BIO
PRESENTATION

F7

November 8, 2002
11:15 AM

SMARTER TESTING WITH THE
80:20 RULE

Erik Petersen
Software Testing Consultant

International Conference On
Software Testing Analysis & Review
November 4-8, 2002
Anaheim, CA USA



Erik Petersen

Erik Petersen has moved through many SDLC roles since the mid 1980s, focusing on
software testing and QA since the early 90s, working for small software houses,
customized software providers (including CSC) and large companies. He has consulted
on, tested and managed test projects for a diverse range of Australian and international
companies (including IBM and Philip Morris).

Erik spent four and a half years at the ANZ Bank (one of Australia’s largest), mainly
consulting on test tools and process, as well as running testing for ANZ Internet Banking,
ANZ-E*Trade and other eCommerce and intranet projects.

Erik has been an active participant in several software testing discussion groups since
1996, having email contact with many European and North American testers. Erik was a
reviewer of Brian Marick’s “Classic Testing Mistakes” presented at STAR 1997, and a
reviewer of “Lessons Learned in Software Testing” by Kaner, Bach and Pettichord. He
presented at AsiaSTAR 2001 and AsiaSTAR 2002.

Contact him via ecp@computer.org



Smarter testing
with the 80:20 rule

Erik Petersen,
Melbourne, Australia
ecp@computer.org

Visit the Software Testing Spot
at www30.brinkster.com/wvole

Copyright © Erik Petersen 2002
All rights reserve d




/I/% is this?

<% Who is this man?

% Clue 1: He is an
engineer and a lawyer

% Clue 2: He discovered
the 80:20 rule

Copyright © Erik Petersen 2002
All rights reserved




/On the 80:20 rule

% ... [The 80/20 Principle]| can multiply
the profitability of corporations and the
effectiveness of any organization. It
even holds the key to raising the quality
and quantity of public services while
cutting their cost.”

From “The 80/20 Principle : The Secret to

Success by Achieving More With Less ”,
by Richard Koch, 1998

Copyright © Erik Petersen 2002
All rights reserve d




/ThX‘Pareto Principle

< What is the 80:20 rule?
(a.k.a the Pareto
Principle)

il

% Answer: For any group of
things, 80% of the
attributes of the group are
due to only 20% of the

members of the group.

Note that Pareto percentage varies but typically it is 80:20

L.
——y;
e
L.

Copyright © Erik Petersen 2002
All rights reserved




43>eto Principle example

% In 1963, IBM discovered that roughly 80% of a
computer’s time was spent executing only
20% of the instructions, which was a counter-
intuitive breakthrough at the time. IBM
rewrote the operating system to make the
20% taster and easier to use, improving
computer performance.

% Web traffic is also following the Pareto
Principle, with 10% of web sites having 90%
of tratfic

Copyright © Erik Petersen 2002
All rights reserved




/ I/% 1s this, take 27?

% So who is this man
who discovered the
Pareto Principle?

Copyright © Erik Petersen 2002
All rights reserved




/ V)‘/edo Pareto

<% Economist and

sociologist

<% Discovered in 1880s

that wealth of Italian

population followed
an 80:20 rule (80%
wealth for 20%

people)

Copyright © Erik Petersen 2002
All rights reserved




% Engineer and lawyer

< Discovered 80:20 rule

in 1940s after studies of
quality in American

industry, “the vital few
and the trivial many”.
Modestly named it
after Pareto.

+ Father of Total Quality
Management (TOM)

Copyright © Erik Petersen 2002
All rights reserved




/P>€to sweet spots

% Sweet spots occur in a cricket or baseball bat, golt
club or tennis racket, where a sportsperson can
hit the ball and hardly notice the contact. It is the
most productive way to hit the ball, with the
least effort.

% The Pareto Principle offers a way to identity
sweet spots - productive ways of achieving our
goals quicker or maximizing use of focus points
while minimizing effort.

+» How do we identity the sweet spots and test
smarter? Use Pareto analysis!

Copyright © Erik Petersen 2002
All rights reserved




/I/%t 1s Pareto analysis?

< Named for Pareto by Juran

% Identitying the main
classifications/ causes of
the properties/results to
identify sweet spots.

% There may be many
different criteria for Pareto
analysis.

% Uses a Pareto Diagram as
visual representation to
simplify analysis

Copyright © Erik Petersen 2002
All rights reserved




/I/%t 1s a Pareto diagram?

