
struggling to capture data from a phone conversation into a
customer relationship management system. Because this is a
user’s priority task, the goal might be to make it easy to cap-

ture contact details and current query information. Metrics for
success could include the maximum time this task should take,
the acceptable error or rework rate for users, and identifying
a way to measure the user’s confidence that the data has been
stored successfully. Now, whatever solution the team builds for
this task, they have some metrics to use for usability testing in
much the same way as they might for unit testing.

Build the test first, then build the product.

Imaginary People for Real Focus
With user goals and metrics in place, it’s time to start de-

signing solutions. However, it’s good to have a focus for these
solutions. Everyone on the team has a different perspective of
who the user is. It’s useful to condense these diverse impres-
sions into a couple of common, archetypal user descriptions.
[3] Each persona might only be a thumbnail sketch on a 5x7
index card, but it’s important that they are believable indi-
viduals with qualities similar to the people the team observed
during their site visits, as shown in figure 2.

 To make it more realistic, it’s good to give each persona a
name and some basic biographical information. Then list the
context in which they’ll use the product, their goals, and the
implications of these goals. You’ll also want information for

Figure 1: Building an experience map

Figure 2: Creating personas

http://www.TechWell.com

16	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

how the persona will want to interact with the product.
Now you can start writing scenarios for how each of your

personas would interact with the system in an ideal world. [4]
These scenario descriptions should stay away from de-

scribing interface components and instead talk about inter-
actions and outcomes. It only takes a couple of hours of the
whole team working together to come up with a good, believ-
able set of scenarios that covers the main tasks the team will be
developing solutions for.

Getting the Entire Team Involved in Design
Once the team has some scenarios in place, it’s time to get

creative with some ideation time. You could just dive straight
into writing stories around the scenarios and call it good, only
who knows whether your stories would capture the most com-
pelling design? Spending a bit of time at this point to broaden
your perspective using an ideation technique such as design
charrettes will allow you to explore multiple options and agree
as a team on the most productive way forward. [5]

The design charrette process involves every team member
working individually for ten to fifteen minutes to sketch a
high-level interface design for one of the scenarios. After the
time is up, everyone gets together to share and critique the de-
signs. After hearing everyone’s perspectives, each individual
creates a second round of designs. This beats brainstorming
because no one voice can dominate. Instead, everyone draws
out his own solution but still benefits from the group’s shared
creativity. After the second round of design work, the team re-
convenes to discuss the updated interface ideas.

Cheapest Prototypes Ever
At this point, you should have a good idea of what the

user stories are going to be and what the interface might look
like. You could just start coding, but code rework is expensive
and you don’t know for sure that your ideas are correct yet.
Why not spend a day or two to validate your ideas with users?
Paper prototypes—literally sticky notes stuck on 11x17 sheets
of paper—are a great tool to get your first round of user vali-
dation. [6]

Reading through their scenarios is the best way to motivate
teams to create paper prototypes. Each time the scenario men-
tions an interaction, it’s time to create an interface component.
Using the design charrette output for inspiration, draw each
interface element on a sticky note with a marker, cut the sticky
note to size (you soon learn to always start drawing in the area
that has glue behind it), and stick the element on the sheet.
You’ll probably develop a color convention, such as buttons
are always green, labels are always blue, and text entry fields
are always yellow. Continue reading through each scenario
until you have created interface elements for every part of the
interaction.

Consider always using sticky notes. Because every element
is independent, it’s easy to quickly reorder the interface com-
ponents. Stickies make it easy when changes impact earlier
parts of the interface that have been already defined. Using a
wireframing tool, teams can become reluctant to change their

drawings even though they know the design needs updating.
Not so with stickies.

Even if the resulting interface looks ugly, you’re testing con-
cepts, not the final implementation. The team shouldn’t be in-
terested in designing every last detail of the interface during
prototyping. Instead, we want to know whether the general
flow is in line with users’ expectations, whether they under-
stand the concepts we’ve introduced, and whether they believe
the new design will eventually meet user needs.

Usability Testing to Validate Your Design
To answer those questions, you’ll need to run a usability

study with your paper prototype as the interface. [7] Re-
cruiting just five representative users—preferably not the same
ones you visited at the beginning of the process—will give you
sufficient feedback at this point. Figure 3 shows how paper
prototyping can evolve simply by listening to your users.

Usability study fidelity will increase later along with inter-
face fidelity, but for now you’re mostly interested in getting
early verification that your design concepts are suitable.

Usability testing your paper prototype is your first oppor-
tunity to capture metrics. The tasks you ask users to perform
with the paper prototype should be based on your scenarios,
which in turn were based on the list of user goals you cre-
ated. Each of those goals has associated metrics, so it should
be pretty readily apparent which metrics apply to each user
task. The paper prototype usability test should give us a good
general indication of whether this new interface design and in-
teraction style is likely to resolve a user’s pain points. Users
love working with paper prototypes because it’s clear to them
that the interface isn’t done and that their comments and sug-
gestions really count for something.

Just like in regular sprints, it’s unlikely your first proto-
type design iteration will be perfect. There could well be areas
where usability study participants lost the plot, the interface
wasn’t clear to them, or they wanted features or interactions
that just weren’t available. That’s OK. Early usability studies
like this are formative, designed to help the team work out
where the problems are and to identify improvements.

It might be that there are clear solutions, in which case you
can probably just make some changes and move forward to

Figure 3: Creating personas

http://www.TechWell.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 17

the next step. On the other hand, it may be necessary to build
more paper prototypes with a new design concept and do an-
other round of usability testing before you continue. The thing
is, paper prototyping is fast and cheap. Getting the general
concepts right at this point will save untold weeks of rework
later in the process.

Now Create Your Backlog
Once you are confident that your prototype concepts form

a good basis for an interface design, it’s time to create your
product backlog. Jeff Patton’s story mapping technique pro-
vides a great framework that will augment the initial experi-
ence map. [8] The experience map describes user processes as
they exist today, and the story map will describe the future
state interface and user behaviors. Story maps add an extra
dimension to your backlog because they allow you to priori-
tize stories within interface areas and across functional areas
at the same time. This makes it easy to see which stories the
team needs to tackle first in order to get to a minimum viable
product—or in our case, a minimum user-testable product.

