All contents hereby presented are copyrighted material from Jose Fajardo. (Copyrighted 2002. All rights reserved. Must obtain permission from Jose Fajardo to reproduce, disseminate or publish this article or part of article. Email: Fajardo@seas.upenn.edu

	Author’s Biography:
Jose Fajardo has worked as either a test lead or a test manager for various companies utilizing automated testing tools from these vendors Mercury Interactive, Compuware, and Rational Corporation to test ERP applications such as SAP R/3(Peoplesoft(, SAP R/3 Bolt-ons, custom applications and non-SAP applications interfacing with SAP R/3. Jose Fajardo has helped various companies: create testing standards, implement testing best practices, create Quality Assurance Teams and QA processes from scratch, mentor junior programmers, staff-up testing efforts with resources, perform V&V activities, audit testing results, execute test scripts, and implement automated testing strategies. Jose Fajardo is Ivy League educated with graduate engineering education from the University of Pennsylvania and undergraduate engineering education from the University of Virginia. Jose Fajardo has given SAP R/3 presentations at the Wharton School of Business, conferences, and user groups and he is also SAP R/3 certified. He is currently a senior SAP project manager at a large defense contractor and has over 7 years of IT experience at various SAP R/3 implementations in these sectors: public, automotive, pharmaceutical, chemical, consumer products, and high-tech. To contact Jose Fajardo directly please send an email to: fajardo@seas.upenn.edu

Summary:

Corporations invest heavily in implementing ERP solutions as a cornerstone solution for their enterprise IT architecture and to support mission critical business processes such as human resources, supply chain, finance, etc. Implementing an ERP solution is a resource intensive, and time-consuming effort that needs to be carefully managed. Many of the corporations that spend millions of dollars in customizing and integrating an ERP solution often overlook and sidestep a critical software lifecycle step which is the comprehensive testing of the ERP system before deploying into a production environment. A poorly implemented ERP solution that did not undergo a structured test phase and test approach could have deleterious consequences on a corporation bottom’s line. In this article, the author offers some suggestions, hints and a testing framework to help corporations deploy their ERP solutions with confidence and quality by focusing on the SAP R/3 ERP package.

Title: A critical look at testing an ERP system (Focus SAP R/3()

ERP Background

ERP solutions have thousands of data tables, and incorporate a cornucopia of industry specific solutions to help companies streamline their business processes and provide corporations with access to real-time data that is seamlessly integrated across various modules. Some ERP solutions are heralded because they help to eliminate and replace a corporation’s maze of disconnected and disparate legacy applications while providing access to real-time data. In order to implement an ERP solution companies may have to revamp their information system infrastructure. Typically an ERP solution does not work in isolation and needs to be integrated with the existing legacy systems or even ERP/CRM systems from different vendors to run processes such as master production schedule, forecasting, BOM, etc.

In order to meet its current business processes with an ERP solution a corporation either has to configure the ERP solution or adjust to the ERP’s industry solutions predicated on industry’s best practices. Vendors proclaim that their ERP solutions are out-of-the-box solutions that are flexible to customize and easy to implement. Even when vendors offer their ERP solutions as “out-of-the-box solutions” these ERP solutions still need to be configured, customized, and thoroughly tested to help an organization or company meet its specific business needs.

There are many corporations who have failed to correctly implement an ERP solution and subsequently have experienced adverse consequences such as not being able to fulfill customer orders, not being able to manage inventory, or exchange data with suppliers, and vendors, etc. The list of companies complaining about their ERP implementations is indeed quite vast. Despite the gloom that some companies have experienced with ERP systems, there are many companies that have succeeded in implementing their ERP solutions while maximizing their ROI in the ERP solution because they have diligently tested all of the ERP components individually and jointly before deploying the system into a production environment.

The common denominator that companies have in successfully implementing an ERP solution is that they have taken great strides in ascertaining that their customized ERP solutions meet all of the their business requirements, business rules, and business scenarios. Implementing an ERP solution is indeed a daunting task and undertaking that should be subjected to a rigorous, proven, world-class testing approach to prevent the occurrence of problems in a live production environment. A framework to help corporations test their ERP solutions is hereby proposed.

