W4

API Testing
Wednesday, October 23rd, 2019 10:15 AM

Advanced Principles of API Testing |
Part 1

Presented by:

Varuna Srivastava

ThoughtWorks Canada

Brought to you by:

° TECHWELL

888-268-8770 - 904-278-0524 - info@techwell.com - http://www.starcanada.techwell.com/

Varuna Srivastava

Varuna is a technical tester who's worked on award-winning projects across a wide
variety of technology sectors, including retail, travel, financial, and the public sector,
and worked with various web, mobile, and IoT technologies. Varuna is a passionate
advocate of shipping quality code to production using agile practices. When not
working, Varuna likes to get her hands dirty experimenting with her culinary skills.
Most of her weekends are spent in cookgraphya€”cooking plus photography!

Advanced Principles of APl Testing

ooooooooooooooooo

About Me

e |ead Quality Analyst at Thoughtworks
e Have been in Test automation for 10 yrs

e Testingtraveler

e (onference Organizer @EuroTestConf

e Twitter handle : @vibranttester

Agenda

e Role of API's

e APl architecture

e What is API testing

e Types of api testing

e APl documentation tools
e APl design patterns

e API Test automation

Web services

Response from server to client

Client

—=

Request from client snawwvi;;‘om"ﬂ
to server

service

@vibranttester

Web services

@vibranttester

REST architecture

Glory of REST = Y,

Level 3: Hypermedia Controls

Level 1: Resources

Level 0: The Swamp of POX

@vibranttester

APl architecture

Http verbs

Http
headers Http

response

@vibranttester

Http verbs

DELETE

POST

GET
POST
PUT
PATCH

DELETE

| COPY

HEAD

OPTIONS

LINK

UNLINK

PURGE

LOCK

UNLOCK

PROPFIND

VIEW

v

@vibranttester

Http headers

Content Type

Authorization Cache Control

Set Cookie

@vibranttester

Http headers — Set headers

given().request()
.with()
.contentType(
-header (

.header(
.header(

@vibranttester

Not Modified

404

Bad Request Unauthorized Not Found

Rest API structure

given().request()
-with()
.contentType(
.header(
.header(
-header (|

.queryParam(

-body (CreateAddressRequestBuilder().build())
.when ()

. post ()
.then()

.assertThat()

.statusCode(

- body (notNullValue())

@vibranttester

. -

i e

1 e33a3a00 \

1) 1108
| AU

7 iy
Yo
: :

>

}

Test Pyramid

~ $3%

@vibranttester

AP I Te Sti ng (Adapted from watirmelon blog)

Manual Session

Based Testing

Ideal Software
Testing Pyramid
Automated

GUI Tests

Automated
GUI Tests

Integration
Tests

Software Testing
lce-Cream Cone
Anti-Pattern

Automated API Tests

Automated Integration Tests

Automated Component Tests

Automated Unit Tests

@vibranttester

http://watirmelon.com/2012/01/31/introducing-the-software-testing-ice-cream-cone/

Types of API Testing

@vibranttester

APl Functional Tests

e Focus on testing the functionality of respective api with valid inputs
/searchltem By name By brand

Responsibility :

7/

% Define scope of api

/7

% Verify edge case scenario

7/

% Verify handled error scenario

REST-assured

@vibranttester

Focus on the messages that flow between a consumer and provider
/orders

bugs in the consumer
misunderstanding from the consumer about end-points or payload
breaking changes by the provider on end-points or payload

PACTS

APl Load Tests

e Focus on verifying whether the theoretical solution works as a practical
solution under a given load.

Responsibility :
% Verify how scalable apis are at maximum user load

/7

% Verify how quickly apis respond i.e speed
s Verify if the apis are stable under varying loads

Taurus

@vibranttester

APl Security Tests

e Focus is to make your data safe from hackers, and ensure that the API
is as safe as possible

Responsibility :
«» Validated external threats

/7

% Fuzz Testing
s Penetration testing

@vibranttester

Swagger

pet Fe iR Find out more: http://swagger.io A
[m /pet Add anew pet to the store é]
lm /pet Update an existing pet a]
[ﬂ /pet/findByStatus Finds Pets by status a]

/pet/FindByTFags Finds Pets by tags a
[ﬂ /pet/{petId} Find petbyID a }
[m /pet/{petId} Updates a petin the store with form data a]

