
BIO
PRESENTATION

International Conference On
Software Test Analysis

And Review
May 14-18, 2007
Orlando, FL USA

W3

5/16/2007 11:30:00 AM

"BEHAVIOR PATTERNS FOR

DESIGNING AUTOMATED TESTS"

Jamie Mitchell
Test & Automation Consulting LLC

Jamie Mitchell CTAL, CSTE

Jamie Mitchell brings over 25 years of testing experience, both hardware and software,
to his consulting company.

Mr. Mitchell is a pioneer in the test automation field. He has been working with a variety
of test automation tools since the first Windows tools were released with Windows 3.0.
He has written test tools for several platforms, including Windows, AIX, and AS/400. His
company recently released T-WorMS (Testing – Workflow Management Suite), a
modestly priced set of tools that help organizations take control of their testing
processes, integrating their test planning, design, execution, artifacts, results, and
metrics into one easy to manage entity.

In his role as Principal Consultant at Jamie Mitchell Consulting Inc., Jamie Mitchell is
responsible for developing and implementing test automation initiatives for a range of
clients. In addition, Mr. Mitchell also provides training, mentoring, and expert technical
support.

Jamie is the former Lead Automation Engineer for American Express Distributed
Integration Test (lab) / Worldwide, and has successfully architected and implemented
test automation projects for many top companies including American Express, Mayo
Clinic, IBM AS/400 division, ShowCase Corporation and others.

Mr. Mitchell holds a Master of Computer Science degree from Lehigh University in
Bethlehem, Pa. He holds the Certified Software Test Engineer certification from QAI
and is an ISTQB Certified Tester (Advanced Level.) He is a charter member of the
Austin Workshop on Test Automation, and a regular speaker at several international
conferences, including SQE, QAI and PSQT.

Principal Consultant @ Jamie Mitchell Consulting Inc.
jamie@go-tac.com
612-801-5285

1

mailto:jamie@go-tac.com

Behavior Patterns for
Designing Automated

Tests

Jamie Mitchell

Jamie Mitchell Consulting Inc.

© 2007 Jamie Mitchell Consulting Inc. 2

The Value of Patterns

Humans tend to repeat things
Assumptions
Designs
Ssshhhhh: to put it softly:

<<<<<<<<<< Mistakes >>>>>>>>>>>>

From Wikipedia:
Design patterns provide general solutions, documented in a format

that doesn't require specifics tied to a particular problem

© 2007 Jamie Mitchell Consulting Inc. 3

On Patterns

After automating for the last 15 years, I
have seen many similar patterns
Failure patterns: how to guarantee that
your automation project will be a giant
sucking black hole to resources
Success patterns: how to give your
project at least an even chance of
generating positive ROI

© 2007 Jamie Mitchell Consulting Inc. 4

Caveat

You can do everything right in automation and
still fail
Lots of good projects fail due to outside
influences
Understanding the following patterns of behavior
should give you the best chance of success…

© 2007 Jamie Mitchell Consulting Inc. 5

First the Bad News

Failure Patterns

© 2007 Jamie Mitchell Consulting Inc. 6

A Man’s Got to Know His Limitations!

Automation that is not focused will fail
Start out focused on a small test subset
Look for your critical testing problems

Human testers are not going away
Most bugs will still be found by humans
Many (most?) bugs are found indirectly by running a
test looking for something else

Do not try to automate everything

© 2007 Jamie Mitchell Consulting Inc. 7

Automation Has Limitations
The standard lifecycle of a script in an immature organization

The more we spend on automation, the more testing we want
The more we want out of it, the more we cram into each test
The more stuff the test evaluates, the more complex the test
The more complex the test, the more likely it will fail
The more it fails, the more the test will be “dumbed down”
The dumber the test, the less value it has
Repeat until test is worthless

Test design must be focused on Need vs. ROI

© 2007 Jamie Mitchell Consulting Inc. 8

Scripts Fail

Even good automated tests fail
From extraneous events, system changes, bad synchronization

Tests that cry wolf too often tend to get ignored when
they fail
Tests tend to get commented out until we “have some
spare time to fix them”
We never have spare time!

