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Test Strategies for Mobile Device Applications 

Why we wrote this paper 

Application development for mobile devices is a fast growing phenomenon. According to eWeek.com there 

were more than 450 million mobile Internet users in 2009, and the number is expected to surpass 1 billion 

by the end of 2013.  

 

All these users of mobile devices, like iPhone, iPad, Blackberry, Android, the upcoming Windows Phone 7, 

or even eReaders like the Amazon Kindle, create a never-ending demand for more and more unique and 

useful mobile applications.  

 

The arena for these new applications is vast, from the healthcare world, where patients can now practice 

self-care directly on their smartphones1, to social networking, where 55% of mobile internet users mostly 

use their devices for social networking and emailing2.  

 

Users want mobile applications to be simple and fast. Just one nagging bug or usability issue can spoil the 

entire experience. And with so much competition in this new space, if users don!t have an excellent 

experience with your application, they will switch to a rival product faster than you can say “There!s an app 

for that.” 

 

Vendors simply can!t afford to go to market with an application that might have a critical bug or usability 

issue. Yet surprisingly, there is no previously existing comprehensive guide on how to test the particular 

complexities of mobile device applications. 

 

The strategies presented here are intended to highlight some of the areas where the testing of mobile 

device applications differs from testing desktop or regular web applications. It is important to plan a test 

strategy that is mobile-specific, or you may overlook  crucial areas of testing like how network connectivity 

(or lack thereof) affects your application, how screen resolution and orientation changes can spoil a user!s 

whole experience, and whether your application jives with what users of a particular device  have come to 

expect.  

 

We hope you find this guide useful, and encourage you to contact us with questions, comments, and 

additions. 

 

What you can expect 

For simplicity, we divide the testing into four main areas: 

  

1. User Interface Testing 

2. External Factors Testing 

                                                
1
 http://www.diabetesmine.com/2009/03/lifescans-new-diabetes-iphone-app.html 

2
 http://www.webcredible.co.uk/about-us/pr/mobile-internet-usage.shtml 
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3. Stress Testing 

4. Security Testing 

 

In some sections, device-specific examples for iPhone, Blackberry, Android, or Windows Mobile 

smartphones are included. Please explore analogous options for the devices on which you are testing. 

 

Functional testing is excluded from specific mention because that type of testing can be carried out in the 

same way you would perform it on any other kind of application. 

 

We also include a discussion about testing on emulators versus real devices. 

 

Be aware that testing strategies will depend on the software requirements of the application. Not all testing 

strategies described in this document apply to all applications. But, as you are creating your test plan, 

please take the suggestions discussed in this paper into consideration.  

 

 

User Interface Testing 
 

The first area to explore in your test plan is the user interface. While smartphone applications are relatively 

new, there are already accepted guidelines for look and feel and overall behavior. It is your job as the tester 

to confirm that your application follows these principles. 

 

Note that this paper does not cover Usability Testing for mobile devices, which is critical to creating a 

compelling, usable mobile application. Usability testing and other user-centered design principles will be 

covered in a future paper.  

Comparing your application with native applications 

If you are not already a regular user of the device you are testing with, the first thing you should do is 

familiarize yourself with the device and some of its common native applications such as its Phone, Email, 

Camera, Contacts, and Calendar programs, etc. These are applications that device users see everyday so it 

is important that your application has a similar look and feel. 

 

As you are exploring, take note of things like: 

 

1. Overall color scheme/theme of the device. For example, Blackberry has several themes3 that differ 

even between its own models. 

2. Style and color of icons. For example, Android has well-defined icon design guidelines4. 

3. Progress indicators when pages are loading. 

4. Menus. How they are invoked and typical items they contain. 

5. Overall responsiveness of applications on this device. 

                                                
3
 http://docs.blackberry.com/en/developers/deliverables/6625/Themes_2_3_810712_11.jsp 

4
 http://developer.android.com/guide/practices/ui_guidelines/index.html 
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Screen orientation/resolution 

If your application is supported on various devices that have different screen resolutions, make sure you test 

early with the device that has the smallest screen. This will flush out any layout problems where the design 

is simply too large to fit on the necessary screen size. Of course, don!t forget to do regression testing of any 

subsequent layout changes to make sure your application still looks good on larger screen sizes as well. 

 

If your device supports screen orientation changes, like the iPhone and some Android, Blackberry and 

Windows Mobile models do, be sure to include lots of testing where you rotate the device from portrait to 

landscape display, and vice versa, on all of the pages within your application. This re-orientation completely 

changes the screen size so layouts may no longer display as intended. 

