
24	 BETTER SOFTWARE	 NOVEMBER/DECEMBER 2011	 www.StickyMinds.com

O
ur story so far...
Tom Tester paged through the story
descriptions in the iteration backlog.
The vendor report shall list vendors in
the order of percentage they met their
monthly sales quota. “What if the vendor

hasn’t yet reported their monthly sales?” Tom wondered. “Or
what if it’s a provisional vendor that doesn’t have a set quota?
We’ve got a few cases like that.” He turned to the next de-
scription: The sales manager shall be notified of all vendors
below 50 percent of quota. “Notified in what way? Isn’t the
vendor report a form of notification? How can I test this?”

Sitting a few feet away, Paula Programmer began to imple-
ment the Item Profitability report. The profitability of each
SKU in inventory shall be calculated according to the SKU Ac-
counting document on the accounting department fileserver.
She looked at the fileserver directory and saw a number of
files. SKU Accounting 2010, SKU Accounting 2011, SKU
Accounting-proposed, SKU Accounting-Jane, SKU Ac-
counting-Harry. The one with the latest timestamp was SKU

Accounting-Jane, and Jane was the VP of accounting. That
must be the right one. Right on page one it clearly said, Item
profitability is the sum of selling prices for the SKU, divided
by the sum of item cost, minus 100 percent. Paula closed the
file, thinking “That was easy,” without reading the section on
page three: Special calculations for profitability of SKUs used
as loss leaders. She was already programming. “For ‘sum of
item cost,’ I can just multiply ‘current cost’ by the number of
items sold,” Paula thought. “I should be done with this story
by this afternoon.”

Alan Analyst fretted over his notes. Sally Security Auditor
had been emphatic that customer details for medical device
purchases be protected from easy access. Did these purchase
details also need to be encrypted in the database? Could they
even do that and still provide the access needed by customer
support when the customer called in for help? “I’d better
specify encryption; better safe than sorry. The programmers
will come back and tell me if it can’t be done,” Alan thought.

“I wonder when the security team will make the decision
as to which categories of products should be treated as ‘sensi-
tive’? Perhaps I should just reference their specification docu-

IS
TO

CK
PH

O
TO

	 www.StickyMinds.com	 NOVEMBER/DECEMBER 2011	 BETTER SOFTWARE 	 25

ment. Surely they’ll have it finished soon.” Alan turned his
attention to the unanswered questions regarding marketing
tests.

Software development can be a tough and lonely business.

The Three Amigos to the Rescue
One for all, and all for one. We’ll have a better shot at get-

ting the right system sooner if we collaborate.
The Three Amigos are the essential stakeholders of the

system being developed: The business (or product owner, in
Scrum terms), the developer, and the tester. These three repre-
sent the viewpoints of what the system is intended to do, what
can and cannot be implemented, and what might go wrong or
be misunderstood.

These three viewpoints represent orthogonal ways of
looking at the system, and I strongly recommend having at
least three people involved. It’s true that some people are
good at seeing things from more than one of these viewpoints.
It’s tempting to theorize that you can get the same results with
fewer people. In actual practice, though, it’s hard to give mul-
tiple viewpoints their due at the same time. Having different

people for each viewpoint will help reduce the number of im-
portant points missed.

Don’t limit yourself to just three stakeholders, however.
Depending on the system being developed or the portion of
the system, you may find other stakeholders are essential to
provide other points of view. Perhaps you have dedicated
user experience experts who have deep understanding of how
people use your system and how to avoid misuse. Or it may
be important to consider the needs of the systems operations
people who keep it running, or the customer service people
who handle the calls from customers. Maybe the finance de-
partment needs to provide information on tricky aspects of
fiscal control. Or the security team needs to ensure that the
system is protected from malevolent users. Include these other
viewpoints as needed. Just because this approach is called the
Three Amigos doesn’t mean it’s limited to three people. I’ve
often seen a “Three Amigos” consisting of four people.

On the other hand, don’t assume that more is better. Only
include people who have a stake in the success of the system.
Many times there will be multiple programmers and testers
on the team. Don’t include all the developers and testers in

26	 BETTER SOFTWARE	 NOVEMBER/DECEMBER 2011	 www.StickyMinds.com

The goal is to come up with examples that cover all of the
important scenarios and to boil them down to the essence of
the functionality.

During this meeting, take all the notes you find helpful or
think might be helpful later. The important thing is to emerge
with a complete but minimal set of examples to illustrate the
functionality. These examples don’t need to be elaborate or
detailed, but they do have to be clear enough that they com-
municate the intent of the functionality.

Planning Meeting
When we get together to plan the next increment of devel-

opment work, such as the sprint planning meeting in Scrum,
the Three Amigos will use these examples to communicate the
intent to the full development team. The content of the ex-
amples will give the full team a reasonably good idea of what
will be involved to implement the user story. The number of
those examples will give team members a good idea of its size.
If the story is split into multiple stories, the examples clearly
indicate which functionality is assigned to which story. This is
a big timesaver in my experience. I’ve seen team discussions
go round and round, with some members thinking the story
is a small slice and others thinking it includes many other sce-
narios. If you’re estimating the size of stories, the explicit na-
ture of the examples makes it much easier.

“Doesn’t this take as long as if the entire team developed
the examples?” I hear this question a lot. No, the examples
communicate better than does more abstract text. If the ex-
amples for a story don’t cover a particular situation, either
that example describes another story or it’s new functionality.
Most of the time you’ll want to defer that new functionality
to give time for serious consideration. Make a note of the ex-
ample, too. It’ll be a big help when you come back to it.

