
26 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

The EvolThe Evol



Behavior
MMooddiiffiiccaattiioonn::

by Dan North

The deeper I got into TDD, the more I felt that my own journey
had been less of a wax-on, wax-off process of gradual mastery
than a series of blind alleys. I remember thinking “If only some-
one had told me that!” far more often than “Wow, a door has
opened.” I decided it must be possible to present TDD in a way
that gets straight to the good stuff and avoids all the pitfalls.

My response is behavior-driven development (BDD). It has
evolved out of established agile practices and is designed to
make them more accessible and effective for teams new to agile
software delivery.

Test method names should 
be sentences
My first “Aha!” moment occurred as I was being shown a 
deceptively simple utility called agiledox, written by my 
colleague, Chris Stevenson. It takes a JUnit test class and prints
out the method names as plain sentences, so a test case that
looks like this:

public class CustomerLookupTest extends TestCase {

testFindsCustomerById() {

...

}

testFailsForDuplicateCustomers() {

...

}

...

}

renders something like this:

CustomerLookup

- finds customer by id

- fails for duplicate customers

- ...

The word “test” is stripped from both the class name and
the method names, and the camel-case method name is converted
into regular text. That’s all it does, but its effect is amazing. 
Developers discovered it could do at least some of their 
documentation for them, so they started to write test methods
that were real sentences. What’s more, they found that when
they wrote the method name in the language of the business 
domain, the generated documents made sense to business users,
analysts, and testers.

A simple sentence template keeps
test methods focused

Then I came across the convention of starting test method
names with the word “should.” This sentence template—The
class should do something—means you can only define a test
for the current class. This keeps you focused. If you find your-
self writing a test whose name doesn’t fit this template, it sug-
gests the behavior may belong elsewhere.

For instance, I was writing a class that validates input from
a screen. Most of the fields are regular client details—forename,
surname, etc.—but then there is a field for date of birth and one
for age. I started writing a ClientDetailsValidatorTest
with methods like testShouldFailForMissingSurname and 
testShouldFailForMissingTitle.

Then I got into calculating the age and entered a world of
fiddly business rules: What if the age and date of birth are both
provided but don’t agree? What if the birthday is today? How
do I calculate age if I only have a date of birth? I was writing 
increasingly cumbersome test method names to describe this 
behavior, so I considered handing it off to something else. This
led me to introduce a new class I called AgeCalculator, with
its own AgeCalculatorTest. All the age calculation behavior
moved into the calculator, so the validator needed only one test
around the age calculation to ensure it interacted properly with the
calculator.

I had a problem. While using and teaching agile practices like test-driven development (TDD) on projects
in different environments, I kept coming across the same confusion and misunderstandings. Programmers
wanted to know where to start, what to test and what not to test, how much to test in one go, what to
call their tests, and how to understand why a test fails.

www.StickyMinds.com MARCH 2006 BETTER SOFTWARE 27

lution of Behavior-D
ri

v
e

n
D

e

velopmen

t

ution of Behavior-D
ri

v
e

n
D

e

velopmen

t



28 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

If a class is doing more than one thing, I usually take it as an
indication that I should introduce other classes to do some of the
work. I define the new service as an interface describing what it
does, and I pass this service in through the class’s constructor:

public class ClientDetailsValidator {

private final AgeCalculator ageCalc;

public ClientDetailsValidator(AgeCalculator ageCalc) {

this.ageCalc = ageCalc;

}

}

This style of wiring objects together, known as “dependency
injection,” is especially useful in conjunction with mocks, or
actors, which I discuss in detail on StickyMinds.com
(www.stickyminds.com/mocks).

An expressive test name is helpful when a
test fails

After a while, I found that when changed code caused a test
to fail, I could look at the test method name and identify the 
intended behavior of the code. Typically one of three things
had happened:

• I had introduced a bug. Bad me. Solution: Fix the bug.
• The intended behavior was still relevant but had moved

elsewhere. Solution: Move the test and maybe change it.
• The behavior was no longer correct—the premise of the 

system had changed. Solution: Delete the test.
The latter is likely to happen on agile projects as your 

understanding evolves. Unfortunately, novice TDDers have an
innate fear of deleting tests, as though it somehow reduces the
quality of their code.

A more subtle aspect of the word “should” becomes apparent
when compared with the more formal alternatives of “will” or
“shall.” “Should” implicitly allows you to challenge the premise
of the test: “Should it? Really?” This makes it easier to decide
whether a test is failing due to a bug you have introduced or
simply because your previous assumptions about the system’s
behavior are now incorrect.