To create a story map, I typically lay out each page of the
paper prototype in the order users would experience it, then
create stories to describe the capabilities that are present on
each page of the paper prototype. In this way, there is a direct
link from our initial experience map, through the user pain
points and goals, to the scenarios, the paper prototype, and
finally the story map. These artifacts give the team a common
vocabulary and understanding. If you write your stories in the
form “As a [user type] I want to [task] so that [goal],” it be-
comes very easy to insert a persona name, interface capability,
and user goal to create each story.

Prioritizing a story map is easy because the paper prototype
interface is available for reference. That way, it’s clear which
stories are essential for basic functionality and which are
aimed more at adding delightful elements to the interaction.

I regularly facilitate weeklong sessions with teams, moving
from user observation on Monday morning to a usability
tested prototype on Thursday afternoon and backlog creation
on Friday. If you want to try this for yourself, I suggest you use
a two-week cycle so that you can familiarize yourself with the
techniques as you progress.

The True Benefits of User-Centered Design
Building the basic functionality first means you get to

usability test with actual alpha-ready code earlier in the
process, and only then should the team carefully add ad-
ditional features once you’re sure you’re on the right track.

Regular usability sessions are the key to reducing re-
work. Each session gives you more data to help you un-
derstand whether you’re on track toward meeting users’
needs.

If users don’t understand your UI, it’s time to revisit
your basic design assumptions before you pile even more
features on top of the core concepts. Because you’ll be
working with alpha code, usability sessions also tend to be
a great way to report bugs.

To summarize, the benefits of a UCD approach are:
•	 Early user feedback: Identify the pain points
•	 Time and cost savings: Build the right thing the first

time
•	 Faster delivery: Less rework, clearer communications
•	 Faster to market: Realize business benefit sooner
•	 Better focus: Clear goal-setting for team and manage-

ment with the team striving to get to done
•	 Better measurement: Metrics for success are baked in

Bringing all necessary expertise together in one room rather
than holding interminable meetings produces major time sav-
ings and cost benefits. Design decisions are based on quantifi-
able member data rather than personal opinion. And the team
ends up with a common understanding to create the best user
experience possible. {end}

chris@nodder.com

Click here to read more at StickyMinds.com.
n	 References

Wanted! A Few Great Writers!
I am looking for authors interested in getting

their thoughts published in Better Software, a

leading online magazine focused in the software

development/IT industry. If you are interested in

writing articles on one of the following topics,

please contact me directly:

•	  Testing

•	  Agile methodology

•	  Project and people management

•	  DevOps

•	  Configuration management

I'm looking forward to hearing from you!

Ken Whitaker

Editor, Better Software magazine

kwhitaker@sqe.com

http://www.TechWell.com
mailto:chris@nodder.com
www.stickyminds.com/sticky-note/references-186
mailto:kwhitaker@sqe.com

18	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Maybe you can’t do a one-fingered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workflows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrificing coverage.

A U T O M A T E D T E S T I N G

H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

http://www.TechWell.com
http://www.saucelabs.com/signup/trial?utm_medium=BSMQ215

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 19

Maybe you can’t do a one-fingered push-up, but you can master speed and scale

with Sauce Labs. Optimized for the continuous integration and delivery workflows

of today and tomorrow, our reliable, secure cloud enables you to run your builds

in parallel, so you can get to market faster without sacrificing coverage.

A U T O M A T E D T E S T I N G

H A S S A U C E L A B S .

Try it for free at saucelabs.com and see

why these companies trust Sauce Labs.

M A R T I A L A R T S

H A S B R U C E L E E .

Register By September 11
AND SAVE UP TO $400Groups of 3+ save even more

THREE CONFERENCES
IN ONE LOCATION
register for one and attend sessions from all three

adc-bsc-east.techwell.com | #bscadc PMI® members can
earn PDUs at this event

http://www.TechWell.com
http://www.saucelabs.com/signup/trial?utm_medium=BSMQ215
http://adc-bsc-east.techwell.com?utm_source=COLLW15-MYC-1-pg-51315&utm_medium=BSM&utm_campaign=Marketing-PromoMessage

20	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 21

L
et’s start with a short story. Nick Knowall has just
joined the Software XYZ company. He is young and
energetic and has experience with test automation
tools. Software XYZ has been performing test au-

tomation for a while with an in-house framework that imple-
ments all the tricks of the trade (test case independence, tool
independence, abstraction levels, and so on).

They use a tool (AAA-Tool) that Nick hasn’t worked
with before. Nick learns how to use AAA-Tool, and it
doesn’t take him long to start automating tests. AAA-
Tool is state of the art, and keyword-driven automation
is so much easier than with the tools he has used before.

However, Nick decides that he doesn’t need to use the
existing framework. Why take the time to learn to use
it, considering the framework developer will retire soon
and nobody will be left to maintain it?

Nick is already becoming very productive and ap-
pears to be doing a good job. He automates a lot of new
tests. Testers and managers alike are really excited with
the speed the work is getting completed. At this point,
management agrees that the in-house framework is no
longer up to date. From now on, new test cases will be
automated directly using AAA-Tool and the framework
will only be used for automating the older test cases.

Developing new keyword tests is easy and fun, al-
though parameterizing them to be flexible in execution
depending on the data is much more boring.

Because it’s so easy to write new tests, why bother?
Nick also knows that he should write some documenta-
tion, but now he doesn’t have time. Testers are waiting
for the new automated tests, so he will document the
tests when he has some spare time later.

A year later, Nick has become an expert in AAA-Tool
and leaves the company for a new, more lucrative job.

If you have worked for some time with test automa-
tion, you will have either experienced a similar scenario
yourself or know somebody who did.

In all these scenarios, there are many common prob-
lems (or issues) that need common solutions (or pat-
terns).

Test Automation Issues
Test automation issues are the problems one encoun-

ters when performing test automation (such as high
maintenance costs), as well as the tasks that have to be
completed (like selecting a tool). Test automation issues
can have very different roots.

Some are technical in nature, such as inefficient ex-
ecution or inconsistent data. Other issues are related to
company culture, such as inadequate communication or
late test case design.

And, of course, many issues arise when management
doesn’t really support test automation, often because of
unrealistic expectations.























