Improving Software Security

Harinath Pudipeddi

Software Testing Research Lab

www.softrel.org

There are many papers, books and articles published which address the need for Software Security and how we can fight ‘intruders’ into our systems. In this article we would like to point out few basic, yet important considerations which an organization must keep in mind while developing applications from “security” perspective.

Before we look into the ‘key’ aspects of improving Software Security, let us look at some statistics of what are the major vulnerabilities of software and types of attacks which happen:

	Vulnerability Classification
	% of Occurrence

	Encryption Issues
	0%

	Network and Protocol Stack Issues
	1%

	Communication Protocol Issues
	2%

	Hardware Issues
	4%

	Operating System Issues
	15%

	Non-Server Applications
	36%

	Server Applications
	41%

	Others
	2%

Source: OWASP

As per OWASP Research, 92% of Security issues reported are application related.

The Top 10 Security Vulnerabilities
There are organizations which work on providing ‘vulnerabilities’ of software security periodically. These vulnerabilities are compiled based on various research data – Types of Attacks which occurred in the given time frame; how applications failed to close the appropriate door, number of attacks etc. The following are the Top 10 Security Vulnerabilities published by OWASP:

1. Invalidated Input.

2. Broken Access Control.

3. Broken Authentication and Session Management.

4. Cross Site Scripting (XSS) Flaws.

5. Buffer overflows.

6. Injection Flaws.

7. Improper Error Handling.

8. Insecure Storage.

9. Denial of Service (DoS).

10. Insecure Configuration Management.

The above are just the top 10 and this differs from application to application and attack to attack. What we suggest is that the development team should have a model based on their development lifecycle where the security for the code is reviewed at regular intervals with the following steps:

[image: image1]
The above life cycle diagram holds good for applications which are already built, but what if you are working on building a new system? We recommend that you should have separate requirements for security. Here are few suggestions as to what you should concentrate for secure development when beginning to build a new system:

· Software Requirements

· Security Requirements

· Risk Analysis

· Risk based security Testing

· Penetration Testing Methodology for your application.

Remember, security of an application cannot be built in one day or you cannot safe guard your application from intruders with a magic wand. Security begins at the requirements level. Security must be enforced into the application from the beginning and for this; breaking/categorizing requirements into categories based on the need for the system (end goal of the application) will help to a large extent. When you categorize the requirements you can easily identify and also prioritize the functionality and the corresponding security requirements along with risk assessment for each of the requirement which will help in focusing on each detail.

At the Design and Architecture phase, our recommendation will be to identify the architectural requirements and ensure that the security principles (Access Control Levels and mechanism) are addressed and security architecture is built along with the architecture of the application. This will help in ensuring that you will leave no gap for security leakage and build a robust application. Having the requirements reviewed by Domain Experts for each section (Access Levels, Session Management, User Authentication, Data Integrity, Data Confidentiality and Auditing etc.) of the solution will add value to the ‘strength’ of the application. Contacting a third party domain expert or hiring a subject matter expert who can lead/chair the review process can give beneficial results. Having a third party review of your design and architecture are other good ways to uncover more vulnerabilities. Never discount any risk identified/pointed by anyone in the team/outsider, these might prove costly.

During the coding phase, use appropriate tools which can uncover common programmatic errors. There are a variety of open source and commercial tools available for the purpose. These tools will not only help you in uncovering programmatic errors but also assist you to strengthen your code.

During the Testing phase, ensure that you include Risk Based testing along with the functional testing. Having a clear Risk Based testing approach and building your test suites in and around the Risks identified will uncover more defects. ‘Risk Based Testing’ as we call, is based on the Threat Modeling framework presented by NIST standard of Risk Assessment which is quite famous in yielding results. Planning for Risk based testing is a step-by-step process involving the following steps:

· Identify the working of the application, functionality and connectivity.

· Identify the Software and Physical Security assets which are part of your application and rank them according to the Application criticality.

· Identify potential vulnerabilities.

· Identify scenarios / attack trees to identify possible threats from an intruder perspective.

· Plan for mitigating controls when you identify scenarios / attack trees for your application.

Performing Penetration Testing will also help to a large extent. Penetration testing is the methodology of testing an application remotely. During this testing, the Tester acts as an attacker and tries to break the system trying to find out the practical security threats. This type of testing will definitely have a positive impact on the application.

Building Security Knowledge
Documenting each flaw reported and ensuring proper resolutions will help in building better applications. How secure you build, test and implement; applications will definitely be attacked again and again. Monitoring application continuously will help in building Security Knowledge base. Incorporating these recordings during building another application will definitely help in the betterment of the process and strengthening the code.