Rationale - What triggers the testing phase?

There are several reasons that warrant the testing of an ERP solution even if the solution has already been running successfully in a live production environment. Some of the reasons that trigger the need for testing the ERP solution are:

· Not all of the company’s divisions have the ERP solution implemented within their IT architecture, and the time has come to implement the ERP solution for the remaining divisions.

· The ERP vendor will stop supporting a previous version of its software, and now many of the customers running the older version of the ERP software have to upgrade their software to retain customer support from the ERP vendor.

· An ERP solution may consist of various modules and solutions and the company with the implemented ERP solution has decided to add new modules to enhance the functionality of its ERP solution. As an example a company may be running the human resources and supply chain solution from a particular ERP vendor, and the company has now decided to acquire the ERP vendor’s real estate solution, which will necessitate the implementation and integration of the real estate solution with the supply chain and human resources solutions.

· An ERP vendor releases new patches for its software that need to be installed for an existing ERP implementation. The installation of new patches will require coordination and testing before deploying the patches into a production environment.

· A company already running an ERP solution in a live production environment has acquired a new company or a division from another company that needs to be brought up to corporate standards and therefore the newly acquired division or company will need to have its IT infrastructure running on the ERP solution if it’s already not doing so.

· A company already running an ERP solution from one vendor acquires a solution from a competing CRM/ERP vendor, and now solutions from multiple vendors need to be integrated and tested.

These are some of the reasons that I have witnessed as an ERP consultant that have impelled the companies for which I did consulting for to put in place a quality assurance and testing strategy. The list is not all-inclusive, but do provide compelling justifications to test an ERP solution. If a company is implementing an ERP solution for the very first time then that company will need to ascertain that the newly introduced ERP solution meets all of its requirements, and business functionality in the production environment through rigorous testing phases.

Kick Off Meetings

In the kick-off meetings the test manager presents and introduces his agenda for the testing phases and also introduces the test team members to the rest of the project. Kick-off meetings help to reinforce what activities the testing team will exactly perform and what are the expectations for support from the other project teams. The test manager should articulate what processes will be tested for the a given software release, what are the time frames for the various testing phases, the testing procedures, testing standards, and what are the tools to conduct the testing activities.

The kick-off meeting is a knowledge sharing session where the test team gives the other project teams an opportunity to learn about the testing activities, solicit their feedback, and entertain their questions associated with the testing phase. The test manager should strive to set expectations during the kick-off meeting as to what support will be needed from other teams and determine whether it is feasible for the other project teams to assist the testing team.

False Expectations

Inexplicably some ERP projects have test managers leading and managing the testing team where both the testers and the test manager have no exposure at all or hands on experience with the ERP application that needs to be tested. I personally find this perplexing and do not understand the rationale behind this. In order to test an ERP application and in particular one as complex as SAP R/3(it is necessary to understand the concepts of: transactional data, master data, configuration data, test data, the integration of the modules, data constraints, data requirements, and how the business scenarios are executed and sequenced within the project’s ERP application given the project’s customizations and configuration to the ERP application.

Many projects erroneously assume that a person who has in depth experience with an automated test tool but has never worked with an ERP package will automatically understand how to test and create automated test scripts for ERP applications such as SAP R/3(. Other test managers that have never worked with an ERP package such as SAP R/3(assume that a person who understands generic accounting principles will magically understand how to test accounting processes within SAP R/3(and understand SAP R/3(terms and scenarios. I was in one project where a test manager had never seen or worked with SAP R/3(before and he assumed that a tester who had worked with a custom human resource application would automatically be able to create test cases for the SAP R/3(HR module which set the tester up for dismal failure. These managerial expectations are unrealistic.

