
BIO
PRESENTATION
SUPPLEMENTAL MATERIALS

International Conference On
Software Testing Analysis & Review

November 15-19, 2004
Anaheim, CA USA

T15

November 18, 2004 3:00 PM

TEST HARNESSES FOR API
TESTING

Michael Sonshine
Intuit Inc

Michael Sonshine

Michael Sonshine has been involved in QA and Test Automation for more than 14 years.
At Intuit he holds the position of Principal QA Software Engineer in the Shared
Development and Services Division where he has wrote the testing standards document
and created the current Microsoft API Test Harness and associated tools which are used
for automated testing. He also serves as the chair of the Test Automation Special
Interest Group that works to standardize testing and solve current testing problems
across the company.

Prior to working at Intuit he was responsible for the development and implementation of
an automated testing program at a company that had no automated testing in place
when he arrived. He built the API test tools, coordinated testing between multiple sites
and was active in creating both API and GUI level tests as well as building custom test
tools for those QA personnel who were not engineers.

Prior to starting in that position he was actively involved in creating automated tests and
test tools for the Unix environment and served as the corporate representative to the
testing subcommittee of X/Open. He has been involved in software development in and
out of the testing area for 20 years.

API Testing and Use of a Test Harness

Michael Sonshine
Principal QA Software Engineer
Intuit, Shared Development &

Services
San Diego

(858) 525-8987

API Test Harness

Basic Set Of Functionality
Portability
Usability
Standardized Inputs
Extended Functionality

API Test Harness
What must a test harness do?

Gather Input Information
Data files

Externalize data from test
Allow test cases to be added without code modification
Contain control information
Contain pseudo-data

Configuration files
How to run
Test run specific information
General
Test specific

API Test Harness
What must a test harness do?

Modify Setup information
Where are the inputs?
Where are the outputs?
How do I act?

Control Test Execution
Provide visual evidence of operation

What is executing?
How is the status?
What has completed?

API Test Harness
What must a test harness do?

Provide Configurable Logging
Trace to Summary

Provide Data Tools
Generate Descriptions
Renumber (if needed)
Unique Ids (if needed)
Validate Format

API Test Harness
What must a test harness do?

Provide Reports
Summary reports
Timing reports
Coverage reports
Test Case Status - Pass, Fail, Blocked, etc

Client/Server functionality
Microsoft

Web Service
.NET Remoting

Java
Web Service
RMI

API Test Harness

What must a test harness do?
Automated Install

Microsoft deployment
InstallShield
Wise
Zip

API Test Harness
How do we provide for functional portability?

Standardize Data File(s)
Generalize format so it can be used for multiple projects
Provide control information for Test Harness to use
Create set of meta-data values for use in testing
Xml
Make the format suitable for any language

Standardize Configuration Information
Standardize format
Allow hooks between the data file and config file
File for Test Harness
File for Test dll/assembly

API Test Harness
How do we provide for functional portability?

Standardize log file
Standard set of test case results

Pass, Fail, Blocked, Untested, Inspect, Incomplete

Standard error tag format
Uniquely identify errors

Alpha-numeric tag
Tag extension (test dependent)

Provide configurable logging
Easy to identify errors

NOTE, FATAL, ERROR, , INSPECT

API Test Harness
How do we provide for functional portability?

Separate the GUI/CommandLine from the Engine
Separate the Engine from the test dll

GUI

Command

Engine Test Dll Target

API Test Harness

How do we make it user-friendly?
Many types of users

Test Developers
Testers
Application Developers
Managers

Testers

API Test Harness

API Test Harness
How do we make it user-friendly?

Testers
Provide for auto install

Microsoft deployment
InstallShield
Wise

Insure setup is as easy as possible
Comment all entries needed
Provide documentation for installation

Provide Visual Progress
Number of passes, fails, etc
Summary information

API Test Harness

How do we make it user-friendly?
Provide a way to

stop the tests early
run single or multiple tests
select test cases to run
user tools
Visual confirmation of actions

API Test Harness

How do we make it user-friendly?
Test Developers

Template for code
Template for data
Complete libraries

Managers
Automatic Reports
Summaries

API Test Harness
<TestSuite>

<TestCase nbr=“1” id=“Sample-A1B2” />
<Description value=“Sample test case” />
<Blocked value=“false” />
<Untested value=“false” />
<Dependencies>
<Dependency value=“” />

