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Why Automated Testing 
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Cost of QA 

Productivity

Functional & Non-Functional 
Problems

User Sentiment



The Problem
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Software Design

6



Software Design
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Black Box
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E2E tests 

Black Box
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Download 
code Compile Linting / Unit Test Code Coverage Upload Artifact

2 min 5 min 10 min 20 min 5 min

Build / Test pipeline (30 mins)

Prepare E2E tests

5 min 2 hour

E2E / Regression test pipeline (2 hours 5 mins)

Deployment pipeline (15 mins)

Copy binaries Restart Services Health Checks

5 min 5 mins3 mins

Schema Changes

1 min
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Download 
code Compile Linting / Unit Test Code Coverage Upload Artifact

2 min 5 min 10 min 20 min 5 min

Build / Test pipeline (30 mins)

Prepare

5 min

E2E / Regression test pipeline (35 mins)

Deployment pipeline (14 mins)

Copy binaries Restart Services Health Checks

5 min 5 mins3 mins

Schema Changes

1 min

30 mins

E2E tests



Anti-patterns
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Unit test - Deploy - Regression are separate pipelines, owned by different teams

Flakey tests, Fails one in 5 tests

Build is never green, Deploying with failing tests

Environments that don’t reflect Prod, Software still breaks in production

Broken Environments, Tests aren’t run because env is down or misconfigured
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UI

Service

Unit



Component Testing

15



Software Design
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E2E tests 



Component Testing
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tests

tests

tests teststests



Types of Components
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A code module

A data pipeline

Third party service 

UI Component

Microservice
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What goes wrong?

Dev Prod-
Like Prod

Integration with other 
systems 

Edge Data Cases

Misunderstanding of 
Requirements 

More edge cases

User unsatisfied

Misconfigured

NFR problems
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E2E tests Component / Service

Edge Cases

Functionality (Acceptance)

Integration between components

Critical Path

Configuration
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What is a Component? 

Code

DB IO External 
APIs



A microservice?
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What is a Component? A service

Code

DB IO External 
APIs

Service

CartService

OrderService

AddToCartService

PostReviewService



Domain Model
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How to test? - Out of Process
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Component

Test

Stub dependencies using 
service virtualization



How to test? - In Process
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Component

Test

Stub dependencies using 
service virtualization

Or use in-memory stubs
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I use subcutaneous test to mean a test 
that operates just under the UI of an 
application.



Contrived Example
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Contrived Example
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UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http
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UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http

Test
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~1000ms: headless, locally
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UI
React

BFF
Node.JS

ChargeService
Node.JS

OtherService
Node.JS

http

http

Test
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~50ms: locally



36

How to test?

Advantage Disadvantage

In Process: Executed 
through Code 

Fastest, Deterministic Doesn’t tests all the code 
(e.g. network, controller)

Out of Process: Executed 
through the API 

Fast, Deterministic

Forces API based 
ecosystem

Retests boiler plate code, 
network layer



Unit test

Unit test

Unit test

Unit test
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Checkout Build

2 min 3 min

3 min

Linting

3 min

Test Coverage

5 min

 In-Process 
Tests

5 min Deploy App

7 mins

Time for dev feedback - 22 mins 

5 mins

Unit test

Out of Process 
tests

5 mins

E2E



How to find entry points?
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Understand what your application does, what capabilities does it provide?

Where is the complexity in your domain? 

Talk to your engineers and business 

Domain Driven Design (DDD) techniques is good way, establish 
the domain events, bounded contexts, entities, behaviour, 
values. 
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UI testing

API
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UI testing

Service virtualization
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UI testing

Component test
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UI testing
https://blog.pragmatists.com/genuine-guide-to-testing-react-redux-applications-6f3265c11f63

https://blog.pragmatists.com/genuine-guide-to-testing-react-redux-applications-6f3265c11f63


43

E2E tests 
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Culture

Quality is everyone’s responsibility

Cross functional teams

Deliberately design your application to be testable, 

Think about testing from day one





Thank you
tcochran@thoughtworks.com

46©ThoughtWorks 2019  Commercial in Confidence


