Simple ways to improve Test Case Design and Execution
Shalini Ravikumar

shalinir79@rediffmail.com
Table of Contents

3Introduction

3Assumptions

4Discussion

4Case 1:

4Graph 1:

5Case 2:

5Graph 2:

5Case 3:

5Graph 3:

6Case 4:

6Graph 4:

6Conclusion

7References

7About the Author

Introduction

Software Testing basically is an activity performed to find bugs. Testing activity requires sufficient planning to find most bugs in the given amount of time. The core areas of test activity are test planning, test case designing and test execution. Test cases must be derived from every possible source available that thereby increases their coverage. Test cases may be derived from sources like Requirements, Analysis, Inspections, Reviews, Walkthroughs, Path-Analysis, Data Analysis, Environment details, Use cases, brainstorming sessions, etc. Identification of buggy areas is achieved by efficient test case designing. Now by efficient, we mean, both in terms of quality – “will my test cases help me detect at least n number of Severity 1 bugs (where, n is a small number)”, and quantity - “how many test cases will it take me to find a Severity 2 bug”.

In this paper, we introduce a new topic “Defect Factor” which is very helpful for testers in improving their test cases and test execution.

Assumptions

For easier understanding, let us assume the following:

[image: image1.png]

Consider a software project for testing, which has ‘n’ modules. Every module is delivered as ‘m’ builds before final integration and subsequent release.

[image: image2.png]

Test Effort refers to Test Case Design and Test Execution.

[image: image3.png]

Consider the severity of bugs being classified as shown below:

	Severity
	Description

	S1
	The tester cannot proceed with testing because of the bug

	S2
	There is a severe error like application crash, but testers can still test the application

	S3
	A non-conformance bug

	S4
	A Design Suggestion

Discussion

Assume the condition when the project has started and ‘n’ modules are delivered to the test team in ‘m’ builds, one after the other. Most of us use the basic techniques like Boundary Value Analysis, Equivalence Class Partitioning, Error Guessing methods for Black Box Testing and Path, Branch, Statement coverage methods for White Box Testing. Most of the time, testers tend to worry about the high number of bugs that they find amidst the testing phase. Here we will take a look at some simple ways on how to judge on improving our test effort.

Case 1:

Consider the case where a certain module is released to the testing team in 4 Builds. Find the number of defects in each build, note the number of S1, S2, S3 and S4 bugs in each case. Now, plot a graph of each type of bug in each build as shown below.

Graph 1:

[image: image4.wmf]Bug Severity / Build

0

5

10

15

B1

B2

B3

B4

Builds

Defects

S1

S2

S3

S4

In the above graph, you may notice that S4 bugs are high for Build 1 which calls for Testers meeting with Developers to ask them to look back at the Design issues. In Build 2, non-conformance issues are high, so testers may have to check the requirements thoroughly and add more test cases in order to hunt for more bugs. In case of Build 3, S1 bugs are relatively high, which might indicate that the testers may want to improve their test effort for Build 4.

In the above graph, the tester may want to identify a “Defect Factor”, which may help them in increasing their test effort and find more bugs.

Now, what is this Defect Factor? Let us say, there are 60 test cases for Build 3 and there are 6 S1 defects in this build. This indicates that for every 10 test cases, there is one S1 defect. So, the test team may want to look at their test effort. This is a big number and there are chances of finding more bugs in the coming builds.

Similarly, if there are 12 S4 defects in Build 1 and there are 48 test cases, there are 4 S4 defects for every 4 test cases. This is again an issue to be looked at seriously.

Case 2:

Graph 2:

[image: image5.wmf]Defects per Build

0

10

20

30

B1

B2

B3

B4

Builds

Total Defects

Defects

In the above graph, we have plotted total number of defects in each build. Take the example of Build 1 where there are 25 defects. Assume that there are 100 test cases for Build 1. This indicates that there is 1 defect for every 4 test cases. So, there is scope for improving test effort, which could help us find more bugs in the coming builds. Similarly, there is 1 defect for every 10 test cases in Build 4. So, there may still be chances of finding more bugs.

Case 3:

Consider the case where the project containing 4 modules is released for testing (assume that the defect count in various builds for each module, are consolidated for convenience). Find the number of defects in each module, note the number of S1, S2, S3 and S4 bugs in each case. Now, plot a graph of each type of bug in each module as shown below.

Graph 3:

[image: image6.wmf]Bug Severity / Module

0

5

10

15

M1

M2

M3

M4

Modules

Defects

S1

S2

S3

S4

In the above graph, you may notice that S4 bugs are high for Module 1 which calls for Testers meeting with Developers to ask them to look back at the Design issues. In Module 2, non-conformance issues are high, so testers may have to check the requirements thoroughly and add more test cases in order to hunt for more bugs. In case of Module 3, S1 bugs are relatively high, which might indicate that the testers may want to improve their test effort for Module 4.

