
oftware development
requires various talents

and roles. This article
takes a look at two of these roles:
testers and developers. On an effec-
tive team, testers and developers
complement one another, each pro-
viding perspectives and skills that
the other may lack. A common mis-
take is to see testers as junior devel-
opers, and to thus encourage them
to emulate the skills and attitudes of
the developers. In fact, good testers
have many traits that directly con-
trast with the traits good developers
need. With understanding, managers
can make the most of these diver-
gent skill sets and use them to build
a successful team.

Many developers don’t realize
how difficult system testing can be.
It takes patience and flexibility. It re-
quires an eye for detail and an un-
derstanding of the big picture. Many
testers are frustrated working with
developers who think testing is easy.
My understanding of this dynamic
was deepened when I got a chance to
see several developers take over the
system testing. They had been used
to relying on a team of dedicated
testers, who were no longer available
to test the product.

Since I had experience testing

the product, I trained them during
this project and saw them struggle
with tasks they had previously un-
derestimated. In the process, I no-
ticed some differences between the
skills and attitudes of testers and de-
velopers.

I want to avoid stereotyping.
There are, of course, many good de-
velopers who can test well, and there
are many testers who can write de-
cent code. But in many ways, the
skills that the jobs require are differ-
ent and often in opposition to each
other. Understanding this is impor-
tant to getting teams of different
people to work well together.

Embracing
“Dilettantism”
A dilettante is someone who dabbles in
a practice or study without gaining
mastery. The term is often used to dis-

parage a lack of commitment or seri-
ousness, but good testers are able to
make judgements even when they may
not have mastered the specific subject
at hand. Their strength is often their
ability to be generalists; they need to
have a broad understanding of many
areas. This contrasts with developers,
who are often required to be special-
ists in particular technical areas (net-
working protocols, for example, or
database internals or display libraries).
Testers, in contrast, need to be able to
get up to speed quickly on any product
that they test. They often have little
time to learn a new product or feature.

On the other hand, developers
need to have a thorough understand-
ing of the libraries or protocols they’ll
be using before they can work on
something new. Otherwise, they may
break something. They’re used to be-
ing allowed to gain mastery before be-
ing expected to deliver. On my project,
I saw developers who were used to
this kind of arrangement really strug-
gle when they had to test dozens of
features that were new to them in a
short period of time.

Testers need to have the kind of
knowledge that users have. This helps
them use the product the way a user
would, instead of the way the develop-
er might like them to. Thus it can be

Testers and Developers
Think Differently

Management & TeamsManagement & Teams

Understanding and utilizing the diverse

traits of key players on your team by Bret Pettichord

QUICK LOOK

■ Exploiting specific traits
to the benefit of a project

■ Allowing differing styles
to complement each other

SS

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Januar y/Feb rua r y 2000
42

http://www.stqemagazine.com/

Januar y/Feb rua r y 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
43

important for them to not be familiar
with the internal architecture of the
product or perhaps even to act as
though they don’t know it when test-
ing. The tester has to value a certain
kind of ignorance or naivete. Develop-
ers, of course, can’t afford this kind of
ignorance. Developers may see this
kind of ignorance as a sign that a
tester isn’t smart enough or is even
being difficult. I had great difficulty
getting developers to test from a user’s
perspective and put aside the knowl-
edge that they had about the product
internals.

Good testers are dilettantes.
They need to know something about
the customer’s domain, as well as in-
formation about computer systems.
They need to be good at gaining su-
perficial knowledge. They may even
have to resist becoming too knowl-
edgeable—or at least be able to pre-
tend that they don’t know things that
they really do. Developers need to
see the value in this. This doesn’t in-
dicate a lack of intellectual ability—

it’s just a different attitude about ac-
quiring knowledge.

GOOD TESTERS
Get up to speed quickly
Domain knowledge
Ignorance is important

GOOD DEVELOPERS
Thorough understanding
Knowledge of product internals
Expertise is important

Modeling
User Behavior
Having good models of the users’ be-
havior—and of the system design—is
extremely important to software de-
velopment. Good developers and
testers need both. But there are
times when each discipline stresses
different talents and calls for differ-
ent emphases. As system designs be-

come more complicated, developers
have to spend more and more time
and effort making sure that they un-
derstand the designs. At those times,
having testers take responsibility for
understanding user needs and behav-
ior can be very helpful to making
sure that the product is tested in re-
alistic scenarios.