 

























Z



















 

















































Figure 1: Test automation issues in the wiki

http://www.TechWell.com

22	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

We have classified the test automation issues into
four categories:

•	 Process issues: The less than optimal way we work with
automated tests and tools

•	 Management issues: Issues with management, staffing,
and objectives

•	 Design issues: Lack of a good testware architecture and
other technical factors, including maintainability

•	 Execution issues: Issues related to the running of tests in
their automated form

Test Automation Patterns
Test automation patterns are successful solutions to

issues that practically every automator (the person re-
sponsible for test automation) sooner or later will en-
counter.

Because these solutions have been proven repeatedly
and are readily available, automators don’t have to in-

vent them from scratch—they can just apply an appro-
priate pattern.

Test automation patterns are different from design
patterns used in software development. Design patterns
are prescriptive: You have a design problem, and you
can solve it with a specific set of code.

Test automation patterns give suggestions for how
a particular issue has been solved successfully by other
people.

A pattern doesn’t necessarily include the perfect so-
lution for every situation, but the suggestions can lead
to better and more appropriate actions than you might
have thought of otherwise.

Automation patterns can use other automation pat-
terns. Sometimes a pattern can only be applied after an-
other pattern has been carried out.

As an example, think about the pattern for a car; you
can’t use this pattern if the patterns for paved roads and
gas stations haven’t been implemented.


















































































































































































Figure 2: Test automation patterns in the wiki

http://www.TechWell.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 23

There are two ways to do this in the wiki:
•	 General issues: Useful when test automation is not

going as expected but a specific problem can’t be pin-
pointed—usually because there is more than one issue
causing pain. General issues can be imagined as con-
tainers for groups of similar, more specific issues, so that
by choosing a container one can home in on more spe-
cific issues and, finally, to the issue that is most pressing.

•	 Diagnostic: The idea for the diagnostic came from ob-
serving how a medical doctor pinpoints an illness in a
patient he has never seen before. The line of questioning
goes something like this: First, the doctor asks the pa-
tient general questions (age, previous diseases, family
history, and so on) and, depending on the answers, asks
additional specific questions. Once all of the questions
have been asked along with the necessary examinations,
a good doctor can identify exactly what’s wrong with
the patient.

In the test automation wiki, we start the diagnostic
process by asking general questions. Each question has a
limited number of possible answers, which lead to more
detailed questions, and eventually to the issue that best
describes the most pressing problem. Just as with the
general issues, this method leads to the patterns that can
be applied to solve the issue.

Understanding Test Automation Issues
Let’s use Nick’s story as an example to demonstrate

how issues can arise, and the patterns that could be used
to mitigate them. When Nick joined the Software XYZ
company, he was told about the company’s test frame-
work and the AAA-Tool.

Test automation patterns also can be classified into
four categories:

•	 Process patterns: How the test automation process
should be set up or how it can be improved

•	 Management patterns: How to manage test automa-
tion—as an autonomous project or integrated within the
development process—and issues with managers

•	 Design patterns: How to design the test automation
testware so it will be efficient and easy to maintain

•	 Execution patterns: How to ensure that test execution is
easy and reliable

The Test Automation Patterns Wiki
In the Test Automation Patterns wiki, we describe

issues and give examples, along with suggestions as to
which patterns to apply. [1] Figure 1 shows a mind map
that gives an overview of the issues we have collected so
far. Note that we show issues in italic capitals.

Figure 2 shows an overview of the patterns we have
collected so far. For each pattern, the wiki explains the
context in which it can be applied and gives recommen-
dations and suggestions for implementing the pattern.
Note that we show patterns in capital letters (not italic).

 To encourage open dialog and to share lessons
learned among test automation professionals, this wiki
is available for viewing and community updates.

Applying the Patterns
How can you identify the issues and the patterns that

may be useful for you as a tester, automator, or man-
ager? The first step is to decide which issues are the
most pressing for you now.

Table 1: Mitigating Nick's limited user experience

Table 2: Not taking advantage of lessons learned or existing best practices

http://www.TechWell.com

24	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

The first issue is shown in table 1, along with the
pattern that would have helped.

In this case, the best pattern for lack of experience is
for Nick to receive training.

Next, rather than take the time to learn the existing
framework, Nick starts using the tool immediately.
Table 2 shows that not taking the time to understand
existing tools and approaches can result in reinventing
the wheel for no good reason.

Nick assumes that the existing framework shouldn’t
be used because the developer will retire, and nobody
can maintain it. The issue here has nothing to do with
Nick. If one developer leaves, will no one be able to sup-

Table 3: Ensuring that the automation test framework is supported

port the framework? This doesn’t sound like good man-
agement! By clearly identifying the issue leading up to
the main issue, there are several patterns in table 3 that
can be used to address the core issue.

This is an example of how one seemingly obvious
issue masks a root cause issue. In this case, applying pat-
terns for the root cause should resolve the situation.

Continuing with Nick’s story, he is very productive,
automating new tests with AAA-Tool faster than man-
agement expected. The original test framework will no
longer be maintained and will be used only for older test
cases. Table 4 shows the issue that has been caused and
possible patterns to use to correct the situation.

Table 4: Jumping into execution mode without understanding the long-term ramifications

http://www.TechWell.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 25

While new tests using AAA-Tool are fun to write,
Nick isn’t spending any time parameterizing the data
and documenting how the tests work. Unfortunately,
there ends up being no time for these critical tasks once
maintenance work settles in. Table 5 clearly shows the
issues and patterns that have evolved over a period of
bad decisions.

Finally, after Nick becomes an AAA-Tool expert, he
leaves Software XYZ for a better job. The obvious pat-
tern that could mitigate this situation was described in
table 3.

Nick’s story is just an example, but we see how var-
ious mistakes made along the way have sowed seeds
for trouble later on. We also see that there already are
patterns that could have helped Nick’s company to do
better with their automation.

Wherever you are in your test automation, we hope
the wiki will help you identify the issues that are hin-
dering you and will suggest patterns that can solve your
problems. We welcome other example stories and expe-
riences using test automation patterns. So have a go at
finding a useful pattern or two for yourself using the is-
sues in the wiki, and share your experiences with us and
other wiki users.

Be aware of issues that you may be falling into just as
Nick did, and try not to repeat his mistakes.