/pet/{petId} Deletes apet a]
[m /pet/{petId}/uploadImage uploadsanimage a }

Store Access to Petstore orders o
[/store/1inventory Returns petinventories by status a }

/store/order Place an order for a pet

@vibranttester

API| Blueprint

FORMAT: 1A

Dredd example

Addresses [/addresses]

#H#tH# Create Address [POST]

+ Request (application/json)

{

"addressId": "1",
"title": "Mrs",
"firstName': "Varuna",
"lastName'": '"Srivastava',
"linel": "300 Front St West",
"line2": "Blue building",
"1line3": "Box",
"city": "Toronto",
"state'": "Ontario"

}
+ Response 201 (application/json; charset=utf-8) @vibranttester

Dredd commands

npm install —g dredd

dredd init

dredd

@vibranttester

Dredd result

Local Development Continuous Integration Tutorial

Create Address

Apiary Details
o
Status @ failed Saddresses
Hostname Varunas-MacBook-Pro.local
Started a few seconds ago <2 4 ms ©® 03 Oct, 2019; 20:27:14 GMT
Duration 00:00.330
Results Passes: O, Failures: O
/addresses > Request

Create Address

v Response Diff - Real - Expected

Content-Type: application/json; charset=utf-8
content—type: application/json

{
"addressId": 1

https://app.apiary.io/public/tests/run/a017f6eb-e89e-4afe-8d49-327559c08d24

@vibranttester

https://app.apiary.io/public/tests/run/a017f6eb-e89e-4afe-8d49-327559c08d24

API

= _—— Memento Proxy
o L L J
. ‘\ Adapter

avolaing 5
nysterasis Bridge

camposod

hY
o —‘_-_\ using

,/ . \
< A

Command

I3 n — \\
o = A defiring
‘_ alOnNs - AT he chasn
f
Fi h “"" gy] Visi /
YW'Q 1 grammar isitor /
sk (
n ; z
sharing lntorpretcr o ““' asons [Chain of Resnonsibll-!yl
~ Stra u-c«-s A
\
L' . I.‘ \ v\qr-r;
Strategy | P S symbols “’
‘Ti‘ Stares « | Mediator]--—_,_\
\
defining

fgure factory -~
dynamicaly IMDISMant ¢

S S T late Method - ofter: uses \
\

———{ Factory Method
_~ Abstract Factoryl» e
/

o Facade
TGt g

r =

Singleton =

Why Design Patterns in Test Automation?

Scalability
Reliability
Flexibility

Reusability Maintain
ability

@vibranttester

Types of Design Patterns

’ Creational

@vibranttester

Structural Design Patterns are used to
avoid duplicates in code and increase
the readability and navigation of code In

project

OPage ODbj

oi!l Virgin Wi-Fi = 3:11PM @ 7 Q0 71% wm)

= amazon)

~~~—"7prime

Q_ What are you looking for? o1 O

Save up to 40% on a BodyBoss Home Gym 2.0
$117.99 List: $379.00 (34% off)

Ends in 11:43:28

See all deals )

Shop men's clothing

HomePage

ect Pattern

o0l Virgin Wi-Fi = 3:12 PM @ 7 @ 70% wm )

O ey

& = amazon

Vp"me
Q_ kindle

Over 100,000 results Filter v

Kindle Paperwhite — Now

Kindle Unlimited (with...
i A& ¥ 11,892
$159.99 (1 new offer)

in Front Light - Black - Includes
Special Offers...

i K& ¥ 2,356

$89.99 (1 new offer)

All-new Kindle Oasis - Now with
adjustable warm light - Includes
special offers...

Wi A& I 517

$279.99 (1 new offer)

Kindle Paperwhite — Now
Waterproof with 2x the Storage
(International Version)

Search Result Page

ltem Search Tests

Waterproof with 2x the Storage +

All-new Kindle - Now with a Built-

. Virgin Wi-Fi = 3:13 PM

< = amazon

~~~—"prime

@ 7 © 69% =m)

Q QO

@ Deliver to Varuna - Toronto M5V OE9

Amazon

Kindle Paperwhite — 32 GB, Wi-Fi,
Includes Special Offers - Twilight Blue +
Kindle Unlimited (with auto-renewal)

i W i iy (11.892)

® O O O O O P

Digital Storage Capacity: >
32GB

Offer Type:

Search Item

@vibranttester

OPage Object Pattern

SearchitemTests.java SearchitemPage.java Searchitemld.java

@vibranttester

OPage Object Pattern

@Test(groups = Categories.)
verifySearchResults|() InterruptedException {
JourneyDetails journeyDetails = JourneyDetailsBuilder().build()
= .searchForAOneWayJourneyWith(journeyDetails)

.verifyCheapestIsSelected()
.verifySearchResultsAreSortedByPrice()

@vibranttester

Page Factory Pattern encapsulates
page’s attribute by annotations.It
helps to work directly with page fields
hiding the low level complexity.