Development and Verification
During development, the examples are turned into auto-

mated tests. The user story is not considered complete until
the examples pass.

Turning the examples into automated tests should be a
pretty easy chore, depending on how you’ve expressed those
examples and the tools you’re using. This is best done prior
to implementing the story, but might also be done as work
begins on the story. Hooking the example up to drive the code
under development may have to wait until the story is a little
further along. That’s OK. Just hook it up as soon as there’s an
appropriate place to connect it. This work is often a collabo-
ration between tester and programmer.

Exploratory Testing
As each bit of functionality becomes available, you’ll want

to take a look at it. Does it fulfill the original intent of the

each meeting, as that dilutes the sense of responsibility. With
that dilution, important points might be overlooked. At the
same time, the need for everyone to have his say will make the
meetings drag on longer. You might have different developers
and testers at different times, but only have one representative
for each. Changing the individual participants from meeting
to meeting helps get everyone involved, gives everyone a
break, and keeps it fresh.

Getting the right people—and only the right people—in
the room is always preferable for the best results.

How the Three Amigos Work Together
The Three Amigos need to collaborate to define what

needs to be done, how they’ll know when it’s done, and that
it’s done correctly. After implementation, the Three Amigos
need to review the work to make sure it’s still correct from
everyone’s point of view. In between these two points, a well-
functioning Three Amigos will continue the dialog so that any
misunderstandings will be discovered and corrected early, and
so any new insights can be incorporated to everyone’s advan-
tage. Here’s how it might take place in a typical iterative-
incremental agile lifecycle:

Backlog Grooming
Before development of a user story, generally sometime

during the previous sprint or iteration, the Three Amigos sit
down to discuss the upcoming work. We don’t want to wait
too late to add details, because the delay will slow us down.
We don't want to do this too far in advance of implementa-
tion, because the details might get stale.

Detailed knowledge imperceptibly deteriorates over time,
and the context changes such that the knowledge may no
longer apply. As we learn new things in the process of doing
the work, it changes the way we think about the details of the
functionality we want. External events can also change what
we want the system to do.

The clarification of the planned work is often called
backlog grooming. Some teams delay discussing the details
until they start planning the next increment of work. When
this happens, I've generally seen the discussion of what the
work includes overwhelm the planning, resulting in a long
session, indistinct acceptance criteria, and uncertain planning.

In one or more small group meetings, the Three Amigos
examine the planned stories one by one. Starting with the
highest priority item, we examine each story, discussing it to
gain a shared understanding of the intent. We flesh out that
understanding by proposing examples: “Do you mean that
when _____ then _____?” “Yes, but if _____ happens then
_____.” We then look at these examples to determine what’s
an essential element for the desired functionality and what’s
an incidental detail required by the chosen implementation.

“ ... a well-functioning Three Amigos will continue the dialog
so that any misunderstandings will be

discovered and corrected early ... ”

functionality? Does it seem reasonable? Does the function-
ality still seem desirable when you see it in operation? Does
the system suggest unintended ways it might be used? If so, do
these unintended operations work in a reasonable fashion and
give correct answers?

Passing the acceptance tests does not necessarily mean the
software is acceptable. That’s just the first hurdle to accep-
tance. The example scenarios envisioned by the Three Amigos
before development should cover the expected functionality
pretty well, but no one has perfect foresight. It’s always best
to bring critical thinking to bear after development, also.

Bringing It All Together
Paula, Tom, and Alan were wrapping up their backlog

grooming. Taking a digital photo of their work on the white-
board, Alan expressed his appreciation to his collaborators.
“Thanks for helping me build this list of unanswered ques-
tions about the promotional offer feature. I'll take these over
to marketing to discuss them. If I can, I'll bring someone from
marketing to our next meeting. Until we get better clarity on
this, we've got other important features to build. This one
isn't quite ready.”

Alan reflected on how much easier the process had become
since he no longer had to write all the details alone. Paula
was much better at math and could easily turn business de-
scriptions into algorithms on her own. Tom had devised some
really interesting examples and, between the three of them,
they'd been able to agree on which results would be correct in
some unusual cases.

Paula felt ready to get started on the new work. She had
examples that would clearly indicate when the software was
behaving correctly, even when external data feeds were down.
She relaxed knowing the start of the next iteration wouldn't
be wasted on merely trying to understand the requirements.

Tom was relieved knowing that most of the end-of-itera-
tion functional testing work was done. It would be a quick
and straightforward job to put the examples they'd explored
together into a form that could be run as an automated test.
He was no longer bored at the beginning of the iteration and
under extreme pressure at the end when the final functionality
was completed. Instead, Tom now had time to do what he
considered the fun part of testing—looking for unusual be-
havior when the system had unexpected inputs. “Alan, when
you've got some time, I'd like to show you something I discov-
ered today. The Product Category Profitability report screen
seems confusing to me when there are data gaps in both the
store results and the purchasing history feeds. Perhaps we can
make a simple change to clear it up, or maybe we should take
it to the accounting department to define some future work in
this area.”

What a difference when we all collaborate! Software de-
velopment is still hard, but not quite as hard as it was. And
it's not nearly as lonely. {end}

gdinwiddie@idiacomputing.com

	 www.StickyMinds.com	 NOVEMBER/DECEMBER 2011	 BETTER SOFTWARE 	 27