</Dependencies>
<PrevRefs>
<PrevRef value=“” />

</ PrevRefs>
<Attributes>
<Attribute value=“” />

</ Attributes>

API Test Harness
<Obj name=“object1” />

<Mthd value=“method1” />
<Params>
<Param name=“param1" type="string">value1</Param>
<Param name=“param2" type="string">value2< /Param>

</Params>
<Return value=“false” />
<Exception value="false" />
<Sequence start="true" />

</Mthd>
<Mthd value=“method2” />
<Params>
<Param name=“param1" type=“integer">value1</Param>

</Params>
</Mthd>

</Obj>

API Test Harness
MetaData

Tokens
#T:TranslateValue

Translate value based on config entry
Done by Test Harness prior to call to test dll/assembly

#R:N:MinLen:Maxlen
Generate random numeric string value of random length
between MinLen and MaxLen characters
Done by Test Harness prior to call to test dll/assembly

#R:A:MinLen:MaxLen:U
Generate random uppercase alpha string value of random
length between MinLen and MaxLen characters
Done by Test Harness prior to call to test dll/assembly

API Test Harness
MetaData

Tokens
#Prev

Return the object used in the previous test case.
If done by Test Harness requires object be
serializable

#Prev:ParamName
Return the parameter used in the previous test case
If done by Test Harness requires object be
serializable

#S:15

API Test Harness
Test dll/assembly

Code needed for testing is in test dll/assembly
Only 5 method calls are necessary

preTestSetProcessing
Perform any test setup requirements

preTestCaseProcessing
Perform any test case setup requirements

testCaseProcessing
Process test case

postTestCaseProcessing
Perform any test case cleanup (tear-down)

postTestSetProcessing

API Test Harness

Other items
Method/Property coverage information
Timing Statistics
Timing Report

API Test Harness
Basic Functionality

Specify Inputs
Specify Outputs
Specify Control Info
Display Progress
Display Completion Information
Data Tools
Same interface for MS and Java
Start/Stop
Helper Libraries (xml, database, etc)

API Test Harness
Extended Functionality

Pause/Restart
Schedule delayed start
Results Summary
Dependency verification
Multiple executing copies
Database test case storage
Windows service control
Max run times for test set and/or test case

1. Introduction

Test automation has become an increasingly important part of the QA process in many
companies. The reasons are well known to all QA professionals – the ability to create a
set of repeatable tests, the ability to create a trail of what has been tested and what has not
been tested, the need for quick turn-around during product releases and the constant
pressure of finding and training people for large-scale manual testing efforts.

The easiest path to test automation has been through the use of GUI based testing tools.
These tools seemed to offer what most organizations felt they needed. Users could be
trained quickly, tests could be created through the “capture-playback” functionality and
later modified to act in a more repeatable fashion. Companies like Mercury, Rational,
Segue and others produce sets of tools for functional and load testing and many testing
efforts rely heavily on them. While the ability to create tests quickly using these tools is a
help, the tests themselves often suffer from well-known problems. They tend to be
fragile, when something breaks tests often do not know how to get back to a well-known
state and consequently hang, GUIs change repeatedly and the tests usually have to be
revised just as often and, since it is difficult to construct these tests before the GUI is
available, there is a time lag between product release and test. Still, these tools have often
proved useful for many companies in shortening the testing time and the associated
scripting language for the tools allows the use of sophisticated test control code to, at
least potentially, take care of some of the problems mentioned above.

One of the limitations of these tools is that they are designed for testing GUIs and hence
did not seem to address non-GUI applications. Some QA organizations have addressed
this limitation by requesting that development organizations create simple API test
applications which themselves would call the APIs, but would present a GUI front-end to
the tester and hence could be automated through the use of these tools.

A second path to test automation centers on direct API level testing. Initially this type of
testing seemed applicable only to non-GUI based applications but allowed QA
organizations to create very thorough test sets to validate the functionality of such
applications. However some organizations have also applied this type of testing to GUI
based applications reasoning that GUI-based software only ties a set of GUI actions into
calls to underlying events and method calls. In this view text box data, button and
checkbox settings, list data and the like become nothing more than parameter data for
some event or method call which can just as easily be made by a test as by a GUI. Given
this view API testing can be used, and used very effectively, for testing both GUI-based
and non-GUI based software.