Table 5: Mitigating the issue with documentation that never gets written

Click here to read more at StickyMinds.com.
n	 References

Conclusion
The test automation issues and patterns in the wiki

are still a work in progress. We welcome feedback, par-
ticularly your own experiences with test automation
patterns.

Why reinvent the wheel when there are already lots of
wheels for the taking? {end}

info@dorothygraham.co.uk
srttgmb@yahoo.com

http://www.TechWell.com
www.stickyminds.com/sticky-note/references-187
mailto:info@dorothygraham.co.uk
mailto:srttgmb@yahoo.com

26	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 27

T
he words culture, continuous delivery, iterations,
and analytics are usually associated with DevOps,
but they tell you very little about what the move-
ment actually is. DevOps is frustrating to some

while being useful to others. And even though at times it seems
to be the prevailing marketing hype, there is no doubt that its
principles and practice can help any enterprise software devel-
opment organization.

DevOps can be characterized as the assembly line of
building, testing, deploying, and updating enterprise appli-
cations. At its core, DevOps is the framework that enables
software to be released faster and with better quality. When
you boil it down to a least common denominator, this is the
release management goal that teams have maintained since
the beginning of software development. DevOps simply
formalizes “more frequent releases at a higher quality” into a
framework that guides team members into a continuous flow
from code to end-user.

How you envision DevOps in your organization depends on
your starting point. Are you a developer in a large enterprise
who wants to streamline deployment, a developer in a small
startup who thinks IT is going away, or a person in IT in an
agile development shop who is excited about adopting DevOps
and wants to lead the movement? Each backstory impacts your
first impression and a surprising amount of what you think
DevOps is. There are two separate DevOps: the movement
and the practice.

Movement: Some DevOps evangelists have been guilty
of comparing all who write code to the giants who have
mastered DevOps, such as Netflix and Facebook. This has
mistakenly made people believe that DevOps is an unat-
tainable pipe dream. But your organization doesn’t need to
be Google to benefit from DevOps. Software quality in fre-
quently released code is in everyone’s best interest.

The movement can be a source of frustration for many
because some of those in the movement represent a devel-
opment environment, which is not practical in existing en-
terprises and development organizations.

Practice: The process and procedures incorporated in
DevOps are not necessarily new. Large organizations have
dedicated departments focused on this for years. Apple is an
example of a company that has invested in DevOps teams
for each application unit for quite some time. Etsy, argu-
ably one of the leaders in DevOps practices, is another or-
ganization that uses the DevOps framework.

Culture May Destroy Any Possibility of
DevOps Success

Culture can be a highly distracting element of DevOps
by being responsible for the deaf ears and turned heads
from existing development teams. It is unfortunate that this
can happen, and it seems it is the result of startups whose
team members have job titles such as “ninja” or “master.”

Even if you don't like to label culture, elements of what
needs to be accomplished already exist in every team. Cul-
ture exists no matter what. What DevOps is telling us is

that instead of letting culture happen accidentally, it needs
to be deliberate. People and politics tend to be the largest
yet hardest to quantify inhibitors to success. Only in a de-
liberate culture is it possible to identify bottlenecks and ul-
timately seek to eliminate them.

Once you have the entire team working at a unified
drumbeat, you can focus on DevOps execution consisting
of two tactical components: process and tooling.

Process: The processes in the DevOps framework are
well established and could stand on their own. They are put
in two broad categories: automation and metrics. Automa-
tion leads to processes: continuous integration, continuous
delivery, continuous deployment, and automated testing.
These processes take code from developer to production
as quickly as possible, considering quality each step of the
way. The idea is to move far away from long-distant water-
fall releases or from agile’s biweekly releases to a contin-
uous deployment of code within a day or even hours after
the developer commits to production. Instead of release
chunks, it’s a river of code.

This continuous deployment process may not be ap-
plicable for all applications simply because some environ-
ments don’t have the user base or transaction numbers to
justify the work. However, continuous delivery is available
to most, and continuous integration is a goal that should
work for the entire organization.

With automation, humans alone cannot keep up with
the documentation and performance of such a system. The
only way to do this is to build in metrics. “Measure ev-
erything” should be the mantra of all DevOps teams, and
great analytics tools that track everything from develop-
ment to production infrastructure have come a long way
to free teams from thinking about collecting information to
more real-time analysis. Such tools deliver analytics, alerts,
and trends that help the team know what is going on in real
time and what has taken place in the past.

Metrics also play into the theme of results. Everything in
DevOps is driven by results and metrics become the source
of documentation ensuring that DevOps environments are
sustainable and extendable. This removes developers from
their own branch (or fork) of code and gets them interested
in the quality of the entire production release. It enhances
IT’s scope from just keeping servers up and running to an
interest in how efficiently the code is being deployed.

Tooling: DevOps typically assumes three elements:
culture, which is represented by the people; the process
implemented by those people; and the tools used to execute
those processes. Together, they form a hierarchy with tools
intentionally placed at the end of the list. It is common for
teams to expect tools to automatically create a DevOps op-
erational environment for them. Organizations that lead
with tools often find the tools taking over and defining the
processes—and ultimately the culture—for the teams, in-
stead of the other way around.

Once you embrace culture, process, and tools, you have
DevOps.

http://www.TechWell.com

28	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Migrating to DevOps
As long as teams seek faster software delivery without

sacrificing quality, the processes and people should natu-
rally flow into a DevOps environment. DevOps doesn’t
have to be some unreachable, complex process either.
Rather than attempting to perform a massive transforma-
tion, consider setting up DevOps with a building block ap-
proach. It is important to remember that DevOps is not an
end—it is a means.

We’ve all heard the infamous “This is the way we have
always done things.” But those who are reluctant to change
should agree that faster software is required to compete.
Because all companies’ applications have become directly
tied to revenue generation, improving their creation is not
a choice. On the flip side, even the most modern software
development shops will learn they need IT to ensure that,
no matter how fast they move, the production to delivery
chain itself needs to be sustained.

For existing organizations, there are two options for
adopting the DevOps framework: starting out with new
DevOps teams or slipstreaming into existing processes.

New development units: For this to work, upper man-
agement needs to commit to building brand-new develop-
ment units from the bottom up that embrace a modern de-
velopment culture, process, and tools. This does not mean
that existing development teams are eliminated; rather, they
often will persist for support and maintenance of legacy ap-
plication versions. This approach works well when there
are brand-new applications or when there is a shift from
client-server applications to web application counterparts.

