My testing team completed testing and logged defects. Subsequently, I generated some test metrics and published a test report certifying application quality. However, most of what I published in the test report turned out to be wrong. My customers are terribly upset and my managers are asking for explanations.
The Defect to Remark ratio is 1:1; Defect Severity Index is sloping down on a week to week basis & Time to find a defect is increasing. The metrics seem to suggest good quality of the application. However, production release failed to perform in the market and many defects were reported by customers.

Situations like the ones explained above, where a test manager certifies a product with good quality and later realizing that the quality did not meet expectations are not rare. While there could be multiple reasons attributed for these problems (poor quality of test cases, poor test practices, inefficient test process etc.) one factor that is generally missed out but that is very important is the ability of the test manager to analyze different test metrics and understand what they do not reveal.
Often, due to lack of understanding (and not due to lack of interest), test managers and test leads rely on few test metrics to measure the quality of the application under test. Relying on few test metrics by itself is not a cause of concern, however the test leads and managers should be aware of few caveats before relying on what the trends seem to suggest. They are:
· Test metrics by themselves do not provide genuine insight into the Application’s real Quality

· Test metrics should not be looked at in isolation. Different test metrics should be co-related and analyzed in order to get a better and reliable test summary
· Conducting a root cause analysis as part of the metrics analysis yields reliable results

· Thorough and systematic analysis of test metrics is important in order to make the metrics a reliable tool to measure the quality of the application
· While, some test metrics should be analyzed for trends over a period of time (over multiple test cycles) other metrics should be analyzed for a specific test cycle

Let us assume that as part of the organization’s test metrics programs, the following metrics are collected by the test team.

	S.No
	Metric Name
	Metric Definition

	1.
	Defect to Remark Ratio
	Used to measure the number of remarks logged by the test team that gets converted to defects. Ideally, all remarks should get converted into defects. This is calculated as a ratio (1:1) or as a Percentage (100%).

	2.
	Defect Severity Index
	Weighted average index of the Severity of defects. A higher severity defect gets a higher weight. S1 is a show stopper, S2 is high severity, S3 is medium & S4 is low. Ideally, this should slope down as test cycles progress.

	3.
	Mean Time to find a Defect
	Calculates the time gap between two successive defects being detected. Ideally as test cycles progress, this should increase. A variant of this is the MTTF (Mean time to failure).

	4.
	Test Coverage
	There are two major types of coverage ratios (Requirement Coverage & Code Coverage). Requirement coverage measure the amount of requirements covered by test cases and Code coverage measure the extent of code that is covered through test cases. In addition, coverage could also represent (# of developed test cases v/s # of test cases planned for test execution), (# of test cases planned for execution v/s # of test cases executed) & (# of developed test cases v/s # of test cases executed). Ideally, a higher % of coverage indicates a better situation.

Let us assume that the test team has been testing the product and has generated the following metrics.
[image: image1.emf]Defect To Remark Ratio

80%

50%

95%

95%

80%

70%

40%

45%

55%

65%

0%

20%

40%

60%

80%

100%

1 2 3 4 5 6 7 8 9 10

Test Cycles

Percentage

[image: image2.emf]Defect Severity Index

1.25

1.75

2

2.2

3

3.8

4.2

5

5.5

5.5

0

1

2

3

4

5

6

0 2 4 6 8 10 12

Test Cycles

Severity Index

[image: image3.emf]Mean Time to Find a Defect

0.55

0.5

0.5

0.35

0.3

0.2

0.15

0.15

0.1

0.05

0

0.1

0.2

0.3

0.4

0.5

0.6

0 2 4 6 8 10 12

Test Cycles

Mean Time (in hours)

 [image: image4.emf]Test Coverage

100% 100% 100% 100%

70%

50%

100%

90%

0%

50%

100%

150%

200%

250%

Requirements

Coverage

Code

Coverage

Documented

vs Executed

Test cases

Planned vs

Executed

Test cases

Type of Coverage

Percentage of

Coverage

Desired Actual

Foot Notes:

· Remark: Some organizations categorize all issues identified and logged by test teams as Remarks. Once a remark is logged, a defect triage process occurs where valid remarks get converted into Defects and get assigned to developers for fixing. Invalid remarks include remarks that can be classified as “Duplicates”, “Invalid”, “Unable to Reproduce”, “As designed”, “As per requirement” etc.