“Behavior” is a more useful word 
than “test”

Now I had a tool—agiledox—to remove the word “test”
and a template for each test method name. It 
suddenly occurred to me that people’s misunderstandings
about TDD almost always came back to the word “test.”
That’s not to say that testing isn’t intrinsic to TDD—the resulting
set of methods is an effective way of ensuring your code works.
However, if the methods do not comprehensively describe the
behavior of your system, then they are lulling you into a false
sense of security.

I started using the word “behavior” in place of “test” in my
dealings with TDD and found that not only did it seem to fit
but also that a whole category of coaching questions magically

dissolved. I now had answers to some of those TDD questions.
What to call your test is easy—it’s a sentence describing the
next behavior in which you are interested. How much to test 
becomes moot—you can only describe so much behavior in a
single sentence. When a test fails, simply work through the
process described above—either you introduced a bug, the 
behavior moved, or the test is no longer relevant.

I found the shift from thinking in tests to thinking in behavior
so profound that I started to refer to TDD as BDD, or behavior-
driven development.

JBehave emphasizes behavior over testing
At the end of 2003, I decided it was time to put my money—

or at least my time—where my mouth was. I started writing a 
replacement for JUnit called JBehave, which removed any 
reference to testing and replaced it with a vocabulary built
around verifying behavior. I did this to see how such a framework
would evolve if I adhered strictly to my new behavior-driven
mantras. I also thought it would be a valuable teaching tool 
for introducing TDD and BDD without the distractions of the 
test-based vocabulary.

To define the behavior for a hypothetical CustomerLookup
class, I would write a behavior class called, for example, 
CustomerLookupBehavior. It would contain methods that
started with the word “should.” The behavior runner would 
instantiate the behavior class and invoke each of the behavior
methods in turn, as JUnit does with its tests. It would report
progress as it went and print a summary at the end.

My first milestone was to make JBehave self-verifying. I
only added behavior that would enable it to run itself. I was
able to migrate all the JUnit tests to JBehave behaviors and get
the same immediate feedback as with JUnit.

Determine the next most 
important behavior

I then discovered the concept of business value. Of course, I
had always been aware that I wrote software for a reason, but I
had never really thought about the value of the code I was 
writing right now. Another colleague, business analyst Chris
Matts, set me thinking about business value in the context of
behavior-driven development.

Given that I had the target in mind of making JBehave self-
hosting, I found that a really useful way to stay focused was to ask,
“What’s the next most important thing the system doesn’t do?”

This question requires you to identify the value of the 
features you haven’t yet implemented and to prioritize them. It
also helps you formulate the behavior method name: The 
system doesn’t do X (where X is some meaningful behavior),
and X is important, which means it should do X; so your next
behavior method is simply:

public void shouldDoX() {

}

Now I had an answer to another TDD question, namely
where to start.



30 BETTER SOFTWARE MARCH 2006 www.StickyMinds.com

Requirements are behavior, too
At this point, I had a framework that helped me 

understand—and more importantly, explain—how TDD works
and an approach that avoided all the pitfalls I had encountered.

Toward the end of 2004, while I was describing my new
found, behavior-based vocabulary to Matts, he said, “But
that’s just like analysis.” There was a long pause while we
processed this, and then we decided to apply all of this behavior-
driven thinking to defining requirements. If we could develop a
consistent vocabulary for analysts, testers, developers, and the
business, then we would be well on the way to eliminating
some of the ambiguity and miscommunication that occur when
technical people talk to business people.

BDD provides a “ubiquitous language”
for analysis

Around this time, Eric Evans published his bestselling book
Domain-Driven Design. In it, he describes the concept of 
modeling a system using a ubiquitous language based on the
business domain, so that the business vocabulary permeates
right into the codebase.

Chris and I realized we were trying to define a ubiquitous
language for the analysis process itself! We had a good starting
point. In common use within the company there was already a
story template that looked like this:

As a [X], I want [Y], so that [Z]
where Y is some feature, Z is the benefit or value of the 
feature, and X is the person (or role) who will benefit. Its strength
is that it forces you to identify the value of delivering a story at the
point at which you define it. When there is no real business value
for a story, it often comes down to something like “ . . . I want
[some feature] so that [I just do, ok?].” This can make it easier to
descope some of the more esoteric requirements.

Matts and I set about discovering what every agile tester 
already knows: A story’s behavior is simply its acceptance 
criteria—if the system fulfills all the acceptance criteria, it’s 
behaving correctly; if it doesn’t, it isn’t. So we set about creating
a template to capture a story and its acceptance criteria.