Slipstreaming: This is the process of integrating new
practices into an existing environment without stopping
current operation or replacing whole chunks of the existing
processes at once. In my opinion, slipstreaming is the ideal
approach, and by far the less costly of the two. However,
to see the results and achieve some of the bigger goals like
continuous integration or delivery, it usually takes more
time and is threatened by existing habits and priorities.

To start your transition to DevOps, automate something.
This can be a quick win that builds confidence, and excitement.
Take one process with high opportunity and low risk level (like
end-to-end testing or functional testing) and automate it.

You could offload functional testing by using test auto-
mation scripting to show the immediate benefits of testing
code just after a developer commits. These tests should find
defects even before manual testing, which should optimize
the time spent hunting down defects by the existing testing
team. A commitment to adopt automated testing makes
front-end development part of quality and it opens the
door for focusing on test strategy and exploratory testing.

Which approach you pick is not just a technology
choice, it is a strategic choice. Both options imply that there
will be changes to the structure of teams. In both cases,
IT becomes a services organization and a facilitator while
developers gain more responsibility and accountability for
software quality in production than they ever had before.

When Things Get Rough
After you have defined your approach, the most difficult

part of transitioning to DevOps is dealing with the people in-
volved. In nearly every case I’ve witnessed, it is difficult to keep
the system working well when people leave. The time wasted in
meetings explaining and reconciling definitions of various tech-
nical dialects can be huge in most organizations. This waste
of time will single-handedly halt any move to faster processes
using DevOps.

There are various ways to tackle people-related issues
head on. But first you have to have critical mass from a
team that is empowered and wholeheartedly believes in
modern development. You can start by making the pipeline
design something everyone can contribute to. Let the entire
team decide what to automate first. Break down existing
barriers to communication and encourage QA to give IT
infrastructure and developers suggestions for improvement.
In the most successful modern development shops, QA has
an important holistic strategic role as well as a tactical one.

If you work in a large organization, you might want to
create a conduit for the DevOps framework. Organizations,
such as Wells Fargo, have taken a slightly different shared
services approach. The shared services department is usually
responsible for DevOps reports to IT, but their customers are
really the developers. This organization is responsible for cre-
ating and vetting a library of tools and processes, making them
available and encouraging developer adoption.

Don't be surprised if you don't claim big wins overnight.
And with small successful steps that will motivate the team,
things can change quickly.

Ensuring DevOps Success
Small startups to large organizations have all proven

that DevOps works by reducing development costs, im-
proving product quality, and ultimately resulting in happier
customers. But DevOps is unique for each organization and
is not a one-size-fits-all approach. To provide a successful
DevOps environment, you need the right people and the
right strategy.

IT and software development must have a mutual re-
sponsibility for DevOps success. IT needs to loosen up on
the reins and help developers become more aware of what
they are already doing. And developers need to better un-
derstand how to collaborate with IT operations to keep
their environment working efficiently so they can focus on
what they do best—coding new features.

DevOps might still sound like hype, but its objectives
should be clear within your organization. Without a sound
DevOps approach, an organization will fall behind on soft-
ware quality and practices.

The first step is getting everyone on board and working
toward the same goal. {end}

chris@fixate.io

http://www.TechWell.com
mailto:chris@fixate.io

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 29

2010
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021GAIN INSIGHT INTO THE MOST ANTICIPATED THOUGHT LEADERSHIP

RESEARCH IN THE FIELD OF QUALITY ASSURANCE AND TESTING!

© 2015 Capgemini, Sogeti and HP.
All rights reserved. Rightshore® is a
trademark belonging to Capgemini.

Get a preview of the World Quality Report 2015-16 at HP Discover,
Las Vegas • Tuesday, June 2, 2015 4:30 p.m. - 5:30 p.m. Visit
http://h30614.www3.hp.com/Discover/home for more information.

Meet Capgemini and HP subject matter experts at a special session and discover
the latest highlights from the upcoming report featuring these key topics:

 ¾ Testing and QA budgets

 ¾ Digital (SMAC developments
and Testing)

 ¾ Agile and DevOps

 ¾ TCoE models (hybrid models)

 ¾ TEM and TDM

 ¾ Test and QA across industrialization

 ¾ Automation and standardization
lifecycle

 ¾ Security Testing

To learn more, please visit:
www.worldqualityreport.com or www.capgemini.com/testing-services

ABOUT CAPGEMINI

With more than 130,000 people
in 44 countries, Capgemini is one
of the world’s foremost providers
of consulting, technology and
outsourcing services. The Group
reported 2013 global revenues of
EUR 10.1 billion. Together with its
clients, Capgemini creates and
delivers business and technology
solutions that fit their needs and
drive the results they want. A
deeply multicultural organization,
Capgemini has developed its own
way of working, the Collaborative
Business Experience™, and draws
on Rightshore®, its worldwide
delivery model.

WORLD
QUALITY
REPORT

http://www.TechWell.com
http://www.capgemini.com/testing-services

30	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 31

The BA will also use process flows, state models, business
data diagrams, and ecosystem maps to ensure that no stories
are forgotten.

When it comes to elaborating user stories, the BA will use
the same business analysis skills to fill in the details necessary
for the delivery team. These artifacts include thorough accep-
tance criteria and models that supplement user stories, such
as state models, UI mockups, display-action-response models,
and decision models. Being able to step away from the delivery
team to communicate with the value team is an advantage for
both teams because developers can focus on developing and
testing without having to worry about meeting with the value
team to clarify requirements. It gives them more heads-down
time to accomplish their work. The value team doesn’t have
to worry about interrupting important work flow and, with a
dedicated BA, they now have a trusted team member who can
communicate effectively to the delivery team.

Superpower 2: Underneath Our Capes, I’m a BA and She’s
a ScrumMaster

When I take off my superhero cape, I’m still just a BA—
I’m not a ScrumMaster, a developer, or a tester. I can support
all of those functions, but I have different strengths. And the
same is true with a ScrumMaster. You shouldn’t assume the
ScrumMaster can do requirements well. These are completely
different roles and require different skills. Some organizations
attempt to reduce the number of people in a delivery team by
combining roles. Instead, why not consider sharing the BA
and the ScrumMaster on more than one project? This is where
a good BA who is able to shift contexts can really shine by
adding insight to both projects based on what she is seeing in
the other—especially in related projects.