< Named for Pareto by
Juran

% A Pareto diagram is a

graph of results grouped
logically by cause and
sorted by most to least

+ Pareto diagrams can be
made with a spreadsheet
or graphing tool.

Copyright © Erik Petersen 2002
All rights reserved




il

% An internet poll in early 2000 invited people
to vote for their favorite character from
Snoopy. The survey had these results:

- Snoopy 5529 - Charlie Brown 2076
- Linus 1108 - Woodstock 900

- Pig Pen 629 - Schroeder 463

— Lucy 392 - Peppermint Patty 323
- Marcie 82 - Sally 59

- Assorted others 199 (we'll ignore these)

e Peanuts Popularity Survey

Documented by Scott Jones of KPI Inc. and used with permission

Copyright © Erik Petersen 2002
All rights reserved




/ThX‘Peanuts Pareto

s
o
{;p

o &

.i/lll.l--_
o 2 il
ﬁ,ﬁp .,}@ﬁ w‘ﬁﬁﬁa&ﬁé x—é’

This descending curve across all outcomesistypical.

Copyright © Erik Petersen 2002
All rights reserved




/O%iving by the 80:20 rule

% “You’'ll miss the glorious world of timing,
luck and surprise, all of which lurk in the
shadows, not the light, of life. It’s fine to
understand life in terms of the Pareto
Principle. Just don’t live it that way.”

from Dr Contrarian’s Guide to the
Universe

% This “glorious world” sounds like a typical IT
project! If the Pareto Principle can help us
avoid it, it might be a good thing to know.

Copyright © Erik Petersen 2002
All rights reserved




%

+ “Experience is the name a person gives
to their mistakes”

iPLxperience

Oscar Wilde

% What can we learn from the experience
of our mistakes?

Copyright © Erik Petersen 2002
All rights reserved




/P>€to analysis of defects

% A Pareto diagram can be
created for number of
defects found against
where/how they were
found.

% Use a spreadsheet or
some test management
tools (though they may
not sort the data).

Copyright © Erik Petersen 2002
All rights reserved




/E%ple : Project X

% Example of a small web system

% 9 major functional areas, renamed to protect
the innocent. Login, internal homepage,

administration, staff log, search, make
appointment, supplier list, supplier
appointments, supplier details.

< 69 defects found, classified into 5 severities
% Major defects were 1 sev one and 7 sev two
% What do the Pareto diagrams look like?

Copyright © Erik Petersen 2002
All rights reserved




/ P’rq'ect X

@Phreto for sev 1 & 2 bugs)

7
6
&
4
3
2
1
1]

The maor bugs are concentrated in afew functions.

Copyright © Erik Petersen 2002
All rights reserved




/ %ect X (Pareto for all bugs)

All bugs are concentrated in about half of the functions!
Thisisnot anormal Pareto graph. Isthistypical?YES!

Copyri ht@E ik Petersen 2002
Allri ights r ed




/D>‘ect density

% Snap shot from article “Software Defect Reduction Top
10 List”, Basili & Boehm, IEEE Computer, Jan 2001.
From a testing point of view, we are interested in 2
rules

< Number 4: About 80% of the defects come from 20%
of the modules (standard Pareto)

and about half the modules are defect free (unique
to software!)

(range is 60-90%, with 80% median)
(load testing: about 40% of modules have 60% defects)

<+ Number 5: About 90% of the downtime comes from
at most 10% of the defects

Copyright © Erik Petersen 2002
All rights reserved




/D>‘ect density implications

<+ Once we find a defect,
there is a strong chance
we are In a sweet spot
and will find more in
the same place

+ If we are running tests
in an area and not
tinding defects, there is
a strong chance it may
be detect free (Note:
Chance not Guarantee)

il

Copyright © Erik Petersen 2002
All rights reserved




/Id\ehtifying defect sweet spots

% During test execution, do
Pareto analysis (with
spreadsheet or test
management/ defect
tracking software) to
identity sweet spots
where defects are being
found.

% Concentrate on sweet
spots for scripted and
exploratory testing

il

Copyright © Erik Petersen 2002
All rights reserved




/P%ling deeper defects 1

< Recall the other relevant item from the Defect
Reduction Top 10:
Number 5;: About 90% of the downtime
comes from at most 10% of the defects

% We can identify our defect sweet spots during
testing and concentrate on them for further
scripted or exploratory testing. This will
identify functional errors in behaviour, but
what if there are further errors in the code
that are not visible at the functional level?

<+ What can we do about this?

