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Who am I?
• Professional Geek 

since 1987

• Java/J2EE/Java EE 
since 1999

• AWS since 2010

• Specialties
• Refactoring

• Performance 
Tuning

• Yes – I still code!
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Discussion Resources

• This slide deck
– http://www.slideshare.net/derekashmore

• The hands-on-lab code
– https://github.com/Derek-Ashmore/terraform-hands-on-lab

• The Moneta microservice (written in Java)
– https://github.com/Derek-Ashmore/moneta

• Slide deck has hyper-links!

– Don’t bother writing down URLs
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Agenda

Microservices, 
Docker, and 
the Cloud

Cloud with 
Terraform

Terraform’s
Competitors

Summary / 
Q&A
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What are Microservices?

• No concrete definition

• Common microservice traits
– Single functional purpose

• Most/all changes only impact one service

• Not dependent on execution context 
– “loosely coupled”

– Independent process/jvm

– Stateless

– Standard Interface (typically Web Service/REST)

– Analogy:  Stereo system, Linux utilities
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Microservices Application Architecture

• Separate Databases

• Eventual Consistency

• More network activity
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Typical Microservice Library
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Microservice Development
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Docker
• Is a “mini VM” 

• runs a linux kernal

• Compare to shipping 
container

• Standard “connections” to 
outside world

• Supported formally by 
Oracle, Tomcat, Jboss, and 
many more
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Package Once, Run Anywhere!



Why Docker?

• Docker is Win-Win
– Easier for OPS and system administrators

• All software looks the same

• Standard interface for disk and network resources
– Containers can be “linked”

• Inherently automated

– Easier for developers
• Fewer environment difference issues

• Less to communicate to OPS / system administrators

• Easy to leverage work of others (docker-hub)
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https://hub.docker.com/


Microservice Deployments
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Basic Microservice Install at AWS
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• Horizontal scaling is supported

• Multiple copies of microservice / web application 
running at the same time

• Elastic Load Balancer distributes load across 
copies of your service

• Sticky sessions available

• ELB can use health checks

• Autoscaling Groups scale number of copies up 
and down based on rules you give it

• CPU Utilization or other metrics



Infrastructure as Code

• Manual changes 
– Increase errors
– Increase unwanted differences 

between environments
– Increase admin workload

• Scripted/Coded changes
– Larger upfront cost, but…..
– Less busywork
– Leverage Others Work
– Decreases Errors
– Errors fixed in one place
– Eliminates unwanted differences
– Change history (with source control)
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Terraform
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Terraform

• Cloud Management

– Open Source

• Very active community

– Extensible to any cloud vendor

• AWS, Azure, GCP, AliCloud, Digital Ocean, OpenStack

– Supported for Cloud Support products

• Chef, Consul, Kubernetes, Datadog

• 62 Providers as of April, 2017 and growing
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Terraform HCL

• Declarative Language

– Describe what the end product contains

• Terraform figures out how to get there

– Terraform Resources

• Describes deployed artifacts
– Network  Virtual Networks, Subnets, Network ACLs, Gateways, ELB/ALB

– Hosts  Virtual Machines, Databases

– Security  Security groups/policies/roles/groups/users

– Much more
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Terraform Basics

• Declarative Programming
– All *.tf files loaded  Terraform decides execution order

– No GUI  All command line and text editor

• Terraform Command Flow
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Terraform Resources

• AWS Subnet Resource
– Count = 3  Three subnets created
– Availability Zones come from a data source (lookup)
– CIDR blocks are input variables

• Sample source
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https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc/vpc.tf


Terraform Data Sources

• Example Data Sources (lookups)

• Sample source
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https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/dataSources.tf


Terraform Providers

• Example Provider
• Sample AWS source
• Azure Provider
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https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/vpc-routes.tf
https://www.terraform.io/docs/providers/azurerm/index.html


Terraform Input Variables

• Example Provider

• Sample source
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https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-modules/aws-vpc-routes-acls/variables.tf


Reusing Terraform Templates

• Example Template Reuse

• Sample source
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https://github.com/Derek-Ashmore/terraform-samples/blob/master/terraform-module-tests/aws-vpc/test-aws-vpc.tf


Typical Project Structure
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Terraform State

• Terraform stores state

– Local file terraform.tfstate

• Teams need to manage state centrally

– Terraform Backends

• Locks so that only one person at a time can update

• Remote storage
– S3, Azure containers, Google cloud storage, etc.
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the Cloud

Cloud with 
Terraform

Terraform’s
Competitors
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Terraform vs. Ansible/Chef

• Terraform designed for infrastructure

– Not designed for configuration management

– Terraform deploys images

• Not good at maintaining what’s on those images

• If deployments update existing VMs

– You need Ansible, Chef, or Puppet

• If deployments are “new” VMs

– Terraform can handle deployments too
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Paradigm Shift

• Deployment as new infrastructure
– New version  new VMs

• Software versions baked into images

– Advantages
• Facilitates Canary Deployments

– Route53 Routing Policies

• Go-live operation has less risk
– Deploy/Backout is just a load balancer switch

– Disadvantages
• More moving parts

• Impossible to do manually
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Terraform vs CloudFormation

Terraform

• Scripting skills translate to Azure, 
Google Cloud, etc.

• Less verbose (>50%)

• Data Lookups

• Custom Plug-ins possible

• Active Community Support

CloudFormation

• Quicker to follow AWS enhancements

• GUI support

• Automatic centralized state

• Vendor Support
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Further Reading

• This slide deck
– http://www.slideshare.net/derekashmore

• The Gruntwork Blog
– https://blog.gruntwork.io/

• The hands-on-lab code
– https://github.com/Derek-Ashmore/terraform-hands-on-lab
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Questions?

• Derek Ashmore:
– Blog: www.derekashmore.com

– LinkedIn: www.linkedin.com/in/derekashmore
• Connect Invites from attendees welcome

– Twitter: https://twitter.com/Derek_Ashmore

– GitHub: https://github.com/Derek-Ashmore

– Book: http://dvtpress.com/
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