Attempting to make the ScrumMaster an effective BA will
require in-depth education about requirements practices. She
will have to learn to focus on understanding the business needs
and prioritizing those within the project and process con-
straints.

Attempting to make the BA the ScrumMaster means the BA
will have to learn more about the interworkings of the Scrum
process. For nonagile projects, attempting to combine the BA
with the project manager role won’t work either, for similar
reasons.

Superpower 3: I Can Be a Product Owner Proxy
The reality of many organizations is that a product owner

(PO) isn’t as available as we need them to be— especially for
fast-paced agile projects. That could be a result of the product
owner not being collocated with the rest of the team, or it
could be because the PO has more pressing business duties
other than the project. A BA can often perform the product
ownership role when the PO is not available, as long as the BA
understands the priorities, tasks, and needs from the product
owner. A BA can prioritize, answer developer questions, and
make decisions to support the product owner.

The BA needs to know his own limitations, though, to bring
in the product owner when necessary. When there are multiple
Scrum teams engaged, a BA can act as PO on each team, re-
porting to a chief product owner.

B
usiness analysts (BAs) deal with their fair share of
difficult stakeholders, ranging from business stake-
holders who won’t participate in elicitation, to de-
velopers who won’t bother reading requirements, to

project managers who think BAs are just scribes.
As organizations adopt agile approaches, we are faced with

a new kind of obstacle from stakeholders who don’t think they
need business analysis. These stakeholders might think the BA
isn’t needed because the delivery team gets to talk directly to
customers to understand requirements. Managers may struc-
ture their agile teams full of developers, thinking that any one
of them can perform the BA role in scrum planning or during
any given sprint.

But without someone who is truly dedicated to business
analysis work, who is going to determine whether you failed to
identify any stakeholders, interfaces, or data objects? Who will
do the analysis to figure out the most critical priorities, rather
than making decisions based on emotion? Who will do the de-
tailed elaboration to make sure the story can be implemented
successfully? Even in agile, you still need someone to perform
these tasks.

Who Performs Business Analysis?
Although this varies from organization to organization, the

business analysis function can be performed by a designated
BA, the ScrumMaster, or the product owner. In some pure
forms of agile, all the team members are interchangeable and
anyone can act in the role of business analyst, as well as de-
veloper, tester, product owner, and so on. We don’t really care
what you call the role; we just care that someone is performing
business analysis.

When BAs do their job well, it seems like they have super-
powers. They can predict what details will be needed, they
can figure out what is most important at any point in time,
and they can bring a difficult stakeholder around to actually
work with the team as a contributor (and not as an antago-
nist). Someone in a dedicated BA role throughout a project’s
lifecycle can usually provide a more objective perspective than
a member of the team who is in the weeds performing specific
technical tasks. There are six BA superpowers that are most
important to agile and nonagile projects.

Superpower 1: The BA Can Serve on Both the Delivery and
Value Teams

The delivery team is responsible for implementing a solu-
tion that meets the business needs, and the value team is re-
sponsible for defining the value the business is looking for from
a solution. In comparison, the value team defines what is most
valuable to build, and the delivery team builds the most valu-
able things first. The product owner and the BA really should
stand together on both of these teams.

In many organizations, the product owner won’t have the
analysis experience to fully discover what is most valuable
to develop. For example, the BA can use business objectives
models and objective chains to assign dollar values to different
features. This benefits the product owner’s ability to prioritize
user stories for each sprint.

http://www.TechWell.com

32	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Regardless of the reason or the exact nature of acting as
a product owner proxy, the BA and the product owner need
to work closely together across a broad range of topics with
stakeholders. This requires that the BA maintain a clear list of
decisions that are made while acting as a proxy.

Superpower 4: The BA Has Outstanding Analysis and
Communication Skills

A BA typically spends her time developing analytical and
communication skills to perform solid business analysis. Just
because a BA is working on an agile project doesn’t mean
that analysis and communication stops. In fact, quite the op-
posite—this analysis is necessary to make sure that the team
understands what is most important to concentrate on first. No
surprise, but that is why communication is a core agile prin-
ciple for team collaboration.

By all means, don’t treat BAs as scribes. A BA acts as a
sounding board, feeds product owners’ analysis to make in-
formed decisions, and supplements higher-level thinking with
detailed ideas. Having a BA superpower implies being skilled
at the thing the ScrumMaster cares most about: blocking and
tackling outsiders so that the delivery team can focus on their
work.

Superpower 5: Requirements Don’t Come with a Super
Sign-Off

Complying with the principles of agile, a mindful BA should
collaborate with the product owner to avoid documenting too
many detailed requirements too soon. Similarly, the rest of
the team needs to ensure that they are continuously looking
at requirements throughout the project as they are written,
prioritized, and elaborated upon. This means that the busi-
ness stakeholders no longer have to sign off and approve them
at the start of a project. The team will have to trust that user
stories are created in time, choosing the right items to put in
the backlog and focusing on delivering the most value as soon
as possible. The BA and product owner keep the longer-term
roadmap in mind so that the team has some idea where this
ship is heading.

As stories are loaded into the backlog, the team should be-
come familiar with what scope lies ahead. This helps ensure
that the team and the BA aren’t on completely diverging paths
as the project progresses. Before a new sprint commences,
product backlog items are prioritized based on what is most
important and what produces the best value. The BA should
elaborate the most important stories with more detail one to
two sprints ahead of when they will be developed so that the
team is able to estimate the effort to develop them. The team
should become familiar with the stories and request additional
details before or within the sprint, as possible.

Superpower 6: Don’t Think I’ve Got Secret Superpowers
Most of us relish how agile changes the cadence of when

and how work is defined and performed. BAs no longer have to
listen to project managers tell us there are only three weeks to
create requirements for an upcoming release. Project managers
who have no interest in hearing how long requirements devel-
opment should take or what scope can be cut to meet their
deadlines must assume that the BA can deliver the impossible.