· Weights for Severity: Different organizations have different severity classifications. Depending on the organization’s priorities, weights are assigned. Some organizations assign a weight of 1 to a low severity defect and some organizations assign a weight of 0.
· Metrics selected: There could be many other metrics used for measuring. However, to keep it simple and highlight the importance of proper metrics analysis, these four metrics have been used.
Analysis: Looking at the graphs one can safely deduce the following.
Defect Remarks Ratio:
What does the graph indicate? This shows a favorable trend since the graph has been constantly rising during the last 10 test cycles (except for a single drop). The test team has been logging remarks most of which get converted into defects. The number of remarks getting marked as invalid, duplicates etc. is falling as test cycles progress.

This is what it could mean: Though the defect remark ratio is rising (as it should to reflect a favorable trend), the analysis should not be restricted to what is shown in the graph. It should be analyzed by considering the following factors which could alter the seemingly favorable trend.
· Test coverage (when the test coverage is low, relying only on defect remark ratio will result in poor analysis. Ex: if the test coverage is low (assume we are taking about requirement coverage), then this trend is true to only about 70% of the requirement. The balance 30% of the requirements that have not been covered could relate to the most crucial part of the functionality. Assuming structured testing was done; analyze the quality of the test cases to ensure they are well designed to identify critical defects. Analyze the results by considering other coverage ratios as well.
· Defect Severity (the team could have logged very simple cosmetic remarks (Ex spelling mistakes, text alignment etc) while not logging any critical/high severity remarks. In this case, while the defect remark ratio is favorable, the quality of the application is questionable.
· Number of defects (this graph does not talk about the number of defects logged. Assume there were 1000 defects introduced into the application and the team was able to identify and log only 100 remarks. This graph fails to point this important fact.
· Defect Classification (this graph does not comment on the defect classification. Out of the 100 remarks that were logged, it could be possible that 90 defects were technical defects (Ex: wrong DB schema, wrong tables being updated, coding errors that cause system crash etc). It could be possible that that the test team had done a good job in identifying technical defects but did a poor job in identifying functionality defect (business logic). This graph does not present this point of view.
Defect Severity Index:
What does the graph indicate? The defect severity index is sloping down consistently. This indicates an increasingly favorable trend. As the test cycle progresses (from cycle 1 to cycle 10), the severity index is sloping which suggests increase quality of the application (as lesser number of critical and high severity defects are being reported).

This is what it could mean: While a fall in the defect severity index is definitely a good trend, looking at this index in isolation could be misleading. Following factors need to be considered in order to have a meaningful analysis.

· Number of defects logged (let us consider an example where the test team executed two cycles of testing. (Assuming other things as constant). The number of defects logged against each of these cycles along with the calculated severity index is shown below.
	Number of Defects

	Defect Severity
	Cycle 1
(# of defects)
	Cycle 2
(# of defects)

	S1
	5
	5

	S2
	10
	15

	S3
	50
	30

	S4
	100
	100

	Severity Index
	1.52
	1.43

At first thoughts, when we compare cycle 1’s Severity Index with cycle 2’s Severity Index, cycle 2 looks to be favorable (as the severity index is lower). If you go into the details of the number of defects logged and their severity, the picture turns out to be the opposite. While the total number of Severity 1 and Severity 2 defects for cycle 1 is 15, the number of Severity 1 and Severity 2 defects for cycle 2 is 20. In terms of quality, cycle 1 is better than cycle 2 as cycle 1 has lesser number of high severity defects (though the total number of defects logged in cycle 1 is more than cycle 2 defects and the severity index is greater than cycle 2 severity index). Test coverage has a similar impact. A lower test coverage coupled with reducing severity index would not be a healthy trend.
· Defect Severity (let us consider another example where the test team executed two cycles of testing. (Assuming other things as constant). The severity of defects logged against each of these cycles along with the calculated severity index is shown below.