In the above graph, the tester may want to identify a “Defect Factor”, which may help them in increasing their test effort and find more bugs.

Now, what is this Defect Factor? Let us say, there are 60 test cases for Module 3 and there are 6 S1 defects in this module. This indicates that for every 10 test cases, there is one S1 defect. So, the test team may want to look at their test effort. This is a big number and there are chances of finding more bugs in the coming modules.

Similarly, if there are 12 S4 defects in Module 1 and there are 48 test cases, there are 4 S4 defects for every 4 test cases. This is again an issue to be looked at seriously.
Case 4:

Graph 4:

[image: image7.wmf]Defects per Module

0

10

20

30

M1

M2

M3

M4

Modules

Total Defects

Defects

In the above graph, we have plotted total number of defects in each module. Take the example of Module 1 where there are 25 defects. Assume that there are 100 test cases for Module 1. This indicates that there is 1 defect for every 4 test cases. So, there is scope for improving test effort, which could help us find more bugs in the coming modules. Similarly, there is 1 defect for every 10 test cases in Module 4. So, there may still be chances of finding more bugs.

Conclusion

Above shown are simple ways to enhance testing skills. Similar to these, lot of ways can be identified which could be used to improve our test cases and test execution.

References

[image: image8.png]

www.testingeducation.com
[image: image9.png]

 Software Testing Fundamentals – Methods and Metrics by Marnie L. Hutcheson

[image: image10.png]

 Metrics and Models in Software Quality Engineering by Stephen H. Kan

--

About the Author

Shalini Ravikumar was working as an Associate Quality Control Analyst in the Quality Control Department of Misys Hospital Systems (India) Pvt. Ltd. She has more than two years of experience in the field of Software Testing. She has worked as a test engineer in testing projects in the health care domain and developed test cases, test procedures and test results for these projects. At present, she is working as a freelancer with Axon Technologies Pvt. Ltd.

Shalini is a Certified Software Test Engineer from QAI. She holds a Bachelor’s degree in Electrical & Electronics Engineering from B.M.S. College of Engineering, Bangalore.

Simple ways to improve Test Case Design and Execution
7 of 7

_1121890699.xls
Chart1

		B1		B1		B1		B1

		B2		B2		B2		B2

		B3		B3		B3		B3

		B4		B4		B4		B4

S1

S2

S3

S4

Builds

Defects

Bug Severity / Build

3

4

6

12

1

2

10

3

6

4

5

9

0

3

6

1

Sheet1

		

						S1		S2		S3		S4

						3		4		6		12

						1		2		10		3

						6		4		5		9

						0		3		6		1

						B1		B2		B3		B4

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

S1

S2

S3

S4

Builds

Defects

Bug Severity

Sheet2

		

Sheet3

		

_1121891005.xls
Chart3

		M1		M1		M1		M1

		M2		M2		M2		M2

		M3		M3		M3		M3

		M4		M4		M4		M4

S1

S2

S3

S4

Modules

Defects

Bug Severity / Module

3

4

6

12

1

2

10

3

6

4

5

9

0

3

6

1

Sheet1

		

						S1		S2		S3		S4		Total

				B1		3		4		6		12		25		M1

				B2		1		2		10		3		16		M2

				B3		6		4		5		9		24		M3

				B4		0		3		6		1		10		M4

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

S1

S2

S3

S4

Modules

Defects

Bug Severity

Sheet2

		0

		0

		0

		0

Defects

Builds

Total Defects

Defects per Build

Sheet3

		

		

_1121891004.xls
Chart1

		M1

		M2

		M3

		M4

Defects

Modules

Total Defects

Defects per Module

25

16

24

10

Sheet1

		

						S1		S2		S3		S4		Total

				B1		3		4		6		12		25		M1

				B2		1		2		10		3		16		M2

				B3		6		4		5		9		24		M3

				B4		0		3		6		1		10		M4

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

S1

S2

S3

S4

Modules

Defects

Bug Severity

Sheet2

		0

		0

		0

		0

Defects

Modules

Total Defects

Defects per Module

Sheet3

		

		

_1121890175.xls
Chart2

		B1

		B2

		B3

		B4

Defects

Builds

Total Defects

Defects per Build

25

16

24

10

Sheet1

		

						S1		S2		S3		S4		Total

				B1		3		4		6		12		25

				B2		1		2		10		3		16

				B3		6		4		5		9		24

				B4		0		3		6		1		10

Sheet1

		0		0		0		0

		0		0		0		0

		0		0		0		0

		0		0		0		0

S1

S2

S3

S4

Builds

Defects

Bug Severity

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

Sheet2

		0

		0

		0

		0

Defects

Builds

Total Defects

Defects per Build

Sheet3

		

		