Steps for improving Software Security
There are various papers which speak about the concept of Software Security and what you need to do to ensure the security. In our experience, there are no silver bullets. What you need to concentrate are all the phases in the System Development Life Cycle. The below outline of activities will give you an overview of Developing Secure Software:

· Separate Requirements and Security Requirements.

· Perform Risk Analysis.

· The mantra of the team – “Secure Code”

· Test Early and Repeatedly.

· Build “Risk Cases” along with Use Cases.

· Perform Inspections and Reviews without fail.

· Use tools for testing code.

· Build “Secure” Knowledge.

· Collect Metrics.

· Monitor Systems

· When gathering requirements, ensure that the Security Requirements are separated. This will help you to focus on the core security aspects.

· Perform Risk analysis from the beginning. Security Requirements along with Risk Analysis will help identify maximum loopholes in the system.

· As we mentioned earlier, Security cannot be built in a day or two. Building a secure system is a result of long research, dedication and commitment. The Mantra of the Team should be “Secure Code” and only this can help achieve building secure systems.

· Do not under-estimate the value of “Risk Cases”. Ensure you have Risk Cases for all the Security Requirements. Only when you dig deep into the requirement, you can identify more threats. Sample Risk Cases can be for Log-In, Log-Out, Page Time-out’s, Server Time-out’s, Session Tim-out’s etc.

· Never discard “Static Testing”. Only when you read through your writing, you uncover more threats. What are the possible flaws you can look for while reviewing requirements? – User Management, Authentication, Authorization, Data Confidentiality, Integrity, Accountability, Session Management, Transport Security, Privacy etc.

Also, while performing reviews, once can look for Coding Convention mistakes, Error Handling, Leaks, Control Structures, Performance and Functions etc. These errors are visible based on the organizations coding principles.

· Use as many tools as possible which make sense for your application development platform, to ensure that you are building a secure code. There are many tools available and each one has its own specialization – Source Code Analyzers, Black Box Scanners, Runtime Analyzers, and Binary Analyzers etc. There are varieties of open-source and commercial tools available which are equivalently good.

Planning for tools before beginning to allocate finances for your project development is an ideal case. Tools are expensive and many projects run into finance deficit because they do not plan well ahead. Today, there are varieties of open-source tools available which can help you with your work. RATS, FlawFinder, Microsoft’s FXCop, Spilt etc are few Open-source code analyzers; SPIKE, WebScarab, Paros are few open-source Black Box Scanners.

· Building Security Knowledge Base is like rain water harvesting. The Knowledge base will help in building a library of threats and their resolutions which would be useful at later stages or for building another application.

· Many of us discard collecting Metrics. Metrics are the foundations for your building. Collect as many meaningful metrics as possible during the System Development Life Cycle. Collecting Security Metrics is not easy; you should define how you want to measure and what you want to measure and also ensure that these metrics are meaningful. Example can be base lining number of virus alerts to actual infections to the system (daily, weekly, monthly and yearly).

As per a survey conducted by the Robert Frances Group, the following are the top metrics which organizations were collecting – Viruses defected in user files, Viruses detected in email messages, Invalid Logins, Intrusion attempts, Spam detected/filtered, Unauthorized website access, Viruses detected on websites, Unauthorized access attempts, Admin violations, Intrusion successes, Unauthorized information disclosures, Spam not detected and Spam false positives.

The goal of metrics is to analyze objectively, having the following three points in mind – What are the Asset values and counter measures in place to protect those assets, Threats against those assets and Vulnerabilities that take advantage of the threats. Keeping these in mind and the end goal of your organization solutions, we leave the metric collection methodologies to you. You should decide on which metrics will provide you with the required information to protect your assets.

· After you build the system and deploy it, if you conclude that the job is done, you are “cutting the stem on which you are sitting”. Continuous monitoring of the application, recording the performance of the application, types of security attacks and the implications on the system are all to be monitored very closely. This monitoring will help you modify your system to fight more attacks and over a period of time, you begin to see the success of your “secure” system.

Do not forget to keep yourself updated on alerts of attacks which many open-source and not for profit organizations keep publishing. These alerts will add to your library of enemies. Few common and famous places of interest are www.cert.org, www.owasp.org, The BugTraq Mailing list http://msgs.securepoint.com/bugtraq/, Peter G Neumann’s Risk Digest Mailing list http://catless.ncl.ac.uk/Risks etc.

Reviews, Comments, Critics – harinath.pudipeddi@gmail.com

Base Code

Vulnerability List

Build Guidelines

Verification

Update Code

Unit Tests

System Tests

Regression Tests

Code Update