	Severity of Defects

	Defect Severity
	Cycle 1
(# of defects)
	Cycle 2
(# of defects)

	S1
	4
	0

	S2
	4
	0

	S3
	42
	75

	S4
	27
	2

	Severity Index
	2.42
	2.92

Looking at the severity index, it looks like cycle 1 is better than cycle 2 (as the severity index is low for cycle 1 compared to cycle 2). However, cycle 2 is better than cycle 1 as total number of Severity 1 and Severity 2 defects is zero compared to a total of 8 severity 1 and severity 2 defects of cycle 1. Just because the severity index is low, do not believe the quality of the application is better than the earlier cycle.
Mean Time to Find a Defect (MTFD):

What does the graph indicate? The mean time to find a defect has been increasing over the time. This indicates that the test team is increasingly finding it difficult to identify defects. This indicates that the quality of the application is better than the initial cycles.
This is what it could mean: Looking at the mean time to find a defect in isolation could be misleading. Following factors need to be considered before relying on the mean time to find a defect.
· Defect Severity (In the graph above, it took 5 minutes to identify a defect in cycle 1, whereas in cycle 10 it took 55 minutes. While an increase in duration is positive, one needs to look out for the severity of the defects logged before concluding on the quality. It could be possible that the team logged only Severity 4 defects during cycle 1 and Severity 1 defects during cycle 10. In this case, though the graph shows a favorable increase in time to find a defect, the reality is, the quality is not up to the mark (as higher severity defects are being detected even during cycle 10).
· Test Coverage (Testing during cycle 1 could have been on the user interface layer; hence more number of UI defects were detected in a smaller period of time. On the other hand, during cycle 10 the tests could have focused on database transactions, hence lesser number of defects could have been identified in a given period of time. However, it is common knowledge that 1 single db transaction defect (detected in a fixed period of time) is more important than 10 UI defects (detected in the same amount of time). Another possibility could be cycle 1 covered 90% of the requirements whereas cycle 10 covered on 10% of requirements. A higher coverage could obviously lead to more number of defects being detected.
· Type of tests (it could be possible that a simple regression test was conducted on cycle 1 whereas reliability test was conducted during cycle 10. While more number of defects during cycle 1 is definitely a good sign, it is not a good sign to identify a defect every 55 minutes when running reliability tests.

Test Coverage:

What does the graph indicate? Requirement coverage is good at 70%, Code coverage needs to improve, and 90% of the documented test cases have been executed indicating a high degree of application being tested. 100% of planned test cases have been executed which is very good. Overall the test coverage is good with an improvement desired in the code coverage.
This is what it could mean:

· Requirement coverage (Stands at 70%. However it does not indicate whether this 70% covers the most critical functionality or the most elementary functionality. The graph is silent between functional and non functional requirements. It also does not talk about implicit v/s explicit requirements. In case the balance 30% forms the most important part of functionality, the current 70% is inadequate.
· Code coverage (while the current 50% code coverage desires a definite improvement, it is important to be more explicit on what 50% this refers to. Asking questions like, does this 50% refer to HTML and Java Script code or does this 50% refer to the core code (ex: pure java code). Another point of view is to clarify whether this 50% coverage is achieved through White Box test cases or through Black Box test cases or through a mixture of both. Again, the sufficiency of the code coverage depends on the type of application under test. In case of applications having critical functionality (Ex: medical equipments, landing and take off of aircrafts etc), 50% coverage is absolutely insufficient. On the other hand, if this application is a simple application developed for internal use by HR team to track number of employees using the corporate gym, the coverage might be adequate.
· Documented vs. Executed test cases (while the current 90% is definitely high and presents a good view, its opposite will be true if the documented test cases are either of inferior quality or when the documented test cases miss a critical functional requirement.
· Planned vs. Executed test cases (while 100% of planned test cases getting executed is definitely very good, care has to be applied to ensure that the plan is robust. This depends on the test team’s ability to plan good tests. If a team plans to execute user interface (UI) test cases during system integration phase, coverage could still be shown at 100% but this coverage is inappropriate.
Conclusion: While the above defined metrics are a very small subset of the large number of metrics possible to generate, it definitely helps us understand an important aspect of test reporting. Relying on test metrics is always better; however, teams depending on the metrics need to have a better understanding of the different components and factors which affect these metrics. Any test report that presents metrics along with detailed root cause analysis by considering different point of view is important to ensure, team does not face surprises in the future.
PAGE
1