Entropy Exists

© 2007 Jamie Mitchell Consulting Inc. 9

Dealing with Entropy
Aggressively fix automation bugs – NOW!
Include sanity checking in each test
Constantly error check throughout test

A test with 20 steps has at least 21 failure points
Recover after failure (go to next test)
Leverage good engineering [programming] principles
The most important test you will ever run:

The Next One!

© 2007 Jamie Mitchell Consulting Inc. 10

Good Automation – Bad Testing

A test case must have expected results.
Many automators deem a test successful if it
survives the run.
Automated tests must survive the run.
However, that is not enough!

Make sure you do GOOD TESTING!

© 2007 Jamie Mitchell Consulting Inc. 11

Beware the Bitmaps!

Determining results has always been
the number 1 problem in automation
Many tools recommend that you
compare bitmaps
Because of failure rates of these
compares, some tools make them
fuzzy…

This is often horrible testing!

© 2007 Jamie Mitchell Consulting Inc. 12

Imagine your baby...

© 2007 Jamie Mitchell Consulting Inc. 13

<1% Difference: Same Picture?

© 2007 Jamie Mitchell Consulting Inc. 14

Context is the key

© 2007 Jamie Mitchell Consulting Inc. 15

Basic Warnings on Failure Patterns

Good processes using fewer, less expensive
tools get you much further than expensive tools
and poor processes
You are investing for the long haul – short term
thinking will kill you
Scalability is the holy grail
The number 1 killer of automation:

Unrealistic Expectations!

© 2007 Jamie Mitchell Consulting Inc. 16

It’s Not All Bad News

Success Patterns

© 2007 Jamie Mitchell Consulting Inc. 17

Automation Might Not Be All Testing

There are many repetitive tasks that automation
tools can help with

Building data sets
Setting up environments
Comparing result sets
Singleton tests

EG. Troubleshooting a 3AM network problem

Leverage your tools everywhere!

© 2007 Jamie Mitchell Consulting Inc. 18

Test at the Right Level

Many applications are hierarchical
Use GUI tools to test at the GUI level
Build API automation to test at the business object level

Much of the system functionality may be completely divorced
from the GUI
Business object interface tends to change much slower than GUI
interface

Different Objectives, Different Tests,
Different Tools

© 2007 Jamie Mitchell Consulting Inc. 19

Understand Manual Testing

Manual testing has worked for the
last 60 years.
By understanding how manual
testing works, we can design
automation for success
The following slides will discuss
GUI type testing – although the
principles also apply to many other
types of tests

© 2007 Jamie Mitchell Consulting Inc. 20

The Manual Test Pattern

When reduced to bare minimum,
a test case often can be
documented in 3 columns:

1. Abstract task to be performed
2. The data to do it with
3. The expected result from the

step

© 2007 Jamie Mitchell Consulting Inc. 21

A [partial] Reasonable Test

Etc.

Expect warning
message that no
HTML header was
found

C:\temp\Test
D453.htm

Save file as HTML

AllowedRandom text including
HTML tags

Add text into middle of
file

Expect format to occur
correctly

Get text from file
g:\Test
Data\LongStringTest
D453.Txt

Paste in long text with
no line breaks

App starts and inits to
main screen empty

MyWordProcStart Application

© 2007 Jamie Mitchell Consulting Inc. 22

Points to Note

Abstract Tasks
Slow evolution of abstract functions

Scalability and reuse
This test is incomplete

Needs the human tester to add
Reasonableness
Context

In automation, we add context and
reasonableness though programming!

© 2007 Jamie Mitchell Consulting Inc. 23

4 Step Dance Pattern

When dealing with any GUI, humans tend to
perform the same 4 steps repeatedly
Understanding this common dance can frame
your automation tasks
Use to add reasonableness and context
through programming
Allows us to more closely simulate the human
interaction with the system

© 2007 Jamie Mitchell Consulting Inc. 24

4-Step Fandango

1. Make sure you are in the right place to
perform the abstract task

2. Fill in the interface (instruct the system
on what you want it to do)

3. Trigger the action
4. Wait for completion – ensure completion

was as expected

© 2007 Jamie Mitchell Consulting Inc. 25

Step 1 – Right Place?