Project directors should appoint test managers and testers that have a background with an ERP application and in particular the ERP system that the project is implementing. The test manager should create a testing team consisting of functional testers who document the test cases, test scripts, RTVMs, test scenarios, and test sets and core technical testers that specialize in the creation of test scripts with automated testing tools. The core technical testers do not necessarily need to have functional knowledge of the ERP system but they will need support from the functional testers and fully documented test scripts in order to automate business processes. The functional testers in turn need to have access to the configuration team, and technical teams to understand what processes are being configured and what are the valid sets of data to execute the business processes. The ERP test managers should facilitate the working relationship between the testing team and the configuration team (development team).

Some test managers incorrectly believe that the creation of Business Process Procedures (BPPs) is the elixir for testing an ERP application and drafting test scenarios or test cases. While the concept of using BPPs has merits, it also suffers from some drawbacks that potentially render them useless to the testing team. BPPs often times: 1 Contain obsolete data for executing a procedure, 2. Contain generic processes without all the necessary permutations for executing a particular business process (i.e. create a material, there might be multiple permutations to creating a material), 3. Are outdated and do not meet the project’s latest and greatest customization changes, and 4. Contain stand-alone processes and do not the necessary flow process documentation for testing a business scenario. Given these BPPs shortcomings and drawbacks it is no wonder that testers are in a state of nonplus or obfuscation when their managers expect them to create test artifacts such as test scripts, test scenarios, or test cases out of BPPs. A more felicitous and pragmatic approach to testing an ERP application is with test scenarios that specifically focus on how a business procedure is executed within the ERP solution after it has been customized and configured to meet the company’s business needs. I dedicate in this article a section for testing based on test scenarios and recommend the use of third party tools for facilitating the process of creating test scenarios within SAP R/3(
Another misguided expectation that I have witnessed at several projects is the actual number of test scripts that a technical tester can automate per day and how the technical tester will actually do this. Some managers think that a technical tester (core automator) can just go into an ERP application such as SAP R/3(and start automating, and recording processes when the technical testers does not know what the necessary sets of data are for executing the business procedures or what test steps the business scenario entails. At the same time these same managers expect the technical tester to automate an unrealistic number of test scripts per day.

In order for a technical tester (core automator) to automate an ERP test script he/she would need the necessary documented test scripts, and test procedures with valid data and sequencing for the test sets to develop an automated test script. The functional tester has the burden to produce the documented test script for the technical tester with the expected results for each test step, the verification points, and business flow process that clearly demonstrate to the technical tester (core automator) how the test scenario flows from beginning through end. Also a typical rate for experienced technical testers is the automation of 3-4 test scripts per day per tester. An automated test script has these attributes: 1. Data driven (Parameterized), 2. Correlated, 3. Error handling logic, 4. Contains programming logic to validate verification points, 5. Plays back successfully for all the parameterized data values, 6. Easy to maintain, and 7. Meets all the test steps within the documented test script.

Peer Reviews

Functional testers after completing their test scripts and test sets should have the ERP functional and configuration experts validate and provide feedback for the design of their test scripts and test sets. This activity can be accomplished via peer reviews. With peer reviews the functional expert who has in depth knowledge as to how the ERP application works and how it was specifically customized for the company’s needs and requirements can trace through the documented test steps in the test scripts and the sequencing of test cases within test sets and determined if these artifacts were designed correctly before the commencement of the test execution phase.

QA team and players

For an ERP system the following players and team structure is hereby suggested.

A test manager with knowledge of an ERP system and preferably the ERP system tested within the project. The test manager should also have knowledge with automated testing, automation strategy and automated test tools. The test manager assigns resources to testing tasks, maintains the testing activities within the testing schedule, develops test readiness reviews plans, develops the entrance and exit criteria plans to move from one phase of testing to the other, escalates issues and problems, presents the test plans during the kick-off meetings, obtains a QA environment, documents the plan for accepting the system, identifies the various priorities levels for defects, coordinates the working relationship between the test team and the other project teams, creates the testing standards and procedures, develops the V&V (Validation and Verification) procedures, mentors the junior programmers, and documents all test results, test metrics, and lessons learned after the testing phases have concluded.