Copyright © Erik Petersen 2002
All rights reserved




/P%ling deeper defects 2

% We need to push back on developers when
further structural (unit or integration) testing
is needed.

+ This is much easier to say than do

% One approach is to look for bug clusters.
Robert Sabourin and Mr Kim Davis,
motivated by the 80:20 rule, wanted to try
and see if they could save time and effort in
web projects by concentrating on looking for
bug clusters wherever possible or practical

after initial bugs were tound.

(COI’ltIHUEd. . ) Copyright © Erik Petersen 2002
All rights reserved




4

+ They performed fast probabilistic root cause
analysis on bug clusters, prioritizing them
then investigating them with tester-developer
pairs. This resulted in 13 defect corrections
for every 10 reported

ving deeper defects 3

% Ongoing investigation, now being used on
multiple projects

Copyright © Erik Petersen 2002
All rights reserved




/S%rter Testing: Tip 1

+ When you find bugs, look for others
nearby

il

Copyright © Erik Petersen 2002
All rights reserve d




/Réctive versus proactive testing

% We cannot do Pareto analysis until we have
real defect information. Unfortunately, most
of the defects are in 20% of the software

% Once we start finding defects, we can focus
on where they are occurring but we may
have to run many tests first. This is very
reactive. Can we be more proactive and try
to anticipate where the defects will be and
start testing there first?

Copyright © Erik Petersen 2002
All rights reserved




%

% “Today’s risks are tomorrow’s
problems”
Software Engineering Institute

iptomorrow’s problems

+ It we identify potential risk areas and
build /test them first, we increase
chances of finding defects quicker and
maximizing fix and retest time

Copyright © Erik Petersen 2002
All rights reserve d




/R>k identification

% Where we don’t want problems
- high use/important functions
% Where we may have problems

- Functionally risky
¢ use intuitive assessment, historical model or

¢ use calculation risk = impact times likelihood

— Structurally risky

¢ assess dev risks ( new or changed complex fn,
late spec’d tn, fn with many interfaces, etc)

¢ update with code review and unit test results
¢ Feed structural risks into functional ones

Copyright © Erik Petersen 2002
All rights reserved




%

% Typically, 20% of a system used 80% of the time
+ Identify the sweet spots (20%)
% Improve usability of the sweet spots it possible

oftware usage

% Use sweet spot focus to drive the functional,
acceptance and load testing

<% Number of tests in each area should reflect
area’s usage or importance

Copyright © Erik Petersen 2002
All rights reserved




/S%rter Testing: Tip 2

% Spend time testing where your users
spend their time

a

Copyright © Erik Petersen 2002
All rights reserve d




4

% Where we don’t want problems

15k reduction

— build prototypes with core functions first, e.g
Extreme Programming (XP), EVO, other agile
methods

% Where we may have problems
- Functionally risky
¢ schedule riskiest work first for dev and testing

¢ revise risks constantly with new information,
e,g from code reviews

(continued

Copyright © Erik Petersen 2002
All rights reserved




/R>1( reduction, continued

% Where we may have problems
— Structurally risky
¢ Use test team in reviews, early test planning, etc
¢ do Pareto analysis of design/dev issues

+ improve (eg use Personal Software Process or
similar) negative sweet spots of individual
developers in estimating

— estimate then write small programs to build up
estimating skills

¢ and unit testing

— track errors in small programs then create custom
checklists to trap main personal coding errors.

X 2 Pair prOgram Where pOSSible, e.g XP Copyright@ Erik Petersen 2002

All rights reserved




/R>1( based testing

This can be used in system, acceptance, usability,
security, load testing, etc

Reality replaces risk, so always revise after code
reviews, unit tests or system tests

A spreadsheet or test management software (e.g.

TestDirector with customized fields, etc) can be used
for this, both to verify the number of tests in each area
reflects anticipated risk and to prioritise the order of
testing

[f software is not safety critical, we can reach
acceptable quality rapidly (if risk assumptions correct)

Capture/replay tools used on high risk parts of a
system will cover a large part of regression
functionality

Copyright © Erik Petersen 2002
All rights reserved




/S%rter Testing: Tip 3

+ Anticipate where the bugs will be and
look there first

b

il

a

Copyright © Erik Petersen 2002
All rights reserve d




il

+ “The largest room in the world is the
room for improvement” - Anonymous

elargest room

+ The Pareto Principle belongs in the
middle of the largest room

Copyright © Erik Petersen 2002
All rights reserve d




/I%mving software development

<+ If we make these improvements using
the 80:20 rule, can we leverage similar
relationships to improve overall
development and testing?