 

Also, it is easy for developers to leave uncaught exceptions around screen re-orientation events that could 

cause the application to crash, especially if you do this re-orientation back and forth quickly before the 

previous orientation change gets a chance to fully complete. 

 

It is also important to test input reactions when the screen orientation is changed. Try using the soft 

keyboard while changing the orientation repeatedly. On Windows Mobile and some Android devices, a 

change in orientation is automatically triggered by extending the slide-out keyboard. Attempt this repeatedly 

and quickly to see if the rapid changes in orientation have a negative effect on the application.   

 

Touchscreens 

If your device has a touchscreen, then there are numerous extra things to consider, such as the following: 

 

1. Multi-touch vs. single touch screens – If your device and application support multi-touch features, 

like the pinch-to-zoom effect on iPhone, be sure to include lots of test cases involving touching the 

screen in more than one place simultaneously, especially while typing on the soft keyboard.  

 

2. Long touch vs. short touch – While there is usually no concept of a double-click on touchscreen 

devices (although there could be if specifically implemented in your application), some, like the 

Android smartphones, distinguish between long touches and short touches: pressing and holding an 

item will bring up a context menu in the middle of the screen, while short-clicking the same item will 

automatically perform the first action in that context menu.  

 

All Windows Mobile touchscreen enabled devices also use long touch vs. short touch for different 

reasons: be it to open context menus in certain applications; or to enable a secondary function of a 

button such as selecting Pause, Wait, and the international dialer symbol when holding down the “*” 

button in the dialer.   

 

3. Button size and position – Ensure that buttons and icons are large enough and far enough from 

the edges of the screen to be easily clicked by a large fingertip. If the button is not large enough for a 
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finger to press, such as the Close button on a Windows Mobile device application, verify that a stylus 

can be used to access and operate such buttons. 

 

4. Workflow – Applications should ideally make use of wizards with multiple choice selections like 

radio buttons and checkboxes to minimize the amount of typing the user needs to do, which can be 

excessively time-consuming.  

 

5. Other input methods! interactions – In most cases your touchscreen device will also have other 

input methods such as a trackball or hard keyboard. It is important to ensure that virtually 

simultaneous inputs from all the methods do not interfere with each other. For example, on Android a 

GUI item may lose its current selected state if you select it by touching the screen, but then switch to 

using the trackball to navigate.  

 

If you want more touchscreen testing details, please see our 3-part blog series5 on this topic as well. 

 

Trackballs, trackwheels, and touchpads 

If your device doesn!t have a touchscreen, it is even more important to verify that screen navigation is as 

painless as possible for the user. In these cases, the user may rely on a trackball, trackwheel, or touchpad 

to move from object to object. As discussed in the design section of the Blackberry Development 

Fundamentals Guide6, it is necessary for example to check that the trackball is able to move the user from 

field to field in a logical way.  

 

Even if your device does have a touchscreen, don!t forget that some users will still want to use the trackball 

so it!s important to ensure all screen items can be reached with trackball navigation as well. This is an area 

often overlooked by development teams where inconsistencies can arise. 

 

Soft keyboards 

If your device has one, pay special attention to how the user must interact with the soft keyboard. There are 

often various special cases and corner cases that are overlooked by development, but important to end 

users. 

 

1. Does the soft keyboard automatically appear if the user!s main action is to enter some text? 

 

2. Does the first layer of the soft keyboard include shortcut “@” and “.com” keys if the highlighted field 

is for entering email addresses? (For example on Android, developers can easily enable this by 

using the textEmailAddress attribute). 

 

                                                
5
 http://softwarepmp.blogspot.com/2009/11/qa-strategies-for-medical-touchscreen.html 

6
 http://docs.blackberry.com/en/developers/deliverables/1107/fundamentals.pdf 
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3. Does a long touch on a soft character key bring up several different character choices for that input, 

such as different accents and symbols on a Windows Mobile device when entering contact 

information? 

 

4. Can the soft keyboard be dismissed and re-displayed easily? 

 

5. Can the soft and hard keyboards be used interchangeably (if the device has both)? 

 

6. Do soft keyboard characters entered in password fields only show up as ****? 

 

Hard keys 

Be sure to include a lot of testing around the use of the device!s available hard keys such as Start, Home, 

Menu, and Back. In order for the user to have a great experience, these should all interact with your 

application similarly to how they interact with the device!s native applications.  