A good example of this is error
testing. Good testers know that users
make numerous errors when learning
and using new products. We all do
this. More people prefer learning by
trying and seeing what happens than
by reading a manual. Thus it is im-
portant to test software with small er-
rors, typos, and nonsensical requests.
Tests need to make sure that users
can change their mind and undo par-
tially completed work. On the other
hand, the complexity of software
products often requires developers to
concentrate more on what needs to
happen to fulfill a well-defined re-
quest. To do that, they need to focus
on the system design.

JONATHAN BACH takes his job as Test Lead for
Microsoft’s Systems Management Server team seriously. But he
describes his job at the software giant as pure play. “I love the
diamond in the rough,” says Bach. “Testing is like hide and seek,
scavenger hunting, taking the metal detector onto the beach.”
From his perspective, testing is a treasure expedition, along with
all the inherent tedium and risks. “Just like prospecting for
gold,” he says, “you’re going to come up with a lot of useless
dirt.” The payoff, for Bach and his fellow testers, is finding that
one thing buried in the rock that will prevent the customer from
ever calling up Product Support.

That, says Bach, is something developers don’t always un-
derstand. “Testers don’t set out to break developers’ software,” he
says. “As Cem Kaner has said, the software comes to us already
broken. We just want to find the breaks that are already there.”

He remembers what it’s like to work on the development
side, though—to create something out of nothing, and then have
to hand over your child for critique. “When I was writing test
apps for Visual Basic a few years ago,” Bach remembers, “I had
the same feelings when the time came to hand my work over to
my tester.” He understands the potential hit to the ego at that
stage of the reviews, but also remembers how his pride of own-

ership made him want his apps tested thoroughly. “When that
product was delivered to the customers, they thought it was re-
ally cool, and I wanted to be able to take the credit for a solid ap-
plication. Good testing helped me do that.”

Now back in his full-time tester role, Bach depends on the
developer to help him build that same kind of partnership. “I exist
to make their code better,” he stresses, “to be their bodyguard,
their advocate, as well as the customer’s.” Before the developer’s
code leaves the building, Bach says his team wants to do every-
thing possible to make sure no one is going to be embarrassed by
the quality of the product.

The development team can help, Bach says, by helping steer
testers toward any potential danger zones in the code. “You [the
developer] know the code better than anyone else,” he says. “It’s
great when a developer can feel okay about telling me ‘Here’s
where the risk is in my code’ or ‘This is new code.’ ”

Bach says that developing good relationships between
testers and developers is vital if that kind of sharing is going to
happen. “If we both understand that synergy, that two people
with totally different perspectives will always find different
bugs,” Bach says, “then we’ll invest in each other to take ad-
vantage of that resource.” —A.W.

PERSPECTIVE
FROM A TESTER

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

This difference in focus can also
be seen in typical responses to bugs.
Testers will often assess a problem in
terms of the potential severity for a
customer. This is done, perhaps tacit-
ly, by having an intuitive model of
how customers will use the product.
How likely will customers encounter
the bug? What might the conse-
quences be?

Developers focusing on system
design may respond to bugs in one of
two ways. First, they may dismiss a
problem. “Why would anyone want
to do that?” On the other hand, they
may see the bug as an interesting
problem even if its effect on func-
tionality is not that important to cus-
tomers. In these cases, the develop-
ers are primarily working from their
model of the system behavior. In the
first case, the software is working in
accordance with the design, so they
are dismissive. It works as designed.
In the second, the problem may show
a flaw in the design or at least in
their understanding of the design. Of

course, it’s possible that this small
consequence indicates a serious de-
sign flaw. This is why it’s wise to en-
courage developers to investigate
these kinds of problems. Having dif-
ferent people take different ap-
proaches to analyzing the software
increases the likelihood that serious
problems will be detected and re-
moved.

I saw these differences in ap-
proach on my project. It showed up
in the test designs, where the devel-
opers sometimes didn’t see why cer-
tain tests were important. The tests,
for example, may have been redun-
dant from a system design perspec-
tive even when they covered distinct
user scenarios.

It also showed up in analyzing
test failures. On a couple of occa-
sions, a lot of time was spent track-
ing down what I perceived to be mi-
nor anomalies. Although the
software behaved as a user would
reasonably expect, the results were
not what the system design would

lead one to expect—so the develop-
ers were naturally driven to analyze
them.