Functional testers. The functional tester report directly to the test manager and they have in depth functional knowledge of the ERP application. Since ERP applications are so complex the test manager might need to get functional testers for each area that needs to be tested. For instance an ERP human resources functional tester might have no knowledge about supply chain processes, where a functional tester specializing in supply chain ERP systems might not have any knowledge about financial processes such as general ledger, chart of accounts, month-end closing activities, etc. The functional tester develops the documentation for the test scenarios, test scripts, test cycles, test cases, and test sets. The functional tester identifies the sets of valid data to execute and automate a test script, and sequences the test cases within the test script. A functional tester also provides functional support to the core technical tester during the test script automation phase and during the reporting of defects should the automated test script identify any problems with the ERP application.

Technical testers. Technical testers validate that the interfaces, conversions, and security processes are functioning within the ERP applications. The technical tester needs to ensure that the inbound and outbound data is going in and out of the ERP system correctly. A technical tester needs to ensure that the security of the system meets all requirements and that certain tasks such as segregation of duties, role creation, etc can be carried out correctly. Technical testers also need to validate that the ERP application can correctly produce reports. Much like the functional testers the technical testers need to document their test artifacts.

Core Automators. The core automators are specialized testers that have in depth knowledge of the automated test tools. The core automators create automated test scripts for regression testing, security testing, functional testing, integration testing, performance testing, stress testing, volume testing, positive testing, and string testing. The core automators also administer the automated test tools, provide customizations for the test tools, support any questions that arise out of the use of the test tools, and upgrade and install the test tools as needed.

What is tested?

ERP systems are abstruse, esoteric, complex applications that may need to be linked to other legacy systems, third party tools (such as forecasting software), and possibly to other CRM/ERP systems. Every project has an ERP implementation that makes it unique from ERP implementation at other projects. There are a plethora of permutations for configuring, customizing, and integrating an ERP solution. The catalyst or driver for customizing, configuring, and integrating an ERP solution should be the company specific requirements, business scenarios and business needs.

As an ERP consultant I have seen companies implement SAP R/3(ERP solution as the back end solution for the CRM solution from Siebel systems. I have also witnessed companies that have exchanged data from one ERP solution (SAP R/3(to another ERP solution (Peoplesoft() with the help of connectors from third party vendors. I can recall another client of mine that went to great lengths and efforts to integrate its ERP solution (SAP R/3() with its in-house developed bar coding software. Other companies that I have worked with have SAP R/3(installed on the desktop as a GUI application that is invoked from the desktop where other companies have SAP R/3(running strictly as web-enabled solutions invoked from a browser. To be succinct companies can tailor their ERP solutions in a variety of ways.

A practical approach to testing an ERP application is to divide the testing activities into functional, technical, security components and architecture components.

For the functional components testing activities one is concerned with the ERP’s ability to meet a company’s business processes, business requirements, and business scenarios through its functionality. One determines that the ERP solution is correctly configured and customized by executing a series of unit, string, functional, regression, integration and path tests. One can execute these various tests after having carefully designed a set of test cases, test scenarios, test sets and test scripts with valid data to test the ERP solution. The reader should note that unlike in-house custom developed applications, functionality that the ERP vendor delivers automatically out of the box and that is NOT altered by the company’s development team may not need to be tested for unit testing, and boundary testing. The main objective is to test functionality that has been altered and configured to specifically meet the company’s business requirements, and business needs. The functional testing activities verify and validate that the core ERP solution meets its intended functional requirements.