Regardless of the type of application, testing at the API level offers many advantages
when compared to GUI-based testing.

• Much more thorough testing can be done.

It is easier to create a large set of possible data at the API level than through the
GUI. Special data values such as very long fields or nulls can easily be used.

• Testing can be done more quickly.

Testing of a specific call through a GUI may require a relatively long time for the
test to get to the window where the call will actually be made. Testing through the
API takes very little time and hence many such calls can be made repeatedly.

• APIs tend to be more stable and hence fewer changes are required

GUI screens often change with every release. Screen and object names change,
items move from one location to another, new buttons or text boxes are added,
existing ones are removed and new intermediate screens are created. Changes like
these and others not listed often cause havoc in GUI-based tests. The underlying
APIs often are largely untouched and tests written for them will remain valid. If
they do change the required test changes are often minor.

• APIs tend to be defined earlier in the process and thus test cases and test

code can be created earlier.

A frequent problem with GUI-based tests is that it is difficult to create the test
without the GUI itself. While there are approaches to address this problem it
typically remains a major roadblock to the creation of a functional set of tests.
Since one of the primary goals of any test effort is to get done as quickly as
possible, API testing can be a big help in this area.

• Changes in APIs are generally known in advance and thus test case changes

can be made earlier.

Test changes can be made as soon as changes are known and published and do not
need to wait for the release of a GUI. Often development organizations will notify
QA or proposed changes well in advance of the actual software release.

This discussion will center on API level testing and on the use of a Test Harness to help
in the effort. The term Test Harness is used widely through the industry and is generally
understood to refer to a software package that controls the running of automated tests and
often provides a set of tools to help create the tests themselves. Given this definition
many tool sets quality as “Test Harnesses” and the term has been used to refer to both
GUI and API level test frameworks as well as storage tools used to launch tools.

Exactly what set of functionality should a “Test Harness” make available to be useful? If
we consider this to be a normal software project, what are the requirements? At a more
basic level, exactly what should a “Test Harness” do? In this discussion we will address
three main questions.

• What must a Test Harness do?
• How do we construct such a tool in a way to make it usable in different

projects?
• How do we design a user interface so the tool will be easy to use for the wide

range of possible users – developers, domain experts, contractors and
testers?

2. What Must A Test Harness Do?

In general it is easy to construct a high level list of needed functionality. As a minimum a
Test Harness should be able to perform the following actions.

1. Gather Configuration Inputs From the User

Automated tests vary considerably. Some are batch files running on Unix or
Microsoft systems calling command line functionality, some are full GUI
presentations running under X/Windows on Unix or on Microsoft or Apple systems.
All such tests require data to function. While it used to be common for tests to wrap
this data in code, the modern set of automated tests generally try to center only test
functionality in the test itself and to externalize test data, control structures and
configuration information in either a set of data files or a database. These externalized
files (or database entries) consist of both inputs and outputs and both are essential to
the running of the tests. The Test Harness must allow users to specify where this
information is for any particular set of tests. There is no hard and fast rule about what
constitutes a complete set of such information, and it varies considerably from Test
Harness to Test Harness and from GUI interface to command-line interface.

The API Test Harness that Intuit’s SD&S is currently using provides external inputs
for the data files, for the Test Harness configuration file, for the test configuration
file, for test execution information and, of course, for output log information. In
addition the test may require the actual location of the test dll/assembly itself for use
with reflection and information regarding remote access such as IP Addresses.

A file, which is in standard xml format, provides the actual data (or, in some cases,
pseudo-data) used to specify both test cases for execution and the parameters and
results expected. The Test Harness configuration provides information about how the
Test Harness should run. The application configuration file provides control
information for the test itself and thus would provide such things as target system IP
addresses for this test, system file paths, translation information that is subject to
change, the location of test meta-data and the like.

In addition to test inputs the user should be able to specify the locations for test
outputs. A test, to be useful, must write a log file summarizing test execution and
results and the name and location of this file should also be able to be set by the user.

The SD&S API Test Harness also generates execution timing information when calls
are made and the user is also able to set the location of this file.

Additional control information such as logging levels, test repetition counts, startup
and run times may be deemed important and should be considered.