Testers need to be encouraged
to understand the customers’ needs.
When testers are recruited from cus-
tomer support this happens automat-
ically; it also happens when testers
are recruited from actual customers
or from the targeted user community.
Don’t let your testers be treated sim-
ply as developers’ assistants. Make
sure that they get exposure to cus-
tomers—and to the people at your
company who work directly with the
customers.

GOOD TESTERS
Model user behavior
Focus on what can go wrong
Focus on severity of problem

GOOD DEVELOPERS
Model system design
Focus on how it can work
Focus on interest in problem

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Januar y/Feb rua r y 2000
44

TOM FLAHERTY admits it: If software development
were left solely in the hands of the developers, applications
would be pretty much as they were twenty-five years ago.

“Not in terms of what functions they perform,” he’s quick to
clarify, “but in the sense that only people whose vocation is com-
puter technology would be able to use our products.” And that, he
says, is just part of the way he and his fellow developers natural-
ly look at software. “We sit there all day thinking about the in-
sides of an application,” says Flaherty. “Unless it’s a piece of soft-
ware for which we’ll end up being the primary users, we think
more about what the inner mechanics of function will make pos-
sible—not about the million different ways an end user on the
outside might try to extract that functionality.” Developers depend
on testers’ abilities to look at the product the way the real world
will see it, manipulating it from a user’s point of view.

Throughout his eighteen years of programming, Flaherty
has relied on his testers’ unique perspectives to balance his
own approach. “I don’t have hours to play with each part of the
product,” he says, “trying to pretend like I don’t know how it
works, trying to overcome my biases about how things should
work or how users should interact with my code.” You can make

a valiant effort, he says, but sometimes developers’ efforts to
empathize with the unknown key tapper can only go so far. You
do know the product, and your brain travels in those familiar
paths. “The testers can find things in a product you weren’t
even aware of.”

Flaherty depends on his QA team members for other rea-
sons, too. “Sometimes,” he says, “we developers walk a very fine
line in how much time and attention we can spend thinking about
bugs.” Do only a brief look for functionality showstoppers before
handing code off to the testers and the testers grumble. Spend a
week of your development time investigating one bug and your
manager is unhappy. “I work out where that line is and rely on a
good testing team to do what needs to be done,” Flaherty says.
“Better to let the experts spend time on bug-finding because
testers are usually faster, more efficient, and better at finding
those elusive bugs that, for us, are not reproducible, no matter
how many times we try.” Testers’ abilities to find those bugs
through repetitive testing earn them Flaherty’s admiration.
“Thank goodness a tester’s mind works like that; to do that, to fo-
cus after the thirty-ninth run of the same test…would drive most
developers out of their trees.” —A.W.

PERSPECTIVE
FROM A DEVELOPER

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

Thinking Empirically
Good testing is governed by the scien-
tific model. The “theory” being tested
is that the software works. Testers de-
sign experiments, as Kaner says in
Testing Computer Software, to see if
they can falsify the “theory.” Good
testers know how to design experi-
ments, and they often benefit from pre-
vious study of the sciences. Good
testers think empirically, in terms of
observed behavior.

Developing software, on the other
hand, is much like creating theories.
Laws are specified and rules are ap-
plied. Many developers have benefited
from studying mathematics. Good de-
velopers think theoretically.

Developers who are focusing on
their theory of how the software works
might dismiss a bug report that de-
scribes behavior not allowed by their
software theory. “That can’t happen;
it’s not possible.” Good testers focus
on what actually happens, and like oth-
er experimenters, keep detailed logs.
“Well, it did happen; here are the cir-
cumstances.” People who are used to
thinking theoretically have a hard time
accepting aberrant behavior without
some kind of explanation. Good testers
are skeptics, whereas good developers
are believers.

In my project, I had trouble justi-
fying to some developers why we con-
sidered certain tests necessary. In
these cases, they wanted some reason
for doubting that the software worked.
They wanted me to provide some kind
of explanation for why this code might
fail. I didn’t have much to say. Mis-
takes happen, so we test. Indeed, the
purpose of testing is to observe
whether the software actually works
as its designers imagine it will. But my
developers sometimes behaved as if
this attitude was a challenge to their
honor.

Don’t presume that your testers
need to have degrees in computer sci-
ence. Many excellent testers have
training in experimental sciences.
Look for and appreciate this back-
ground in your recruiting.

