

WK1
Keynote
Wednesday 11/12/2008 8:45 AM – 9:45 AM

Seven Years Later:
What the Agile Manifesto Left Out

Presented by:

Brian Marick

Exampler Consulting

Presented at:
Agile Development Practices 2008

November 10 - 14, Orlando, FL., USA

330 Corporate Way, Suite 300, Orange Park, FL 32043
888-268-8770 904-278-0524 sqeinfo@sqe.com www.sqe.com

Brian Marick

Brian Marick (marick@exampler.com, www.exampler.com) was a programmer, tester, and team lead in the ‘80s, a testing
consultant in the ‘90s, and is an agile consultant in this decade. He was one of the authors of the Manifesto for Agile Software
Development and is a past chair of the board of the Agile Alliance. Brian is the author of two books—The Craft of Software
Testing and Everyday Scripting with Ruby—and a number of articles. His consulting concentrates on blending formerly-
independent test teams into agile projects, the use of executable examples (a.k.a, tests) to drive creation of products, and helping
programmers learn their craft by pairing with them.

Seven Years Later:
What the Agile Manifesto Left Out

Brian Marick, Exampler Consulting
marick@exampler.com

www.exampler.com

When you see the presentation, you’ll know that it’s not in a
format that can be reproduced on paper. These slides are a
quick summary of the key content.

They were made on September 5, 2008. It is possible – even
likely – that what I emphasize will change between now and
the date of the presentation.

The Unspoken Values

• Discipline
• Skill
• Ease
• Rhythm
• Exhibitionism
• Joy

Discipline

• Agile requires more discipline than
conventional software development.

• The main driver of discipline is the
requirement that the team deliver working
software to the business at frequent
intervals.

• Internal discipline is required when the
business isn’t demanding enough.

Skill

• “Soft skills” – standups, retrospectives, etc.
– are important. They are not enough.

• Hard skills – coding, testing – are harder to
obtain and require more attention.

• Teams have a lot of learning to do, so they
should “go slow to get fast”.

“I've also been tired for years of software people who
seem embarrassed to admit that, at some point in the
proceedings, someone competent has to write some
damn code.” – anonymous

Ease
If you’re used to hammers, when you drive a nail, you
don’t think about the hammer, you think about
hammering. It’s only when there’s something wrong with
the hammer that you become conscious of it.

The same should be true of the activities of making
software. There should be no “friction” getting between
you and your task, no tools that divert your attention
from your goal.

There should be a feeling of ease and comfort at work.

Exhibitionism

• Show everyone your code, status of all
tasks, status of the iteration, progress at
fixing a problem identified at last
retrospective, etc.

• Don’t merely provide visibility when
someone thinks to look. Make a more active
effort to spread information.

• People should err on the side of making too
much information available.

Rhythm

• A steady tick-tick-tick of activity.
• Repetition, with enough variation to keep

people engaged.
• At all scales, from micro (test-code-

refactor-repeat) to macro (the steady pace of
release-ready delivery).

• Note that a regular rhythm makes it easy to
notice departures from the norm.

Joy

When I first became involved in Agile, people would tell
me “This is the best project I’ve ever worked on!”
(including people from the business side). Nowadays,
I’m much more likely to hear “At least work doesn’t
suck as much as it used to” (actual quote).

This is wrong. There is a particular kind of joy in doing
work well and being appreciated for it. Teams should act
to increase joy, even if there is no obvious ROI in doing
so.

	Title
	Bio
	Presentation

