
BIO
PRESENTATION

International Conference On
Software Testing Analysis & Review

November 14-18, 2005
Anaheim, CA USA

WK3

11/16/2005 4:30 PM

THE VENERABLE TRIANGLE

REDUX

William Rollison
Microsoft Corporation

BJ Rollison
BJ Rollison is a Test Architect with Microsoft’s Engineering Excellence Group and has
more than 16 years of experience in the software industry. In 1999, he became the
Director of Test Training of Microsoft's Internal Technical Training group and was
responsible for planning and organizing training for more than 6000 test engineers at
Microsoft. Two years ago BJ became a technical trainer in the Engineering Excellence
Group where he currently designs, develops, and delivers intensive hands on technical
training curriculum for new and experienced test engineers at Microsoft. BJ also teaches
software testing courses at the University of Washington and sits on the advisory boards
for software testing certificate programs at the University of Washington and Lake
Washington Technical College.

1Microsoft®

The Venerable Triangle Redux:
A familiar problem; a new outlook

Bj Rollison, Test Architect
Engineering Excellence Group
Microsoft, Inc.
(willro@microsoft.com)

Copyright © 2005 by Bj Rollison 2Microsoft®

My career in software testing

Welcome to
testing!

Domain knowledge
Experience
Intuition
Exploration
Trial and error
Unstructured OJT

Copyright © 2005 by Bj Rollison 3Microsoft®

But, how much do we really
know about software testing?

Anecdotal evidence suggests an overwhelming
majority of industry testers have NOT read more
than one book on software testing
Less than 10% of testers have formal training in
test techniques – Dorothy Graham
A majority of testers lack sufficient technical skill
to write effective test automation, participate in
code reviews, or design white box test cases
A majority view the job as simply finding bugs!

Copyright © 2005 by Bj Rollison 4Microsoft®

Actual
testing
effort

How effective are our tests?
Under-
testing

Universe of
functionality

&
bugs

What is
our

testing
effectiveness?

(35 – 65%)

Actual
testing
effort

Over-
testing

Copyright © 2005 by Bj Rollison 5Microsoft®

Microsoft’s 2 year case study
Total participants = 400 untrained testers
Skill distribution

50% Software Test Engineer (STE) -Tests and critiques
software to assure quality and identify potential improvement
opportunities.

50% Software Development Engineer in Test (SDET) -
Tests and critiques software components and interfaces in more
technical depth, writes test programs to assure quality, and
develops test tools to increase effectiveness.

Avg. testing experience = 2¼ years
53% – < 1 year experience (20% STE)
12% – 1 - 2 years experience (60% STE)
35% – > 2 years experience (70% STE)

Copyright © 2005 by Bj Rollison 6Microsoft®

Weinberg’s Triangle Problem

A program reads three
integer values. The
three values represent
the lengths of the sides
of a triangle. The
program displays a
message that states
whether the triangle is
scalene, isosceles, or
equilateral.

Case Study – Given 15
minutes, create a set of
exploratory test that
would adequately*
evaluate the functionality
of this triangle program
against the functional
specification.
Adequate implies test coverage of the
critical functionality of the triangle
portion of the algorithm

Copyright © 2005 by Bj Rollison 7Microsoft®

Evaluating the responses
Tests grouped into 4 buckets

Triangle – the tests which specifically targeted the
triangle algorithm assuming valid inputs (prev. slide)
Effective – tests which exercised specific control flow,
data flow, operators, or C# methods (including the
Triangle tests)
Off target – valid tests usually focused on the user
interface, but did not test the triangle algorithm
Ineffective – tests which would not have proved or
disproved anything not covered by a previously
executed effective test (based on our implementation)

Baseline - 28 tests based on the algorithm implementation, C# language,
invalid inputs, minimum boundary tests, and integer overflow

Copyright © 2005 by Bj Rollison 8Microsoft®

Overall Results

0

4

8

12

16

20

24

28

Triangle Effective Off Target Ineffective Avg. # Tests

49% effort
effective

but, only 32%
of baseline

21% missed the
primary objective

32% ineffective

4 triangle

Avg. # of tests
 = 18.5

Copyright © 2005 by Bj Rollison 9Microsoft®

So, how did we do?
IF ((Side A + Side B <= Side C)
 OR (Side B + Side C <= Side A)
 OR (Side A + Side C <= Side C))
 THEN input does not equate to valid triangle

IF (Side A = = Side B) AND (Side B = = Side C)
 THEN triangle is equilateral

ELSE IF (Side A = = Side B)
 OR (Side A = = Side C)
 OR (Side B = = Side C)
 THEN triangle is isosceles