When it comes to working ahead on future sprint require-
ments, please don’t tell the BA that the requirements for the
next sprint need to be created in four days without any dis-
cussion. It is far easier to plan to create the details one to two
sprints ahead. That should give the BA plenty of time to elabo-
rate. In my experience, BAs are pretty good at estimating the
level of effort to elaborate enough details for a user story (write
acceptance criteria and supporting models). The lesson is for
the team to not expect the BA to commit to unreasonable plan-
ning timeboxes.

Summary
The business analysis function lends itself equally well

to agile and nonagile projects. If you are moving to an agile
approach, don’t ditch the BA. Instead, figure out how a BA
can become your project’s superhero by helping support your
product owner by acting as a product owner proxy, by an-
swering questions from development, by prioritizing backlogs,
and by identifying and elaborating on user stories. {end}

joy.beatty@seilevel.com

james.hulgan@seilevel.com

http://www.TechWell.com
mailto:joy.beatty@seilevel.com
mailto:james.hulgan@seilevel.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 33

Parasoft software quality technologies,

such as static analysis, unit testing,
peer review, and coverage analysis

ensure defect prevention for the next

generation of applications.

STATIC ANALYSIS

UNIT TESTING

PEER REVIEW

COVERAGE ANALYSIS

Visit www.parasoft.com/busted
to sign up for a free evaluation.

Stop by the Parasoft booth to learn more
about how Parasoft can bust bugs in your code!

BUSTED!
Software bugs can’t hide
from Parasoft’s advanced
defect detection and
prevention technologies

http://www.TechWell.com
http://www.parasoft.com/busted

34	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Business opportunities start with a good idea and a good code. Beyondsoft’s software

development and management services help companies capture new market

opportunities by becoming mobile and applying data insights.

Meet us at

BSC/ADC IN LAS VEGAS, JUNE 7-12, 2015

BOOTH # 20

(877) 896-5859 | info@beyondsoft.com | www.beyondsoft.com

http://www.TechWell.com
http://www.beyondsoft.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 35

by Claire Lohr

Does Anyone Really Do All
That Is Recommended by the
ISTQB Tester Certifications?
The International Software Testing Qualifications Board (ISTQB) gathered groups of subject matter
experts to create syllabi (foundation, advanced, and expert) that are comprehensive compendiums of
best practices for diverse topics related to software testing. They also created a glossary supporting
all the syllabi and devised examinations to be used to certify the knowledge of the test takers.

As of December 2014, ISTQB has issued more than 380,000 certifications in more than 100
countries worldwide, with a current growth rate of more than 13,000 new certifications per
quarter. Many people who actively perform some aspect of testing, including test managers, have
been exposed to the ISTQB vocabulary and techniques espoused by the various syllabi for these
certification exams. But are they using them regularly and deliberately?

What about using all those terms defined in the ISTQB glossary?
With the historically rapid increase in the number of practitioners, each team answered the need

to communicate effectively by inventing its own terms. Then some terms became more common,
and “standard” definitions were created by organizations such as the IEEE. Most practitioners,
however, have never even wanted to see these definitions, much less use them.

Most organizations have some overlap with the ISTQB glossary, but not much, and they may
even have conflicting definitions. The glossary is designed to support best definitions, not neces-
sarily common definitions. It will take a very long time for this to evolve into common usage—it
is costly for an organization to change from its own well-understood definitions to the “standard”
terms. The new ISO testing standards (the ISO 29119 series) are consistent with the ISTQB, so at
least the standards world is internally consistent.

Does anyone prepare all those separate documents?
Absolutely not. High-integrity systems (i.e., safety-critical, high-reliability, with a large financial

impact) document much of the information suggested, but they combine the documents as much as
possible—e.g., test cases, procedure, and log are commonly combined. Many of the less rigorous
applications want one test plan containing all planning and execution information, a defect report
database, and a test summary report.

Does anyone use all those specification-based black box techniques?
Industry practitioners use the techniques they know about that are applicable to the systems

they are testing. Boundary value is universally applied, even if the practitioner does not know that
it has a name. Many learn about the decision table during exam preparation training and are eager
to apply it in their organizations.

Does anyone use rigorous structure-based white box techniques?
For most of the industry, the extent of white box testing depends on the individual developer.

Safety-critical systems commonly mandate rigorous white box testing. Security concerns are in-
creasing the awareness of the need for comprehensive white box coverage, so this will likely be
increasing (untested code paths have unknown security).

Does anyone use the experience-based testing techniques?
Finally, a resounding yes. All organizations, with or without rigorous black and white box

testing, conduct experience-based testing, frequently at multiple test levels.
The challenge is that software engineering is a new discipline and went from a handful of prac-

titioners in the 1940s to a huge number, affecting every aspect of society today. The short answer
to whether practitioners are doing all the ISTQB recommends is: “Not yet.” The longer answer,
regarding the degree to which the information is in use: “It depends on the need for quality and
the maturity of the practitioners for each individual system.” It is still helpful to know what best
practices are available for planning future improved practices; it is impossible to hit a target if the
target itself is unknown. {end}

clohr@computer.org
Business opportunities start with a good idea and a good code. Beyondsoft’s software

development and management services help companies capture new market

opportunities by becoming mobile and applying data insights.

Meet us at

BSC/ADC IN LAS VEGAS, JUNE 7-12, 2015

BOOTH # 20

(877) 896-5859 | info@beyondsoft.com | www.beyondsoft.com

http://www.TechWell.com
mailto:clohr@computer.org
http://www.beyondsoft.com

36	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

The Last Word

The broken window theory is a law enforcement practice
stating that by policing minor infractions, the number of major
crimes decreases in an area. For example, if there is a broken
window in a home and the broken window remains unfixed,
the home is more likely to be vandalized as a result. However,
if the broken window is fixed, the overall safety of the home
should remain sound. The safety improvement of the repaired
window provides an additional improvement to the home’s
quality.

In his book The Tipping Point, [1] Malcolm Gladwell dis-
cusses how the broken window
theory is the reason behind the 81
percent drop in the crime rate for
New York City from 1990 to 2009.
This is the steepest decline in this
time frame in any US city. Despite
factors that would lead to a surge
in crime, such as rising unemploy-
ment, there was a decrease in the
rates of homicide, robbery, and bur-
glary when the city focused on the
enforcement of misdemeanors. The
implementation of similar practices

in Albuquerque, New Mexico, and Lowell, Massachusetts, has
resulted in corresponding drops in overall crime when focused
efforts were applied to clearing trash, fixing street lights, and
enforcing building codes.

