
	
	

DW2
Docker Containers
Wednesday, June 6th, 2018, 11:30 AM

Managing Microservices Using
Terraform, Docker, and the Cloud

Presented by:

Derek Ashmore
Asperitas Consulting

Brought to you by:

350 Corporate Way, Suite 400, Orange Park, FL 32073
888-- -268- - -8770 ·· 904- --278-- -0524 - info@techwell.com - https://www.techwell.com/

Derek Ashmore
Asperitas Consulting

Derek Ashmore is a senior technology expert with more than thirty years of
experience in a wide variety of technologies and industries. Derek is currently
focusing on microservices architectures, cloud computing, and migrating
applications to the cloud. Derek's approach allows companies to increase speed
to market while also increasing application availability. Derek routinely speaks at
JavaOne, DevNexus, the Chicago Coders Conference, and many others. His books
include The Java EE Architect's Handbook and Microservices for Java EE
Architects.	

Managing Microservices
using Terraform, Docker, and the Cloud

Given by Derek C. Ashmore

DevOps West – June 6, 2018

©2018 Derek C. Ashmore, All Rights Reserved 1

Who am I?
• Professional Geek

since 1987

• Java/J2EE/Java EE
since 1999

• AWS since 2010

• Specialties
• Refactoring

• Performance
Tuning

• Yes – I still code!

©2018 Derek C. Ashmore, All Rights Reserved 2

http://www.amazon.com/gp/product/0972954880/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0972954880&linkCode=as2&tag=dvtpresscom-20

Discussion Resources

• This slide deck
– http://www.slideshare.net/derekashmore

• The hands-on-lab code
– https://github.com/Derek-Ashmore/terraform-hands-on-lab

• The Moneta microservice (written in Java)
– https://github.com/Derek-Ashmore/moneta

• Slide deck has hyper-links!

– Don’t bother writing down URLs

©2018 Derek C. Ashmore, All Rights Reserved 3

http://www.slideshare.net/derekashmore
https://github.com/Derek-Ashmore/terraform-hands-on-lab
https://github.com/Derek-Ashmore/moneta

Agenda

Microservices,
Docker, and
the Cloud

Cloud with
Terraform

Terraform’s
Competitors

Summary /
Q&A

©2018 Derek C. Ashmore, All Rights Reserved 4

What are Microservices?

• No concrete definition

• Common microservice traits
– Single functional purpose

• Most/all changes only impact one service

• Not dependent on execution context
– “loosely coupled”

– Independent process/jvm

– Stateless

– Standard Interface (typically Web Service/REST)

– Analogy: Stereo system, Linux utilities

©2018 Derek C. Ashmore, All Rights Reserved 5

Microservices Application Architecture

• Separate Databases

• Eventual Consistency

• More network activity

©2018 Derek C. Ashmore, All Rights Reserved 6

Typical Microservice Library

©2018 Derek C. Ashmore, All Rights Reserved 7

Microservice Development

©2018 Derek C. Ashmore, All Rights Reserved 8

Docker
• Is a “mini VM”

• runs a linux kernal

• Compare to shipping
container

• Standard “connections” to
outside world

• Supported formally by
Oracle, Tomcat, Jboss, and
many more

9©2018 Derek C. Ashmore, All Rights Reserved

Package Once, Run Anywhere!

Why Docker?

• Docker is Win-Win
– Easier for OPS and system administrators

• All software looks the same

• Standard interface for disk and network resources
– Containers can be “linked”

• Inherently automated

– Easier for developers
• Fewer environment difference issues

• Less to communicate to OPS / system administrators

• Easy to leverage work of others (docker-hub)

©2018 Derek C. Ashmore, All Rights Reserved 10

https://hub.docker.com/

Microservice Deployments

©2018 Derek C. Ashmore, All Rights Reserved 11

Basic Microservice Install at AWS

©2018 Derek C. Ashmore, All Rights Reserved 12

• Horizontal scaling is supported

• Multiple copies of microservice / web application
running at the same time

• Elastic Load Balancer distributes load across
copies of your service

• Sticky sessions available

• ELB can use health checks

• Autoscaling Groups scale number of copies up
and down based on rules you give it

• CPU Utilization or other metrics

Infrastructure as Code

• Manual changes
– Increase errors
– Increase unwanted differences

between environments
– Increase admin workload

• Scripted/Coded changes
– Larger upfront cost, but…..
– Less busywork
– Leverage Others Work
– Decreases Errors
– Errors fixed in one place
– Eliminates unwanted differences
– Change history (with source control)