+ Yes. Pareto Principle is a major analysis
tool used in process improvement,
particularly in the CMM (Capability
Maturity Model).

Copyright © Erik Petersen 2002
All rights reserve d




/D}‘ect based improvement

+» We've found that defects (like diamonds)
aren’t found everywhere. Can we use this
information to improve how we test? Yes.

+ Pareto analysis of defect causes can be used to
identify the most common type of detects
created across the team (not just by
individuals a la PSP) improving process and
speeding delivery.

% ODC is a good technique for test process
improvement (TPI).

Copyright © Erik Petersen 2002
All rights reserved




%

% ODC invented at IBM in 1990 by Ram
Chillarege

% Used by IBM, Motorola, Lucent, Nortel, Cisco
and Phillips among others

rwhogonal Defect Classification

+ Defects classified by independent, invariant
attributes, & independent of dev model

% Reduces root cause analysis cost by factor of
10

Copyright © Erik Petersen 2002
All rights reserved




ADC TP

Enrly Defect count on Project Y

< Example: New
features added to
2nd product release.
New feature testing
and regression
testing was not
finding detects fast
enough to meet
deadline.

% Pareto analysis ot
ODC was done on

Project Y details used with permission from  1°* release defects
Albert Liu of Motorola Global Software Group, China. Copyright © Erik Petersen 2002

All rights reserved

W
b
o
[ L
it
U
0
=
U
4
=
o

Cumu

100 200 300 400

Effort (Staff Days)




ADC TPI:

@D C defect analysis on Project Y

Standards/Tenplate

Tim ng

Interface
Function
Docunentation
Checking
Bu ld/ Merge

Assignment

Agorithm

The sweet spots are in Timing and Interface defects.

Copyright © Erik Petersen 2002
All rights reserved




ADC TP

Bwnal Defect count on Project Y

+ Test focus switched
to sweet spot areas
(timing and
interfaces) and test
effectiveness
improved

% Testing completed
0w w0 with minimal delay.

Effort (Staff Days)

Copyright © Erik Petersen 2002
All rights reserved




/S%rter Testing: Tip 4

+ Leverage the 80:20 rule to improve the
test and development process at all

levels

il

a

A

Copyright © Erik Petersen 2002
All rights reserve d




/S%irter Testing tips

% When you find bugs, look for others nearby

% Spend time testing where your users spend
their time

% Anticipate where the bugs will be and look
there first

% Leverage the 80:20 rule to improve the test
and development process at all levels

X The ' /|| rule is smarter testing rocket fuel!!!

ll'i.’l-'i.'

Copyright © Erik Petersen 2002
All rights reserved




/Last Words

+ “Give me fruitful error any time, full of
seeds, bursting with its own
corrections.”

[comment on Kepler]
- Vilfredo Pareto, 1848-1923

+ “Give me fruitful sweet spots any time,
tull of seeds, bursting with Pareto

benefits.”
- Erik Petersen, 2002

Copyright © Erik Petersen 2002
All rights reserve d




/P%‘ect Z: over to you

< Questions now?
Ask away.

% Questions after?
Grab me, or email

Copyright © Erik Petersen 2002
All rights reserve d




£

80:20 quote and IBM Pareto example, from “The 80:20 principle: The secret of
achieving more with less’, intro at www. portalalfa.com/time/knjige/book1.htm
IBM example also in “Pareto Programming” at//softwaredev.earthweb.com
Web Pareto example, from article “90% of web traffic goes to 10% of web sites’, at
www.onlinepublishingnews.com
Pareto picture from http://www.bently.com/articles/999pareto.asp

REFERENCES

Juran Picture from http://qualite.univ-lyonl.fr/historique/juran.htmi

Peanuts and Pareto (used with permission) at
http://www.keyperfin.com/Articles/Peanuts%20& %20Pareto.htm

Dr Contrarian’ s Guide to the Universe, at
http://www.al | skewedup.com/why%20d0%20we%20live¥620this%20way .htmi

Rob Sabourin material at www.amibug.com
For risks material, see web and stickyminds.com, e.g A risk based testing strategy, |.Ottevanger
See web for XP, PSP and ODC material. For usability, see the Software Testing Spot.

Pareto “bursting” quote, at http://www.ndirect.co.uk/~greenprac/jamie/quotations.htmi

Copyright © Erik Petersen 2002
All rights reserved




	TITLE PAGE
	BIO
	PRESENTATION