 

For example, Blackberry users expect to make extensive use of their hard Menu key for options, as opposed 

to clicking buttons or making selections on the screen itself.  

 

Android users will expect a short-click on their hard Menu key to either lead to the application!s Settings 

page or pop up a context specific menu, while a long-click should expose the soft keyboard.  

 

Also note that some HTC Windows Mobile devices have a hard zoom bar below the screen that when slid, 

should zoom in or out on certain visual aspects of the application. 

 

Shortcuts 

Find out if there are any expected shortcuts common for your device and test their use within your 

application. 

 

For example, you can find a great list of Blackberry keyboard shortcuts on the web7.  

 

On Windows Mobile devices, the Start Menu will have a list of programs installed that can be launched with 

a single touch. Newer HTC Windows Mobile devices have the Touch Flo screen appear when you launch 

the Start Menu, which will display a user editable list of shortcuts to applications. Testing to make sure your 

application can be correctly added to and, more importantly, launched from this list is critical. 

 

                                                
7
 http://forums.crackberry.com/f3/tip-helpful-keyboard-shortcuts-13131/ 
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External Factors Testing 

 
There are numerous other factors that are external to your application itself, but inherent to the mobile 

device that the application will run on. It is important to also test how these factors may influence your 

application. 

 

Network connections 

Since your application is going to be used on devices in various locations with various network connection 

speeds, it is important to plan testing coverage for the following scenarios: 

 

1. Only Wi-Fi connection 

2. Only 3G connection 

3. Only 2G connection 

4. With no SIM card in the device 

5. In Airplane mode (or all connections disabled) 

6. Using the network through a USB connection to a PC 

7. And most interestingly, test intermittent network scenarios that a user might encounter in the real 

world: 

a. Walk out of Wi-Fi range so the connection automatically switches to 3G/2G (for example, in a 

large building like a hospital or airport, or outdoors) 

b. Ride in an elevator or on a train where the network connection may go up and down 

c. No network connection available at all 

SD card interactions 

If your application can potentially store or retrieve items on the device!s SD card, then it is important to test 

the application!s behavior when there is an SD card present or not. At a minimum, the application should 

provide user-friendly error messages when a function cannot be performed due to a missing SD card. 

 

Also consider removing the SD card in mid-operation (particularly on devices where it can be easily 

removed without taking the back off of the device). 

 

Phone calls and other interruptions 

If the mobile device you're testing with is also capable of making and receiving phone calls, be sure to test 

the following scenarios to see how your application reacts before, during, and after the call: 

 

1. Your application is interrupted by an incoming call, originator hangs up the call  

2. Your application is interrupted by an incoming call, terminator hangs up the call  

3. Your application is interrupted by placing an outgoing call, originator hangs up the call  

4. Your application is interrupted by placing an outgoing call, terminator hangs up the call  
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Also take into consideration such interruptions as: 

 

1. Text messages 

2. Voicemail notifications 

3. Calendar events 

4. Social media notifications (Facebook, Twitter, etc) 

5. Alarm clocks 

6. Low battery notifications 

 

Any of the above could have an impact on the functionality or overall responsiveness of your application. 

 

Device options 

Explore your device!s options, and change settings such as the following to see how they affect your 

application: 

 

1. Sound profiles – For example on Blackberry you can change the “Profiles (Ring Tones)” setting to 

options like Loud, Quiet, Vibrate, Phone Only, or Off. Does your application respect the device!s set 

profile? 

 

2. Device password/unlock pattern – You may be able to configure this as a requirement during 

application installation (for example setting Blackberry!s Password option “Prompt on Application 

Install” to Yes). Does your application still install correctly when prompted for password/unlock 

pattern? 

 

3. Font – How does choosing a different font family, size, or style affect the appearance and usability of 

your application? 

 

4. Screen timeout/Auto on, off – Is your application subject to screen dimming or automatically 

turning off even when it is actually busy? For example, you wouldn!t want your screen to dim or turn 

off while watching a slideshow of your photos. 

 

5. Screen orientation – You may be able to enable/disable automatic orientation switches when the 

device is rotated, on some Android devices for example. Does your application respect this setting? 

(However, also keep in mind that the application code can lock a screen to a particular orientation so 

if you find an issue here it might actually be design intent). 

 

6. Connections – Using one of the connections on a device, such as Bluetooth or Microsoft Direct 

Push (only on Windows Mobile devices), could have adverse effects on your application. How does 

enabling/disabling Bluetooth or other connection types affect your application!s behaviour? 
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Stress Testing 
 

Although mobile devices! memory and power have improved over the past few years, mobile applications 

still have much more memory and CPU constraints than desktop applications.  