2. Allow User Modification of Existing Settings

A Test Harness needs to be easy to run and the above is a fairly long list of inputs for
the user to enter every time a test sequence is to be executed. Further, even if all of
the information already has been input, some may require modification prior to a run.
A user, having entered and run a set of tests, may wish to re-run the tests, but specify
a different output log file. He or she may wish to modify the current log level to
include more or less logging information in a subsequent run. Or link to a different
dll/assembly to test. Frequently a test set may be re-run, but the user only wishes to
execute a subset of the tests that were executed the first time and hence must be
allowed to set the test cases which will be executed.

Of course the manner that this is to be done is dependent upon the Test Harness and
its user interface. For the Intuit SD&S API Test Harness this involves opening a
window and either modifying a text value or accessing a list box and setting and
unsetting various entries.

3. Start, Stop And Control Test Execution

Clearly the user must be able to start test execution, but that alone is insufficient in a
general test tool. Users should be start a test run, schedule a test run at some later date
and time, schedule how many times a test set should be executed, stop an executing
test set, pause an executing test set and, of course, restart it.

While GUI-based test harnesses are generally used to start tests immediately, they
should also allow the user to start a test at some later time. The ability to start a set of
tests at some scheduled later time should be a basic component of most command-
line Test Harnesses since often such tools are intended to be used in connection with
nightly builds to provide for automatic testing of new releases. Functionality available
through a GUI should be a super-set of that available from a command-line and this
implies that the ability to schedule later testing should be part of any GUI based Test
Harness.

Users should be able to pause a set of tests that is executing. This need may be
planned (perhaps they know that prior to execution of a specific set of tests they need
to connect/disconnect some modem connection) or unplanned (perhaps they find
during test execution that something needs to be taken care of and, due to the length
of time the test set runs, they do not wish to stop and restart the tests). In either case

the ability to pause an executing set of tests is important. And clearly if a set if
paused, the user must have the ability to restart it.

In addition the user may wish to terminate an executing set of tests and the
functionality should be present to allow test termination gracefully rather than having
the user terminate the process itself. This allows the Test Harness to do any normal
test cleanup and reporting.

While the above features are a basic set of required functionality it is often useful to
be able to provide extended functionality as well. The user may find it helpful to be
able to specify a repetition count for test sets (for example, run this set of tests 20
times or run this set of tests for a total of 4 hours). Because QA is often running tests
against immature software there is always the problem that a test case may hang and
hence it is useful to provide a way to insure that a test case does not run for longer
than a specific period of time. If it does, the harness should kill the thread running the
test, make a log entry and continue and thus avoid the problem of someone starting a
test at 6 pm and walking in the next morning at 9 am and finding that the Test
Harness is still running test case 5 of 1207. Dependency testing is another area that
should be considered. Test cases are often not discrete sets of tests but form some
sequence. If some object needs to be created so that it can later be updated, then if the
creation test case fails the update test case should not be run. This type of dependency
checking can thus prevent hours of meaningless test runs.

4. Provide Visual Progress Information

As testing proceeds it is important that a Test Harness provide some type of progress
information to the user. Tests may run for hours and it can be extremely important not
only to know that the test is actually executing, but what the current results summary
is. A user who has just run a test set on a 2.8 GHz system with 1 GB of memory and
knows that the test took 30 minutes to complete may terminate a test running on a 200
MHz system with 128 MB of memory because it has been running for 45 minutes and
has not yet completed if there is no visual display that the test is successfully
executing test cases.

It is also important that the Test Harness provide real-time summary information of
passes, fails and other results. A user who knows that a test has completed on one
machine with no failures may have cause to terminate a test and recheck the settings
if it is running on a different machine and all the test cases are failing.

5. Provide Configurable Logging

Testing is usually done throughout the test cycle and the need for detailed information
early in the cycle is often more important than later in the cycle. The need for detailed
information for test failures may be more acute than for test passes. The information a

manager may wish to see is almost certainly different from the information an
engineer may need to see. All of these are reasons for the user to be able to configure
the logging level before a test starts, for specific test cases or for passes and fails. The
usual solution is to allow the user to specify an input log level number and for the test
to log only if the specified logging level for any particular entry meets or exceeds that
value. One alternative is for each test case to specify its own log level and another is
for the test to automatically log passes at some low level and fails at some high level.

Any of these solutions need to be changeable by the user at run time since any
particular test run may require more or less logging.