For the technical components testing activities one is concerned with testing the interfaces and conversions sending data inbound or outbound to the ERP system. The interfaces and conversions programs may need to undergo code walkthroughs, Fagan inspections, unit testing, black box and white box testing, etc. Other technical aspects of technical testing activities include the testing of: batch scheduled jobs, stored procedures, performance, customized on-line and interactive reports, ad-hoc reports, customized queries, messaging queues (i.e. an event triggers one message requesting a specific action, workflow), and business intelligence tools. The reader should be aware that before initiating many testing activities data expected to come from the interfaces and conversions programs may have to be pre-loaded into a test environment. Technical testing may require the testers to examine if the legacy systems are receiving correctly outbound ERP data, that data is correctly extracted, transformed and loaded, and that the scheduled jobs are correctly built to do tasks such as archiving data with time stamps, appending data, sending flat files to the correct destination, etc.

For the security components testing activities one is concerned with ensuring that users have the correct access levels to prevent these users from hacking and breaching the ERP’s infrastructure. Some of the key tasks associated with security testing are: encryption of data, segregation of duties (i.e. one employee creates a Purchase Order, another employee approves the Purchase order, and another employee submits the Purchase Order), profile testing, roles testing, user status, naming conventions, external vendor access, password formats, audit logs, assignment of authorization levels to user, etc. In ERP systems access to data and manipulation of data need to be carefully controlled and tested. For example a clerk entering sales orders should not have the rights and permission to view payroll data or employee’s salaries. In yet another example if working with the human resources solution of an ERP system an employee should not have the rights to approve his/her own performance appraisal or timesheet. In essence the ERP solution once configured, customized and integrated with third party tools or legacy systems should have robust and stringent security measures to prevent unauthorized end users from abusing or breaching their roles within the ERP application.

For the architecture components testing activities the ERP application is tested to ensure that is works as an enterprise system capable of sending and receiving data from the various legacy systems and applications that it’s integrated with.

ERP Test Scenarios

Within ERP applications like SAP R/3(tasks and business processes are executed as business scenarios that encompass more than one transaction within one or more modules. In SAP R/3(and other ERP applications one encounters solutions (modules) for multiple processes such as human resources, finance, accounting, inventory management, sales and distribution, management of materials, planning, forecasting, etc where these modules are closely intertwined or integrated. An ERP tester needs to be familiar with how the project is executing business scenarios based on requirements, or company specific business processes.

Many SAP R/3(projects that I consulted for have teams (i.e. order-to-cash team, request-to-payment team, purchase-to-pay team, warehouse management team, etc) that emulate the flow process of business scenarios within SAP R/3(. In SAP R/3(a given business scenario may span and cut across multiple SAP R/3(modules. For instance an SAP R/3(end user may initiate a business process starting within the finance module and complete the business process with transactions from the controlling module and the sales and distribution module. In practical terms the completion of a business process within an ERP package such as SAP R/3(might necessitate the completion of tasks or transactions within multiple modules that subsequently result in the creation of a business scenario.

Since ERP packages are scenario driven for the completion of business processes a logical, comprehensive and sensible approach for functional testing of an ERP application such as SAP R/3(is with test scenarios. Test scenarios are developed, tested and executed with test sets.

Test sets are the collection of test cases and test scripts that logically lead to the execution of test scenario. An example of a test set would be the creation of a sales order with an invoice, delivery and shipment under this test scenario the testing team would collect or group together all the necessary transactions, test scripts, and test cases with the proper sequencing and data under one test set to create a sales order with an invoice, delivery, and shipment. The tester would then proceed to automate all the test scripts that when properly combined would lead to creation of a sales order with an invoice, delivery and shipment.

For ERP projects I’d recommend the use of third party tools that facilitate and automate the creation of test scenarios. Companies that offer solutions for automating SAP R/3(business processes are Intellicorp(and Insite(. Insite (www.insiteobjects.com) offers the RESITE Publisher(solution and Intellicorp((www.intellicorp.com) offers the Livemodel(solution for capturing and documenting business processes out of SAP R/3(automatically that can serve as test scripts. For more information on these two products please visit the vendors’ website.

Sequencing

For ERP applications it is necessary to sequence how the test cases will be executed, with the understanding that test cases are collected into logical processes to create a test set. A test set might have a plurality of test scripts that need to be executed in a logical sequence to execute a business process within an ERP application. The test scripts may also include dependencies for instance: Execute test script C only after test script D has successfully completed execution. It is imperative that the sequencing and scheduling of test scripts be correctly identified before the test execution phase begins.