 

With users expecting applications to hold up even under high traffic conditions with many applications 

running, stress testing is a must to find exceptions, hangs, and deadlocks that may go unnoticed during 

functional and user interface testing. 

 

Techniques 

The following are some stress testing techniques to try: 

 

1. Load your application with as much data as possible to try to reach its breaking point. For instance, 

Windows Mobile devices can accomplish this with either ActiveSync (Windows XP) or Windows 

Mobile Device Center (Windows Vista and newer). This will give the user full access to the Windows 

file system on the device to add needed testing files where they are required. 

 

2. Perform the same operations over and over again, particularly those that load large amounts of data 

repeatedly. 

 

3. Perform the repeated operations at varying speeds – very quickly or very slowly. 

 

4. Leave your application running for a long period of time, both interacting with the device and just 

letting it sit idle, or performing some automatic task that takes a long time (like displaying a 200-

photo slideshow). 

 

5. Randomly send screen taps and keystrokes to your application. 

 

6. Have multiple applications running on your device so you can switch between your application and 

other device applications often, and at different states within your application: 

a. On Android or Blackberry you can press and hold the hard Home or Menu key, respectively, 

to quickly switch between running applications. 

b. Use all means to launch your application, for example on Windows Mobile use the Touch Flo, 

the file explorer, and if the application is already launched, maximize and minimize the 

application. 
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Tools 

There are some tools you can make use of for stress testing on mobile devices. For example, Hopper8 can 

send random screen taps and keystrokes to your Windows Mobile application, or try TestQuest9 for more 

general automation needs across devices.  

 

Android has DDMS10 built into its SDK, which among other things can be used to check memory usage. 

 

Non-reproducible issues 

Another general tip related to stress testing – do not be afraid to report bugs that you haven!t yet found a 

way to reproduce 100% of the time. If you can at least provide crash logs and a best guess as to how to 

trigger the problem, that is usually enough to give the developer some ideas on narrowing down the root 

cause. 

 

Security Testing 

General considerations 

There are a few things to consider around security at the device level when comparing mobile applications 

to desktop or web applications: 

 

1. Most mobile devices assume one user; they do not have multiple accounts. (Except in the case of 

multiple email addresses configured per device, which should be tested especially if your application 

deals with the device!s Contacts or Email functions). But in general there is no concept of user 

switching, different profiles, or permissions based on user level. 

 

2. It is up to the user whether or not they configure a password/unlock pattern for their device at all. 

 

3. All necessary encryption needs to occur at the application level because the device will not 

necessarily handle this. 

 

4. Outside communication of any sensitive data should be done over SSL/TLS because it can!t be 

assumed that the user will configure their Wi-Fi to be secure. 

 

For more information on how to perform general security testing on your mobile applications, there is 

already a good paper11 so we won!t repeat all the details here. 

 

                                                
8
 http://blogs.msdn.com/windowsmobile/archive/2007/06/13/how-to-run-hopper-on-your-application-

step-by-step-procedures.aspx 
9
 http://www.testquest.com/index.cfm 

10
 http://developer.android.com/guide/developing/tools/ddms.html 

11
 http://www.foundstone.com/us/resources/whitepapers/wp_mobile_application_pen_testing.pdf 
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Web applications 

While running most web security testing tools on a mobile device is virtually impossible, you can run your 

mobile website on a PC itself, by following the instructions here12. Then you will be able to test the 

application with common web security testing tools, such as Firefox Web Developer add-on, SQL Inject Me, 

XXS Me, WebScarab, or Brutus. 

 

A web proxy can also be used to intercept all mobile device traffic to monitor data and test for security 

issues. 

 

Sensitive information 

The threat of passwords or usernames being left unencrypted on the device is a real one that can be taken 

advantage of by other users.  

 

To test for this, footprint and fingerprint analysis can be used to make hash files of the device file structure, 

with a tool like md5deep (as described on page 5 of the following paper13). Then use a difference 

comparison application such as ExamDiff to compare the before and after hash files to see which files have 

changed. By doing so, you can then search the files your application changed for unencrypted information 

that could be used to compromise the device. 

 

Application and device permissions 

During installation of your application on a mobile device you are likely to encounter options for application 

execution permissions. For example, on Windows Mobile devices there are three levels: Privileged, Normal, 

and Blocked, which are specified by the application!s certificate, and define how much access the 

application will have to the device itself. On Blackberry, you may be asked to allow, prompt for, or deny your 

application access to various connection types, interactions, or user data on the device.  