6. Provide Data Tools

One of the issues that we will discuss in the next section is the need for a standardized
format for Test Harness inputs and the advantage of standardized outputs. Thus data
files should be constructed from a standard format so the form of the data only has to
be learned once by a user. Once that form is learned and understood developers can
construct data for any test set from it and domain experts, who may have the
responsibility of constructing new test cases, may do so with relative ease. And the
same standardization, which allows ease of use by users, also allows the Test Harness
to provide a set of tools that can work on that format. Thus tools can be created which
automatically renumber test cases when new ones are added, generate unique Ids for
test cases, display data sections, extract specific test cases and assist in the adding of
new data.

7. Provide Reports

After test runs there is often a need for specific types of reports. Managers may want
a list of the test cases actually run. Project leads may want a report of test case
progress – how many test cases ran, how many passed, how many failed, how many
were blocked and so on and developers may want a set of reports on failures only.

As we will discuss later in this document it is also often helpful to produce timing
information. Test Harnesses are in a unique position to generate this information and
subsequent timing reports can be immensely helpful as a project progresses. Timing
information on any particular run may seem unnecessary, but timing comparisons
between consecutive releases can be extremely helpful in determining if fixes or
architectural changes have had any measurable impact on response times.

All of this can be done automatically by a Test Harness by providing hooks to the
custom test dll to provide such information and then, if it has been provided,
generating a report.

8. Provide Client/Server Functionality

Today’s testing environment often requires the ability to perform tests across system
boundaries. The client portion of the Test Harness may reside on one machine, the
test dll on a second and the target on a third. Any Test Harness, to be useful, must be
able to fit such a test requirement. Fortunately today’s software tools and operating
systems make such an installation relatively painless. Microsoft provides both web
services and .NET remoting in the latest OS versions as well as COM and COM + in
earlier versions. Java provides remoting software and Unix also provides the ability to
test remotely.

9. Automated Installation

One of the advantages of a Test Harness is that it provides an environment in which
testing may easily be done by QA personnel who are not themselves developers. A
standard GUI or command line interface allows them to know how to run tests, how
to control test execution and to assess test results. However none of this is of much
use if they cannot install the Test Harness and associated software and thus it is
important to provide automated test installs. Since often testing is done on multiple
platforms QA labs are often in the business of copying standard images onto systems
and then running tests on them. Since these images likely cannot contain the test
software, that software has to be able to be installed with a minimum of trouble. The
easiest way to do this is through automated installs. Indeed, since most software
packages are delivered through such installs QA personnel are used to using them and
providing a test in the same manner makes the entire process more consistent.

The above presents a reasonably complete list of general required functionality although
some testing environments may have additional specific needs. The question now turns to
how to implement this tool so that it is portable between projects.

3. Portable Construction

No matter how useful any tool may be for a particular project it is unlikely to be used in
another project if there is too much work needed to make it suitable for testing for that
project. At the heart and soul of such portability is the need to develop a single format for
both inputs and outputs. Standardizing inputs provides a template for the test developer
for the creation of data for a new project. Standardizing outputs allows the Test Harness
to produce the necessary reports from the logs and statistics and thus the test developer
has only to concentrate on writing the custom code for testing. Code templates make it
easy to create custom tests that live and work properly in the confines of a Test Harness.

3.1 Standardize Data File(s)

The data file is probably the most important item to standardize. If its format is
known the Test Harness can load and parse the data, verify that it is in correct format
and hand one test case at a time to the engine. The engine can handle the known
overhead information calling the test dll/assembly only when necessary and keep
control information about how testing is proceeding. Then only the necessary test
cases are actually called and the test dll can use a pre-existing set of classes to parse
the data and extract the necessary information. Given its current common use in the
industry xml appears to be the most useful data format and it can be successfully used
even when the data for tests actually resides in a database. While many different
formats may serve as templates Appendix 1 contains one possible sample. A variant
on this format is in use at Intuit for all of its automated testing. It has been general
enough to serve for a multitude of projects.

3.2 Standardize Configuration Information

Configuration files allow a great deal of flexibility in defining how tests will run. The
information they provide can be accessed and used to control what the test will do
and how it will do it, can be translated as data input or data modification and can be
updated as conditions change and force test conformance to new environments
without worrying about re-building.