Extending the broken window theory concepts to code,
cleaning up small defects should actually reduce the frequency
of the big infractions. The result of mitigating the little things
has a residual benefit of preventing errors overall. Cleaning
up and preventing the low-severity defects will lead to a lower
number of medium-, high-, and critical-severity defects being
created in the first place. The cycle will unfortunately require
more time to clean up more of the low-severity defects. In my
experience, however, this has the benefit that the implementa-
tion of new features will occur at a higher level of quality and,
subsequently, a higher level of user satisfaction. Clean code is
easier to maintain, easier to automate, and easier to add new
features than code that is full of defects.

Perhaps you have seen evidence of these patterns in other

Low-severity defects are the ugly ducklings of a defect
backlog. Dismissed as having little merit, low-severity defects
receive scant attention after being initially documented. The
existence of these defects in code is considered part of the cost
of doing business in software development. They are consid-
ered a necessary evil due to tight deadlines and prioritization
necessities. The typical defect management approach is to not
pay any attention to fixing low-severity defects. Besides, who
achieves code that is clean, anyway?

There is evidence that calls into question this approach. As
it turns out, fixing low-severity de-
fects may enable teams to achieve
long-term excellence in software
quality.

Low-severity defects, from the
day they are initially recorded, are
regarded as a nuisance, of no overall
consequence, and of little value.
Many defects are closed by the
team without a fix ever being made.
Closing low-severity defects can be-
come a bad habit. Chances are a new
defect will be opened in the future
for the same reason by another tester and it, too, will not be
fixed.

Even if you believe that these lingering issues don’t reflect
general product quality, the same resolution process remains.
Low-severity defects will always be prioritized for remediation
by the developers after higher-severity levels.

This approach is a mistake. It is an antiquated practice
based on years of prioritization rules that do not take a holistic
approach toward code quality. The rules of prioritization need
to change to incorporate the evidence that has come from the
implementation of the broken window theory.

This theory illustrates two fundamental concepts:
1.	 Low-severity defects, when left unfixed, increase the

likelihood of medium-, high-, and critical-severity de-
fects.

2.	 By reducing the number of low-severity defects, appli-
cations should have fewer defects overall regardless of
level.

Does Your Code Suffer
from Broken Windows?
Using the analogy where a home with broken windows increases the

possibility of a crime, don't ignore fixing low-severity defects.

by Jennifer Gosden | jennifer.gosden@gmail.com

“Closing low-severity defects

can become a bad habit.

Chances are a new defect will

be opened in the future for the

same reason by another tester.”

http://www.TechWell.com
mailto:jennifer.gosden@gmail.com

	 www.TechWell.com	 SUMMER 2015	 BETTER SOFTWARE 	 37

situations. When you clean up your desk, closet, or garage,
you’ll usually take a little extra time and effort to keep it that
way for a while. But when you don’t focus on it, it drifts back
into a disorganized state, resulting in your taking extra time
to clean it up again. Instead of allowing the drift backward to
occur, consider maintaining it through a little ongoing care and
effort.

The same is true with software code.
Taking the broken window theory to heart, expand your

testing strategy to attend to low-severity defects as standard
practice. If your developers are fixing code that has defects of
different levels of severity in the same area, require that low-
severity defects are also fixed. Or why not consider hosting
an annual hack-a-thon event, with developers cleaning up as
many of the low-severity defects as possible in an eight-hour

The Last Word

Better Software (ISSN: 1553-1929) is published four times

per year: January, April, June, and September. Print

copies can be purchased from MagCloud (http://www.

magcloud.com/user/bettersoftware). Entire contents ©

2015 by Software Quality Engineering (340 Corporate Way,

Suite 300, Orange Park, FL 32073), unless otherwise noted

on specific articles. The opinions expressed within the

articles and contents herein do not necessarily express

those of the publisher (Software Quality Engineering). All

rights reserved. No material in this publication may be

reproduced in any form without permission. Reprints of

individual articles available. Call 904.278.0524 for details.

Display Advertising
advertisingsales@sqe.com

All Other Inquiries
info@bettersoftware.com

Agile Dev., Better Software & DevOps Conf. East	 http://adc-bsc-east.techwell.com	 19

ASTQB	 http://www.astqb.org	 8

BeyondSoft	 http://www.beyondsoft.com	 34

Capgemini 	 http://www.capgemini.com/testing-services	 29

Parasoft	 http://www.parasoft.com/busted	 33

Ranorex	 http://www.ranorex.com	 2

Sauce Labs	 http://saucelabs.com	 18

Soasta	 http://www.soasta.com	 Back cover

SQE Training	 http://sqetraining.com/trainingweek	 10

STARWEST	 http://starwest.techwell.com	 Inside front cover

TCS	 http://tcs.com/assurance	 9

index to advertisers

Click here to read more at StickyMinds.com.
n	 References

session? Encourage your team to maintain the area of clean
code over the long term and watch the quality of your overall
product dramatically improve.

Fundamentally it comes down to this: When your users en-
counter little things that are wrong, how can they have confi-
dence that the important things are done right?

Clean up the broken windows in your house of code. {end}

http://www.TechWell.com
http://www.magcloud.com/user/bettersoftware
http://www.magcloud.com/user/bettersoftware
mailto:advertisingsales@sqe.com
mailto:info@bettersoftware.com
http://adc-bsc-east.techwell.com
http://www.astqb.org
http://www.beyondsoft.com
http://www.capgemini.com/testing-services
http://www.parasoft.com/busted
http://www.ranorex.com
http://saucelabs.com
http://www.soasta.com
http://sqetraining.com/trainingweek
http://starwest.techwell.com
http://tcs.com/assurance
www.stickyminds.com/sticky-note/references-188

38	 BETTER SOFTWARE	 SUMMER 2015	 www.TechWell.com

Optimize your results with the power of real user data

Learn how: www.soasta.com

Modern apps demand modern testing

Monitor
Real

Users

Measure at
Cloud
Scale

Optimize
Continuously

http://www.TechWell.com
http://www.soasta.com

	SQE Logo:
	SQE Training Logo:
	StickyMinds:
	com logo: Off