 

Research the permissions configuration on your device and design your testing to ensure that your 

application can get access to the device areas it needs in order to function properly, and it provides useful 

error messages directing the user to set the permissions properly if it cannot. 

 

The device itself could also have different security configurations, such as security off, various levels of 

prompting, required third-party signing, or locked. It is important to verify that your application can be 

successfully installed at all expected device security level settings. For example, on Windows Mobile a high 

security level may not allow an unsigned CAB file to be installed, even if it is wrapped in an MSI file. This 

kind of behavior must be discovered and mitigated. 

 

Even after installation, it is possible to change the security settings of your device or application 

permissions. You should include some test cases to cover these scenarios as well. 

                                                
12

 http://www.aswinanand.com/2009/01/open-mobile-websites-on-pc/ 
13

 http://www.foundstone.com/us/resources/whitepapers/wp_mobile_application_pen_testing.pdf 
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Testing with Emulators 
 

Emulators can be very useful to cover a breadth of devices (with different screen resolutions for example) to 

which you may not have physical access.  

 

However, it is important to keep the following caveats in mind: 

 

1. Not all activities can be realistically emulated, like switching network connections, or taking a picture 

or video. 

2. Some activities just don!t work at all on emulators, like streaming video on a Blackberry emulator. 

3. Due to lower device power and memory, your application could exhibit slower performance overall 

when run on an actual device (versus in an emulator on your powerful desktop computer).  

4. If the emulator and actual device have different dpi resolutions, your screens may not display as you 

expect.  

 

Because of these and other more subtle differences, be careful not to assume that just because your 

application works perfectly on an emulator, it will have no issues on a real device. If possible you can initially 

test your application simultaneously on a real device and its analogous emulator. Take note of any 

discrepancies seen between the two and base your future real device testing plan on the differences 

observed. 

 

In general, it is a good idea to use some combination of real device and emulator testing, as recommended 

in the table below: 

 

Manual Testing 
Type of Testing 

Using Devices Using Emulators 
Automated Testing 

Unit Testing No Yes No 

Integration Testing No Yes No 

System Testing Yes No No 

Regression Testing Yes No Yes 

Compatibility Testing Yes No Yes 

GUI Testing Yes No No 

Performance Testing Yes No Yes 

Security Testing Yes No Yes 

Synchronization Testing Yes No No 

 

There is an excellent guide for obtaining and using emulators for testing on various mobile device types14. It 

covers iPhone, Blackberry, Palm, Windows Mobile, Android, Symbian, and Nokia emulators. 

 

                                                
14

 http://mobiforge.com/testing/story/a-guide-mobile-emulators 
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As an alternative to both emulators and buying lots of physical devices, you could also consider using a 

service like DeviceAnywhere.com that gives you online access to numerous real devices on various 

networks. 

 

Conclusion 
 

When planning your testing effort for a mobile device application, in addition to the usual functional testing, it 

is also important to consider the following areas and how they differ from desktop or regular web 

applications: 

 

1. User Interface Testing – mobile devices have unique user interfaces like smaller screens that can 

be re-oriented, touchscreens and soft keyboards, and navigation methods like hard keys and 

trackballs. 

 

2. External Factors Testing – mobile device applications must also contend with interactions and 

interruptions from other device features like various network connection types, SD cards, phone 

calls, and assorted device settings. 

 

3. Stress Testing – mobile device applications have much less overall device memory and power 

available so must handle themselves very efficiently. 

 

4. Security Testing – mobile device security will become more and more important as the user base 

grows, so it is essential to test the security of your mobile web applications, sensitive data storage, 

and how your application behaves under various device permission schemes. 

 

5. Emulator Use – Emulators can be a great asset when it comes to achieving testing coverage on 

multiple devices, but your test plan must also respect the fact that sometimes there is just no 

substitute for the real thing. 
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Glossary 
 

Acronym Full term 

CAB Microsoft Cabinet file 

DDMS Dalvik Debug Monitor Server 

HTC High Tech Computer Corporation 

MSI Microsoft Installer file 

PC Personal Computer 

SD Secure Digital 

SDK Software Development Kit 

SIM Subscriber Identity Module 

SSL Secure Socket Layer 

TLS Transport Layer Security 

USB Universal Serial Bus 

Wi-Fi Wireless Fidelity 

 


