Considerations for Developing Prototype Software

Prototype development software is often used to demonstrate the feasibility of various new features, capabilities, or to elicit requirements. For example the question is often asked “is it possible to do…?” and a quick prototype demonstration is developed to answer the question. For the purpose of eliciting requirements a user interface may be quickly prototyped to determine more precisely what a customer wants or how a user may interact with a system. Prototypes are also used to automate a tedious or complicated manual operation that only needs to run a few times; such as a data manipulation process. Prototypes are quickly developed with the single focus of solving a particular problem or answering a specific question. Little consideration is given to the future use of the software. Consequently little thought is given to the design or documentation and testing is only performed to prove that the desired result can be reached. There is little need for reliability or robustness.

There is however significant risk in attempting to extend prototypes beyond their intended use into a production environment. It is often tempting to save time and use something that appears to work in order to meet a perceived urgent need. However, bypassing the development process results in a weak, unreliable and high maintenance system. Prototypes usually lack the robustness for automatic and fulltime operation. They may lack error-handling ability so that common problems such as network communication errors, difficulty in connecting to a database, data out of range errors, or other common problems will cause the prototype to stop functioning without warning and without notification. Prototypes can lack the ability for automatic startup after a power failure or a machine reboot. And usually system logging is not implemented so that when a failure occurs, root cause analysis is difficult. Prototype routines can also be inefficient in their use of database, network, processor and memory resources. When applied to a production system these inefficiencies can result in a significant degradation of the system’s performance.

Independently developed prototypes using non-standard tools or methods will result in programs that only the original programmer can maintain. Eventually, much of the developer’s time (and possibly other developers’ time) is taken up in maintaining the prototypes. The ability to build upon previous work is greatly diminished. Extensibility of the program is usually not considered so that the ability to increase the sophistication of the system may be limited. This is particularly true if a future enhancement is attempted that requires two or more prototypes to interact with each other. Not being of a common framework may make this impossible.

Additionally, IT Operation groups normally require that processes have the ability to be automatically monitored by off-the-shelf system monitoring programs. This is usually not a consideration when developing prototypes and may be impossible to add-on.

Eventually the “house of cards” collapses and the entire development and operation teams spend most of their time keeping the system up and running. The developer’s morale suffers because they are either held responsible for the poor performance of the system, or their technical abilities are held suspect.

The responsibility in avoiding this scenario belongs to management but usually ends up in the developer’s lap. Perhaps the best method for avoidance is to strictly limit the prototype’s functionality to perform only what is required to prove a point or to answer a question. No frills should be added. The GUI should look ugly or screen captured and used as a storyboard. The ability to perform a calculation should be demonstrated in a debugging screen, a DOS display, or a very simple GUI. Developers need to be paranoid and assume that someone will want to ship the prototype tomorrow and that they will be held responsible.

In summary, prototypes are meant to demonstrate the viability of a process or to elicit requirements, but do not result in a sustainable system. In general, prototypes should be built only as a demonstration and replaced with a robust application for the production environment. Developers should take it upon themselves to avoid the proliferation of prototype code and systems.

