
	

	

	

	

AD31	

DevOps	
 Engineering	

10:00	
 AM	

	

	

	

	

	

AD31	
 -­‐	
 Using	
 Component	
 Testing	
 for	

Ultra-­‐Fast	
 Builds	

	

Presented	
 by:	
 	

	

	

Timothy	
 Cochran	

	
 	
 Thoughtworks	

	

Brought	
 to	
 you	
 by:	
 	

	
 	

	

	

	

	

888-­‐-­‐-­‐268-­‐-­‐-­‐8770	
 ·∙·∙	
 904-­‐-­‐-­‐278-­‐-­‐-­‐0524	
 -­‐	
 info@techwell.com	
 -­‐	
 https://agiledevopswest.techwell.com/	

	

	

Timothy	
 Cochran	

	

Tim	
 Cochrancurrently	
 works	
 for	
 ThoughtWorks	
 NYC,	
 and	
 has	
 been	
 full	
 stack	
 developer	

and	
 architect	
 for	
 over	
 15	
 years.	
 Working	
 on	
 everything	
 from	
 large	
 distributed	
 enterprise	

projects	
 to	
 small	
 NGO	
 visualization	
 apps.	
 He	
 recently	
 has	
 been	
 helping	
 companies	
 with	

digital	
 transformation,	
 moving	
 towards	
 continuous	
 delivery	
 and	
 building	
 a	
 DevOps	

culture.	
 He	
 also	
 is	
 an	
 automated	
 testing	
 zealot,	
 practices	
 TDD	
 almost	
 exclusively,	
 he	

builds	
 test	
 strategy	
 using	
 the	
 right	
 combinations	
 of	
 unit,	
 E2E	
 and	
 functional	
 testing	
 for	

clients.	

11

Utilizing Component Testing for Ultra
fast Builds

©ThoughtWorks 2019 Commercial in Confidence

GLOBAL SOFTWARE CONSULTANCY

2©ThoughtWorks 2019 Commercial in Confidence

Tech Radar

ThoughtMobile

ThoughtWorks
Incorporated

1993

2000

2005

1996

2004

2006

2008

2010

2014

2016,
2017, 2018

2018

500+
ThoughtWorkers

ThoughtWorks
University

ThoughtWorks was
one of the first

companies to run
distributed agile

projects successfully

3000+
ThoughtWorkers

5000+
ThoughtWorkers

2001

free, open-source
software

Top 10 contributor
in open source

Why Automated Testing

4

Cost of QA

Productivity

Functional & Non-Functional
Problems

User Sentiment

The Problem

5

Software Design

6

Software Design

7

8

Black Box

9

E2E tests

Black Box

10

Download
code Compile Linting / Unit Test Code Coverage Upload Artifact

2 min 5 min 10 min 20 min 5 min

Build / Test pipeline (30 mins)

Prepare E2E tests

5 min 2 hour

E2E / Regression test pipeline (2 hours 5 mins)

Deployment pipeline (15 mins)

Copy binaries Restart Services Health Checks

5 min 5 mins3 mins

Schema Changes

1 min

11

Download
code Compile Linting / Unit Test Code Coverage Upload Artifact

2 min 5 min 10 min 20 min 5 min

Build / Test pipeline (30 mins)

Prepare

5 min

E2E / Regression test pipeline (35 mins)

Deployment pipeline (14 mins)

Copy binaries Restart Services Health Checks

5 min 5 mins3 mins

Schema Changes

1 min

30 mins

E2E tests

Anti-patterns

12

Unit test - Deploy - Regression are separate pipelines, owned by different teams

Flakey tests, Fails one in 5 tests

Build is never green, Deploying with failing tests

Environments that don’t reflect Prod, Software still breaks in production

Broken Environments, Tests aren’t run because env is down or misconfigured

13

UI

Service

Unit

Component Testing

15

Software Design

16

17

18

E2E tests

Component Testing

19

tests

tests

tests teststests

Types of Components

20

A code module

A data pipeline

Third party service

UI Component

Microservice

21

What goes wrong?

Dev Prod-
Like Prod

Integration with other
systems

Edge Data Cases

Misunderstanding of
Requirements

More edge cases

User unsatisfied

Misconfigured

NFR problems

22

E2E tests Component / Service

Edge Cases

Functionality (Acceptance)

Integration between components

Critical Path

Configuration

23

What is a Component?

Code

DB IO External
APIs

A microservice?

24

25

What is a Component? A service

Code

DB IO External
APIs

Service

CartService

OrderService

AddToCartService

PostReviewService

Domain Model

26

How to test? - Out of Process

27

Component

Test

Stub dependencies using
service virtualization

How to test? - In Process

28

Component

Test

Stub dependencies using
service virtualization

Or use in-memory stubs

29

I use subcutaneous test to mean a test
that operates just under the UI of an
application.

Contrived Example

30

Contrived Example

31

UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http

32

UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http

Test

33

~1000ms: headless, locally

34

UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http

Test

35

~50ms: locally

36

How to test?

Advantage Disadvantage

In Process: Executed
through Code

Fastest, Deterministic Doesn’t tests all the code
(e.g. network, controller)

Out of Process: Executed
through the API

Fast, Deterministic

Forces API based
ecosystem

Retests boiler plate code,
network layer

Unit test

Unit test

Unit test

Unit test

37

Checkout Build

2 min 3 min

3 min

Linting

3 min

Test Coverage

5 min

 In-Process
Tests

5 min Deploy App

7 mins

Time for dev feedback - 22 mins

5 mins

Unit test

Out of Process
tests

5 mins

E2E

How to find entry points?

38

Understand what your application does, what capabilities does it provide?

Where is the complexity in your domain?

Talk to your engineers and business

Domain Driven Design (DDD) techniques is good way, establish
the domain events, bounded contexts, entities, behaviour,
values.

39

UI testing

API

40

UI testing

Service virtualization

41

UI testing

Component test

42

UI testing
https://blog.pragmatists.com/genuine-guide-to-testing-react-redux-applications-6f3265c11f63

https://blog.pragmatists.com/genuine-guide-to-testing-react-redux-applications-6f3265c11f63

43

E2E tests

44

Culture

Quality is everyone’s responsibility

Cross functional teams

Deliberately design your application to be testable,

Think about testing from day one

Thank you
tcochran@thoughtworks.com

46©ThoughtWorks 2019 Commercial in Confidence