Two pieces of software are generally running during a test. The Test Harness itself
and the custom dll/assembly that does the actual testing. Both should have
configuration files.

3.3 Standardize Log File

The format of log files should also be standardized enough to insure that the start and
end of test case log entries are done by the engine so that the engine and/or front end
is able to parse through the data and extract subsets suitable for reports. In our QA
organization we provide the ability to extract any subset of a log by test case result so
we can provide reports of only passes, only fails, only blocked and so on. Log entries
themselves are often relatively free form although some standard entries are provided
for special handling. One of these in particular deserves some special discussion.

One of the advantages of automated testing, especially at the API level, is the ability
to run many test cases in a relatively short time. It is not unusual for automated tests
to be able to execute thousands of test cases in relatively short time periods and thus it
can become a problem to compare test results. Usually this is done by comparing the
failures in the logs. The basic assumption is that if the same test cases failed, then the
test ran as before. Unfortunately this is not always the case. If the same test case

failed as before, but failed in a different way, it is not the same failure and must be
reported as a new defect. How can we automate the test log comparisons?

One way is to mark each failure in the log with a special token unique to that failure.
While this may sound complex it is, in reality, a relatively simple process. In my tests
I label each possible error condition that will result in a Fail with a 2-letter code
starting with AA and ending with ZZ. If the failure can be produced by any of a series
of actions such as comparing data fields in a record with their equivalent in a
database, then the token is expanded to include the field being compared. If the
failure results from an exception, then the token is expanded to include either the
error number or the error message. If the failure comes from a single field
comparison, then I may expand it by including both the expected and actual field
contents in the log file. These entries are then extracted from the log and form a set of
failure information for that test run. New failure sets can then be compared with old
ones and it is possible to tell if failures have changed.

Other such approaches may be used. The important thing is to provide a standard way
of doing this so tools can be developed within the Test Harness and used to help ease
the testing effort.

Another approach to providing portability in data file creation is through the use of
pseudo-data (or meta-data) entries. Such entries, if standardized, can be used in
multiple tests and the work to replace them during actual test execution with the real
data can be done by the Test Harness. We use this process at Intuit through the use of
well-defined data tokens that have specific meanings. All domain experts who work
with the data files know these token values and how they work and they can be (and
are) used across tests. A list of some of these “tokens” is given in Appendix 2.

3.4 Isolate Test Dependent Functionality in the custom dll

Test Harness functionality should be completely isolated from testing functionality.
The Test Harness has a specific set of functionality to implement, but none of that
functionality should involve any testing. The Test Harness may read and verify the
format of the data file, access and pass along configuration information, log entries
and other such requests, but should know nothing about the dll/assembly being tested.
That is, it verifies the format of the data, not the data itself. That responsibility lies
with the test dll alone since it alone knows what specific data entries mean.

Typically the architecture of a Test Harness is something like the following

Separating functionality provides many advantages

• Since the Test Harness is separate from the test functionality it can provide
functionality for any test environment.

• Separating the GUI functionality from that of the engine allow the
construction of a command line interface paralleling the GUI functionality

• Separating the GUI/Command Line from the engine and that from the test dll
allows remoting to be used for any interface.

4. How Do We Make It User Friendly?

A Test Harness is only useful if it is used and only used if it is easy to use. For the test
developer it should provide a simple test template and library and, since most QA
organizations would like automated tests to be able to be run by everyone - domain
experts, testers and contractors as well as by test developers, it should provide a familiar
and easy to use visual interface, GUI or command line.

From the test developer’s prospective test execution is relatively simple. In general there
are only five methods that need to be provided. One to be run prior to any test execution
(test set setup), one after all test cases have been run (test set cleanup or “tear-down”) and
then one prior to each test case, one after each test case and one for the actual test case
work. Of course much other work needs to be done during a test case, but these five
methods constitute the complete set of needed Test Harness – test dll interface methods.
Since the defined interface is relatively simple the Test Harness can, and should, provide
a template implementing this interface that the test developer can then use as a starting
point for automated tests. For SD&S these methods are named preTestSetProcessing,
preTestCaseProcessing, testCaseProcessing, postTestCaseProcessing and
postTestSetProcessing. It also provides a complete set of library routines to assist in xml
handling, database access, logging and other normal processing and validation needs.