The template had to be loose enough that it wouldn’t feel
artificial or constraining to analysts but structured enough that
we could break the story into its constituent fragments and 
automate them. We started describing the acceptance criteria in
terms of scenarios, which took the following form: given some
initial state (the givens), when an event occurs, then ensure
some outcomes.

The context is expressed as one or more givens, and the 
result is expressed as one or more outcomes.

To illustrate, let’s use the classic example of an ATM 
machine. One of the story cards might look like this:

Customer withdraws cash
As a customer, I want to withdraw cash from an ATM, so

that I don’t have to wait in line at the bank.
So how do we know when we have delivered this story?

Here are some possible scenarios to consider: 
• The account is in credit. 
• The account is overdrawn past the overdraft limit. 

• The account is overdrawn within the overdraft limit. 
Of course, there will be other scenarios, such as the account

is in credit but this withdrawal makes it overdrawn, or the dis-
penser has insufficient cash.

Using the given-when-then template, the first two scenarios
might look like this:

Scenario 1: Account is in credit
Given the account is in credit

And the card is valid
And the dispenser contains cash

When the customer requests cash
Then ensure the account is debited
And ensure cash is dispensed
And ensure the card is returned

Notice the use of “and” to connect multiple givens or multiple
outcomes in a natural way.

Scenario 2: Account is overdrawn past the overdraft limit
Given the account is overdrawn

And the card is valid
When the customer requests cash
Then ensure a rejection message is displayed
And ensure cash is not dispensed
And ensure the card is returned

Both scenarios are based on the same event and even have
some givens and outcomes in common. We want to capitalize
on this by reusing givens, events, and outcomes.

Acceptance criteria should be executable
The fragments of the scenario—the givens, event, and 

outcomes—are fine-grained enough to be represented directly in
code. JBehave defines an object model that enables us to directly
map the scenario fragments to Java classes.

You write a class representing each given:

public class AccountIsInCredit implements Given {

public void setup(World world) {

...

}

}

public class CardIsValid implements Given {

public void setup(World world) {

...

}

}

and one for the event:

public class CustomerRequestsCash implements Event {

public void occurIn(World world) {

...

}

}



www.StickyMinds.com MARCH 2006 BETTER SOFTWARE 31

and so on for the outcomes. JBehave then wires these all 
together and executes them. It creates a “world,” which is just
somewhere to store your objects, and passes it to each of the
givens in turn so they can populate the world with known
state. JBehave then tells the event to “occur in” the world,
which carries out the actual behavior of the scenario. Finally it
passes control to any outcomes we have defined for the story.
Having a class to represent each fragment enables us to reuse
fragments in other scenarios or stories.

At first, the fragments are implemented using mocks to set
an account to be in credit or a card to be valid. These form the
starting points for implementing behavior. As you implement
the application, the givens and outcomes are changed to use the
actual classes you have implemented, so that by the time the
scenario is completed, they have become proper end-to-end
functional tests.

The present and future of BDD
After a brief hiatus, JBehave is back under active development.

The core is fairly complete and robust. The next step will be 
integration with popular Java IDEs like IntelliJ IDEA and
Eclipse. It now can run from a console within the IDE, but this
isn’t ideal.

Dave Astels has been actively promoting BDD and is in the
process of writing a book about it. His Weblog and various
published articles have provoked a flurry of activity, most 
notably the rspec project to produce a BDD framework in the
Ruby language. I have started work on rbehave, which will be a
port of JBehave to Ruby.

A number of my co-workers have been using BDD techniques
on a variety of real-world projects and have found the techniques
very successful. The JBehave story runner—the part that verifies
acceptance criteria—is under active development. The vision is
to have a round-trip editor so that BAs and testers can capture
stories in a regular text editor that can generate stubs for the 
behavior classes, all in the language of the business domain. BDD
evolved with the help of many people. Please see the StickyNotes
for acknowledgements and a link to the BDD wiki. {end}

Dan North is a senior consultant with ThoughtWorks, where
he coaches development teams in agile software delivery and
project automation. A programmer with fifteen years of 
delivery experience, he has published a number of articles and
spoken at conferences on topics ranging from agile enablement to
NLP. You can contact Dan at dan.north@thoughtworks.com.

Sticky
Notes

For more on the following topics, go to
www.StickyMinds.com/bettersoftware

� BDD phrasebook 
� Acknowledgements 
� The BDD wiki
� References 