GOOD TESTERS
Empirical
What’s observed
Skeptics

GOOD DEVELOPERS
Theoretical
How it’s designed
Believers

Tolerating Tedium
Good testers realize that software
testing can often be repetitive. They
learn to accept this. Many developers
hate repetition and are often very
good at finding ways to automate it.
After all, one major purpose of com-
puters is to perform mental
drudgery.

On my project, the developers
initially expected to automate and im-
prove much of the test process. I had
a hard time discouraging this and get-
ting them to focus on executing tests
and looking for bugs. It is a challenge
to do repetitive work; but it’s impor-
tant and often necessary. Good testers
must be able to remain alert and at-
tentive, even when applying the same
test for the fourteenth time.

Living with Conflict
Good testers must not shy away from
argument. It’s their job to report bad
news—and this is not always taken
well. Sometimes it’s hard to pinpoint
the source of a bug. Is it a design bug,
a coding bug, or maybe a documenta-
tion bug? Or perhaps the tester is just
confused, and it’s not a real bug at all.
Regardless, the tester’s job is to re-
port the problem. Some testers may
go overboard, thinking it’s their job to
pass judgment on the developers or
force them to do better work. This is
not helpful. But good testers need to
be the kind of people who are not
afraid of other people’s reactions to
bad news.

On the other hand, developers of-
ten need to avoid the emotional inten-
sity that makes concentration difficult.
It is not easy concentrating on compli-
cated technical material hour after
hour. I saw developers on my project
take much more time diagnosing prob-
lems than I would have. It is important
to report problems as soon as they’ve
been confirmed, and good testers will
report a problem once it is repro-
ducible and narrowed down. I saw de-
velopers, however, move right into de-
bugging, identifying the faulty code

and the build that introduced it. Part of
this is attributable to the fact that they
had the skills and interest in debugging
the code. But it also seemed as if they
were reluctant to report that they had
found a problem until they knew exact-
ly what they had found. They wanted to
avoid a situation where people started
speculating as to who or what may
have a caused a problem.

When I interview potential
testers, this is one of my favorite
questions: “What would you do if a
developer rejected your defect report
as ‘works-as-designed’?” There are
lots of good answers to this question.
They might try to get more informa-
tion from the developers about why
they think it isn’t a defect. They might
try to find a more dramatic instance
of the defect that can’t be so easily
dismissed. Or they might contact cus-
tomer support regarding their opin-
ion. Here, the wrong answer is to not
have an answer. Testers need to
demonstrate that they can continue to
think and work in the face of conflict.
I want to see that they will be tena-
cious, and that they have some faith
in their own perspective. Some people
have strong technical skills, but are
very uncomfortable in these kinds of
situations; these candidates rarely
make good testers.

GOOD TESTERS
Tolerate tedium
Comfortable with conflict
Report problems

GOOD DEVELOPERS
Automate tedium
Avoid conflict
Understand problems

In Summary
Appreciating differences is critical for
productive teams. Different approach-
es aid in finding solutions, and mutual
respect dramatically improves group
problem solving. Testers should not
be judged according to developer cri-
teria. Empirical thinking is an asset
rather than an inability to think theo-
retically. A jack-of-all-trades should be
appreciated rather than criticized for
being a master of none. Many of the
skills and attitudes that good testers

Januar y/Feb rua r y 2000 Sof tware Tes t ing & Qua l i t y Eng inee r ing www.s tqemagaz ine .com
45

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

www.s tqemagaz ine .com Sof tware Tes t ing & Qua l i t y Eng inee r ing Januar y/Feb rua r y 2000
46

demonstrate contrast with what we of-
ten look for in developers. When hir-
ing testers, look for, and develop,
these skills. Don’t just settle for junior
developers. Productive teams with
both developers and testers need both
skill sets. Just as developers have de-
fined career paths, so should testers.
To remain competitive in this indus-
try, nurture both the skills of develop-
ers and the different but equally im-
portant skills of testers. STQE

Bret Pettichord is a test automation
engineer at Tivoli Systems. He
edits the Software Testing Hotlist
(www.io.com/~wazmo/qa) and fre-
quently speaks at software testing
conferences. Bret can be reached at
b.pettichord@computer.org.

STQE magazine is produced by
STQE Publishing, a division of Software
Quality Engineering.

This article is provided courtesy of STQE, the software testing and quality engineering magazine.

http://www.stqemagazine.com/