©2018 Derek C. Ashmore, All Rights Reserved 13

Agenda

Microservices,
Docker, and
the Cloud

Cloud with
Terraform

Terraform’s
Competitors

Summary /
Q&A

©2018 Derek C. Ashmore, All Rights Reserved 14

Terraform

• Cloud Management

– Open Source

• Very active community

– Extensible to any cloud vendor

• AWS, Azure, GCP, AliCloud, Digital Ocean, OpenStack

– Supported for Cloud Support products

• Chef, Consul, Kubernetes, Datadog

• 62 Providers as of April, 2017 and growing

©2018 Derek C. Ashmore, All Rights Reserved 15

Terraform HCL

• Declarative Language

– Describe what the end product contains

• Terraform figures out how to get there

– Terraform Resources

• Describes deployed artifacts
– Network  Virtual Networks, Subnets, Network ACLs, Gateways, ELB/ALB

– Hosts  Virtual Machines, Databases

– Security  Security groups/policies/roles/groups/users

– Much more

©2018 Derek C. Ashmore, All Rights Reserved 16

Terraform Basics

• Declarative Programming
– All *.tf files loaded  Terraform decides execution order

– No GUI  All command line and text editor

• Terraform Command Flow

©2018 Derek C. Ashmore, All Rights Reserved 17

Terraform Resources

• AWS Subnet Resource
– Count = 3  Three subnets created
– Availability Zones come from a data source (lookup)
– CIDR blocks are input variables

• Sample source

©2018 Derek C. Ashmore, All Rights Reserved 18

https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc/vpc.tf

Terraform Data Sources

• Example Data Sources (lookups)

• Sample source

©2018 Derek C. Ashmore, All Rights Reserved 19

https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/dataSources.tf

Terraform Providers

• Example Provider
• Sample AWS source
• Azure Provider

©2018 Derek C. Ashmore, All Rights Reserved 20

https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/vpc-routes.tf
https://www.terraform.io/docs/providers/azurerm/index.html

Terraform Input Variables

• Example Provider

• Sample source

©2018 Derek C. Ashmore, All Rights Reserved 21

https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/variables.tf

Reusing Terraform Templates

• Example Template Reuse

• Sample source

©2018 Derek C. Ashmore, All Rights Reserved 22

https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-module-tests/aws-vpc/test-aws-vpc.tf

Typical Project Structure

©2018 Derek C. Ashmore, All Rights Reserved 23

Terraform State

• Terraform stores state

– Local file terraform.tfstate

• Teams need to manage state centrally

– Terraform Backends

• Locks so that only one person at a time can update

• Remote storage
– S3, Azure containers, Google cloud storage, etc.

©2018 Derek C. Ashmore, All Rights Reserved 24

Agenda

Microservices,
Docker, and
the Cloud

Cloud with
Terraform

Terraform’s
Competitors

Summary /
Q&A

©2018 Derek C. Ashmore, All Rights Reserved 25

Terraform vs. Ansible/Chef

• Terraform designed for infrastructure

– Not designed for configuration management

– Terraform deploys images

• Not good at maintaining what’s on those images

• If deployments update existing VMs

– You need Ansible, Chef, or Puppet

• If deployments are “new” VMs

– Terraform can handle deployments too

©2018 Derek C. Ashmore, All Rights Reserved 26

Paradigm Shift

• Deployment as new infrastructure
– New version  new VMs

• Software versions baked into images

– Advantages
• Facilitates Canary Deployments

– Route53 Routing Policies

• Go-live operation has less risk
– Deploy/Backout is just a load balancer switch

– Disadvantages
• More moving parts

• Impossible to do manually

©2018 Derek C. Ashmore, All Rights Reserved 27

Terraform vs CloudFormation

Terraform

• Scripting skills translate to Azure,
Google Cloud, etc.

• Less verbose (>50%)

• Data Lookups

• Custom Plug-ins possible

• Active Community Support

CloudFormation

• Quicker to follow AWS enhancements

• GUI support

• Automatic centralized state

• Vendor Support

©2018 Derek C. Ashmore, All Rights Reserved 28

Further Reading

• This slide deck
– http://www.slideshare.net/derekashmore

• The Gruntwork Blog
– https://blog.gruntwork.io/

• The hands-on-lab code
– https://github.com/Derek-Ashmore/terraform-hands-on-lab

©2018 Derek C. Ashmore, All Rights Reserved 29

http://www.slideshare.net/derekashmore
https://blog.gruntwork.io/
https://github.com/Derek-Ashmore/terraform-hands-on-lab

Questions?

• Derek Ashmore:
– Blog: www.derekashmore.com

– LinkedIn: www.linkedin.com/in/derekashmore
• Connect Invites from attendees welcome

– Twitter: https://twitter.com/Derek_Ashmore

– GitHub: https://github.com/Derek-Ashmore

– Book: http://dvtpress.com/

©2018 Derek C. Ashmore, All Rights Reserved 30

http://www.derekashmore.com/
http://www.linkedin.com/in/derekashmore
https://twitter.com/Derek_Ashmore
https://github.com/Derek-Ashmore
http://dvtpress.com/
http://www.amazon.com/gp/product/0972954880/ref=as_li_ss_tl?ie=UTF8&camp=1789&creative=390957&creativeASIN=0972954880&linkCode=as2&tag=dvtpresscom-20