For the Tester the single most important thing the harness can do is provide an easily
understood and easily used GUI. The GUI should look and behave like any normal piece

GUI

Command
Line

Engine Test Dll Dll Under Test

of software. If it has the same look-and-feel as any other normal piece of software it is
more “approachable”.

Provide the simplest setup possible. If configuration information is needed, determine if it
can be automatically generated. Create all necessary folders during the installation. Make
references relative rather than absolute. Use any existing environment variables to
determine where needed resources are.

Provide automatic installation of the tests. It may be an install package such as the
Microsoft Deployment Package, InstallShield, Wise or a simple zip exe. The easier it is
to use, the more likely it will be used.

Other areas that help testers: Supply visual confirmation of progress. Display test cases
executed, passes, fails, etc. Provide a way to stop the test without terminating the process.
Provide a way to run multiple sequential tests rather than a single test set. Provide for
scheduled test execution. And make the functionality of a GUI an extension of the
functionality of a command line interface.

While Managers may not directly use tools like a Test Harness, the output from such
tools can form a core of information they need to make appropriate decisions about
project timelines and progress. Simple reports such as test run summaries can often be
very helpful in determining how well a project is progressing.

Application developers, whose products are actually under test, benefit from log files
containing detailed information about both successes and failures. Success entries, if
sufficiently detailed, give them information about exactly what type of data is being
properly processed and failures, of course, give them detailed information about what is
not being handled properly. Thus they often need far more detailed test information than
the similar reports given to Managers.

Appendix A: Data File Format

<TestSuite>
 <TestCase Nbr="1" Id="Sample-A1B2">
 <Description>description 1</Description>
 <PrevRef value=”none” />
 <Dependencies value=”none” />
 <Untested state="false" />
 <Blocked state="false" />
 <Attributes>
 <Attribute name="" value="" />
 </Attributes>
 <Obj name="object1" clazz="" instance="" depends="">
 <Mthd name="method1">
 <Params>
 <Param name="param1" type="string">value1</Param>
 <Param name="param2" type="integer">5</Param>
 </Params>
 <Exception value="false" />
 <Return value=”void” />
 </Mthd>
 </Obj>
 <Obj name="object2" clazz="" instance="" depends="">
 <Mthd name="method2">
 <Params>
 <Param name="param1" type="boolean">True</Param>
 <Param name="param2" type="long">125</Param>
 <Param name=”param3” type=”string”>Null</Param>
 </Params>
 <Exception value="false" />
 <Return value=”true” />
 </Mthd>
 </Obj>
 <Obj name="object1" clazz="" instance="" depends="">
 <Mthd name="method3">
 <Params>
 </Params>
 <Exception value="true" />
 <Return value=”false” />
 </Mthd>
 </Obj>

Appendix B: Tokens

While this is not a complete set of tokens it does provide a sample of what is used by
SD&S.

#T:Value – translate the specified value based on entry in configuration file. This
translation is automatically done by the Test Harness before the data is passed to the test
dll/assembly

#R:A:minLen:maxLen:U – generate a random uppercase alphabetic string of random
length with minimum minLen and maximum maxLen

#R:N:minLen:maxLen – generate a random numeric string of random length with
minimum minLen and maximum maxLen

#R:AN:minLen:maxLen:L – generate a random lowercase alphanumeric string of
random length with minimum minLen and maximum maxLen

#R:Num:minVal:maxVal – generate a random number with value between minVal and
maxVal

#Min:A:FieldName – generate an alphabetic string of minimum length for the specified
field name. Length information for the specified field must exist in a file (or a database
reference must exist)

#Max:A:FieldName – generate an alphabetic string of maximum length for the specified
field name. Length information for the specified field must exist in a file (or a database
reference must exist)

#XMin:A:FieldName – generate an alphabetic string of one character less than the
minimum length for the specified field name. Length information for the specified field
must exist in a file (or a database reference must exist)

#XMax:A:FieldName – generate an alphabetic string of one character more than the
maximum length for the specified field name. Length information for the specified field
must exist in a file (or a database reference must exist)

#Prev – return the object generated by the previous test case.

#Prev:paramName – return the value from the previous test case for the specified
parameter name

#X – return the object generated by the specified test case ID

#X:paramName – return the value from the specified test case for the specified
parameter name.

	cover
	bio
	presentation
	Paper