ELSE
 triangle is scalene

Avg. of 4 triangle tests =
36% effectiveness

(assuming valid inputs 0<> max int)

84% probability of no testing

33% probability of testing
only 1 Isosceles permutations

Copyright © 2005 by Bj Rollison 10Microsoft®

STE Results by Experience

0

4

8

12

16

20

24

28

Triangle Effective Off Target Ineffective Avg # Tests

1-12 mon. 13-24 mon. 25+ mon.
Triangle tests

below avg. (3.2)
 46.5% of effective

tests

Avg. # of tests
= 17

Effective tests 42%
of avg. test effort

38% ineffective

28% off target

Copyright © 2005 by Bj Rollison 11Microsoft®

SDET Results by Experience

0

4

8

12

16

20

24

28

Triangle Effective Off Target Ineffective Avg # Tests

1-12 mon. 13-24 mon. 25-48 mon.
Triangle tests

above avg. (5.2)
46.8% of effective

tests
55% of

avg. test effort
23% ineffective

Avg. # of tests
 = 20

16% off target

Copyright © 2005 by Bj Rollison 12Microsoft®

Detailed analysis

Both STE and SDET approx. 71% valid tests
STE 42% of tests were effective + 28% off target
SDET 55% of tests were effective + 16% off target

Which group better met the objectives in
evaluating the primary functionality?

38% of tests by STEs were ineffective
23% of tests by SDETs were ineffective

Which group of testers were more efficient?
Do technical skills in software engineering
increase testing effectiveness & efficiency?

Copyright © 2005 by Bj Rollison 13Microsoft®

What’s Microsoft doing?

Microsoft is moving in a
different direction
Refocus building software
as an engineering process
Test engineers who can
 do more Hiring

Training

Retention

Copyright © 2005 by Bj Rollison 14Microsoft®

Changes at Microsoft- Hiring
Testing attributes

Problem solving, curiosity, adaptability, quality focus, efficiency
and effectiveness, thrives on challenges, drive and self-
motivation, passion for technology, detail oriented, customer
focus, communication skills, independent, growth capacity, etc.
Domain and system knowledge

Engineering background
Computer science, math, electrical engineering, etc.
Test engineers who can perform all aspects of software testing
16 STE level positions, 565 SDET positions

Industry expertise
Senior experts in the industry
84 SDET Lead positions, 7 Test Architect position

Copyright © 2005 by Bj Rollison 15Microsoft®

Changes at Microsoft- Training
Intensive hands-on training (approx. 40 hours)

Functional techniques – boundary value analysis,
equivalence class partitioning, combinatorial analysis
Structural techniques – control and data flow, code
coverage analysis
Test case design – reusability,
Methodologies & tools – exploratory, security,
globalization, accessibility, compatibility, etc.
Specification reviews and inspections
Code review – static analysis, data errors, process
Debugging – exceptions, data errors, memory leaks
Model based testing – theory and implementation

Copyright © 2005 by Bj Rollison 16Microsoft®

Changes at Microsoft- Retention

Stop the “brain-drain” from our discipline
Technical training opportunities to make good testers
better test engineers
Remove the “glass-ceiling” in promotions
Establish senior individual contributor (non-
management) roles such as Sr. SDET, Test Architect
Greater scope of influence – drive quality upstream
Greater challenges in testing

Automation - effectiveness, reusability, refactoring
Architecture review – testability
Risk analysis – churn metrics, dependency analysis
Root cause analysis – defect prevention

Copyright © 2005 by Bj Rollison 17Microsoft®

So, how do we get better?
Increase technical skills

Programming concepts
Modern programming language
Domain and system expertise

Increase professional knowledge
Formal training, university courses, conferences, etc.
Mentoring, study groups, self-study
Books, magazines, industry white papers

A Practitioners Guide to Software Test Design – Lee Copeland
Software Testing Techniques 2nd Ed. – Boris Beizer
The Art of Software Testing 2nd Ed. – Glenford Myers
Testing Object Oriented Systems – Robert Binder

“...competition is tougher, you have to redouble your efforts to increase
your skill and value.” B. Marick, Better Software, March 2005

Copyright © 2005 by Bj Rollison 18Microsoft®

Summary

Many testers in the industry are under-trained
Increased technical skills add value
Test engineers must become more multifaceted
Software testing is an engineering discipline in
the professional field of computer science

We employ systematic procedures to accomplish
complex tasks; techniques not gimmicks
We consistently use our knowledge, experiences and
skills to improve our tests and our processes

It’s all about becoming more professional!

19Microsoft®

Questions?

Testing is our profession;
Quality is our passion!

	COVER
	BIO
	PRESENTATION