Are we in the right place?
Are we getting to the right place?
Is the right place ready for us?

In focus?
No pop-ups?
Enabled?

Humans do this without thinking!

© 2007 Jamie Mitchell Consulting Inc. 26

Location Sanity Check

We must be able to determine
When a window is created
When a window becomes enabled
When a window becomes re-enabled
When a window goes away

Must be able to wait for a finite time
Must be able to check for an arbitrary
number of different windows

© 2007 Jamie Mitchell Consulting Inc. 27

Bart Simpson Has the Answer
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?
Are we there yet? Are we there yet? Are we there yet? Are we there yet?

WaitForWin(Win, Seconds, isEnabled);

© 2007 Jamie Mitchell Consulting Inc. 28

WaitFor…()

You can wait for almost anything:
WaitForWinToClose()
WaitForObjEnabled()
WaitForStatusBarMsg()
WaitForAppletToStabilize()
WaitForStableBitmap()
WaitForTextToChange()

© 2007 Jamie Mitchell Consulting Inc. 29

Step 2: Fill in the Interface

Piece of cake
Every tool, no matter how complex or simple,
can interact with controls
Set values based on test data
Even low level actions are fairly simple:

Click on object, send type message

Get’er Done

© 2007 Jamie Mitchell Consulting Inc. 30

Step 3: Trigger It

More cake
Press Next button
Press OK
Click on menu item

GO!

© 2007 Jamie Mitchell Consulting Inc. 31

Step 4: Wait For Completion

Did it finish correctly?
Did it complete in a timely manner?
Did we get an error message?
Did we get a warning message?
Did it go to never-never land?
This is the most complex problem in automation

What happened?

© 2007 Jamie Mitchell Consulting Inc. 32

Waiting For Multiple Windows
Problem: most tools are “single-threaded”

Reality: several possible outcomes to any action
Need to cycle through all known windows quickly; repeat
as necessary

While
If (WaitForWin(WinA, 0, TRUE) { }
If (WaitForWin(WinB, 0, TRUE) { }
If (WaitForWin(WinC, 0, FALSE) { }

End While

© 2007 Jamie Mitchell Consulting Inc. 33

Single Action While Loop

Perform action to leave current state (step 3)
Loop until get to expected state
Three ways to leave loop…

Get to final state
Get known error which cannot be handled
Time out (unknown state)

Each time through the loop
Only 1(or 0) action is handled
No order assumption is made
Counter prevents infinite loop

© 2007 Jamie Mitchell Consulting Inc. 34

Learning Architecture

Iterative approach to programming
Build abstract functions first, refine later
SAWL gives us a way to

Add new code without breaking old
Revise portions of the code
Quick fix when broken
Time out if unexpected happens
Log exactly what happened

© 2007 Jamie Mitchell Consulting Inc. 35

Expected Behavior In SAWL

Negative testing can be added to loop
5 conditions Must be considered

Expecting no error, get no error
Expecting no error, get error
Expecting error, get expected error
Expecting error, get different error
Expecting error, get no error

Assumption: Test case over immediately when
error box pops

© 2007 Jamie Mitchell Consulting Inc. 36

Expected Behavior

Add single global variable to script (ExpErr)
Place expected error string in it

If no error expected, pass in NULL string
On error, match expected with actual

If match, negative test passes
If no match, test fails

At end of test, if no error, check variable

© 2007 Jamie Mitchell Consulting Inc. 37

Conclusion

Automation is…
More complex than you think
Really really expensive
A long term investment
May return great benefit when done right

Watch out for the patterns – they can lead
you to success

© 2007 Jamie Mitchell Consulting Inc. 38

Contact me:

Jamie Mitchell
Jamie Mitchell Consulting Inc
jamie@go-tac.com

	TITLE PAGE
	BIO
	PRESENTAITON