OPage Factory Pattern

WebDriver
SearchResultsPage
By =By.id(
By =By.className (

(WebDriver driver) . = driver
SearchResultsPage () {
. findElement () . sendKeys (
. findElement ().click()
SearchResultsPage(

@vibranttester

OPage Factory Pattern

HomePage {
WebDriver
SearchResultsPage

@FindBy(id =
WebElement

@FindBy (className =
WebElement

HomePage (WebDriver driver) {
= driver

SearchResultsPage searchItem() {
. sendKeys (
.click()
SearchResultsPage(

@vibranttester

OPage Factory Pattern

launchApplicationUnderTest() {
PropertyReader reader = PropertyReader()
String applicationURL = reader.readProperty()
.get(applicationURL)
SearchResultsPage = HomePage() .searchForTheJourney()

launchApplicationUnderTest() {
PropertyReader reader = PropertyReader()
String applicationURL = reader.readProperty(
.get(applicationURL)
= PageFactory.initElements(HomePage.

Chain of invocation helps to avoid
repeating again and again before

method invocations and makes code
Il

¢Chain of Invocation Pattern

ReviewOrderResponse roResponse = reviewOrder()
roResponse.assertShippingAddress(addressId, shippingAddress)
roResponse.assertBillingAddresss(shippingAddress)

roResponse.assertPaymentMethod|(pild, card, viewOrder().getGrandTotalAmount())
roResponse.assertRootLevelAttributes(viewOrder())

ReviewOrderResponse roResponse = reviewOrder()
roResponse.assertShippingAddress(addressId, shippingAddress)
.assertBillingAddresss(shippingAddress)

.assertPaymentMethod(pild, card, viewOrder().getGrandTotalAmount())
.assertRootLevelAttributes(viewOrder())

@vibranttester

¢Chain of Invocation Pattern

addItemToCart()
.addShippingAddress()
.addPaymentInstructionWithBillingAddress()

.submitOrder()
.assertAttributes(orderId)

@vibranttester

¢Chain of Invocation Pattern

addItemToCart()
.addShippingAddress()

()

.addPaymentInstructionwWithBillingAddress()
.assertAttributes(orderId)

@vibranttester

OStrategy Design Pattern

Strategy pattern is used whenever we
want to have more than one
implementations of the same action
differently. It makes code more flexible and
maintainable by using separation of
concepts.

@vibranttester

Data Design Patterns are used to

separate data and test logic.lt
amount of data related code from test

class.

OValue Object Pattern

Value Object makes code more readable
and it reduces amount of repeatable
constructions. It is immutable which avoid
modifications and extensions.

@vibranttester

¢Builder Pattern

Builder pattern makes process of
building complex object easier.We don't
have to create multiple constructor for
different scenario.

@vibranttester

DataProvider pattern used to provide
parameters to a test. A test method will be

executed using the same instance of the
test class to which the test method

belongs.

¢ Singleton Pattern

Singleton class has only one instance,
which provides a global access point to
this instance.Singleton object is initialized
only when it's requested for the first time.

@vibranttester

¢ Singleton Pattern

Example?

@vibranttester

¢ Singleton Pattern

SingletonClass getInstance() {
| (=)
= SingletonClass()

String getAddress()

@vibranttester

s

=

_ =
- . -
=] al
e - — —_—

o
R s “ = z

. - -

~ o v/ bl

s..?Doubts..?Compl

= = e
-

o " -

l: ‘,
K =T s e !
- - - iyl e R
!
- A “__# - Rt
— el
w— -

-
Nst -
P

-

mailto:varunas@thoughtworks.com
http://thoughtworks.com

f

-
%
l
!
1

f
oo

LT

POBCOCCppg

N

iy