QA Environment

The test manager should strive to obtain a dedicated test environment within the client landscape to conduct the necessary testing activities. Some projects I have worked with have the developers and programmers perform the initial tests such as string, boundary and unit tests in the development environment and then the QA team performs the subsequent tests such as integration, regression, stress, etc in a different test environment.

In contrast to the approach where you have testing conducted in 2 or more environments I have also seen some projects where they conduct all of their ERP testing in a single QA environment. Whatever approaches your project uses the testing team or QA team should have an established environment for testing. The test or QA environment should be production-like and have a copy of the production data. The test scripts should be documented, revised, automated, and executed within the QA or test environment.

For SAP R/3(projects the test or QA manager should work with the Basis (WAS) group to obtain a QA environment where all the system’s functionality, security, performance, interfaces, etc are tested before deploying the application under test into production.

ERP Client Landscape

Testers need to understand exactly what environments are suitable for testing and the naming conventions for the various environments. In the case of SAP R/3(environments are specified with a client and instance. Below I offer an illustration of how the concept of ERP client landscape functions within SAP R/3(.

The middleware engineers known as the Basis (or WAS) group in the SAP R/3(jargon might partition SAP R/3(into various environments or instances such as Production, Pre-Production, QA, Training, Development, etc and within each environment or instance it’s possible to have multiple clients designated with a 3-digit character. So as an example itg-130, denotes the client (130) and the instance itg where itg is an abbreviation for integration. SAP R/3(testers should know all of the projects’ instances and clients and how theses instances and corresponding client numbers will be used within the project.

With the aid of an ERP client landscape the testers can correctly ascertain what environments are appropriate for testing, training, development, etc. As mentioned, the test manager should work with the Basis group in an SAP R/3(implementation to obtain a client landscape.

 List of Automated test tools

The following vendors below have automated test solutions that are compatible with SAP R/3(. The reader should also keep in mind that SAP R/3(has an internal utility CATT (e-CATT) for automating processes. The tools below have unique advantages for instance one of the automated test tools has the ability to run in background, foreground, and batch mode. Another one of the test tools below integrates with SAP R/3(’s CATT solution.

I have seen companies purchase a mixture of these automated testing tools to meet their various testing needs for SAP R/3(and legacy applications integrated with SAP R/3(.

	Vendor
	Product(s)
	Website

	Mercury Interactive(
	Test Director(, Quicktest Professional(, Quicktest(for SAP R/3(, Loadrunner(
	www.mercuryinteractive.com

	Arsin Corporation(
	Effecta(
	www.arsin.com

	Autotester(
	Autotester One(, Autocontroller(
	www.autotester.com

	Compuware(
	QARun(, QALoad, TestPartner(, File-AID/Express(, DBA-XPERT for DB2(, QAHiperstation(, QACenter(, QACenter Performance Edition(, ServerVantage(, Uniface(
	www.compuware.com

	Segue(
	Silktest(
	www.segue.com

	Rational(
	Clearcase(, Rational Suite(TestStudio(, Clearquest(, TestManager(, ReqPro(
	www.rational.com

In addition to facilitating the testing of the ERP application, automated test tools can provide these benefits to the project: ad-hoc data loads, storage of test results (for audits), and as a library of test scripts.

I have written many automated scripts to perform ad-hoc data loads into SAP R/3(. I can recall several instances where I wrote automated test scripts to load data into the training environment for training of end users. I also wrote test scripts to perform one-time jobs for loading pay scales, vendors, user’s roles, material creation, and profile generation. These ad-hoc data loads were not testing the ERP application but rather loading thousands of records into SAP R/3(, which saved enormous amounts of time over the development of programs to load the data into SAP R/3(. On average it took me 4 hours to create each test script to perform ad-hoc data loads where the coding and development of a program to load the same ad-hoc data would have taken 3 to 4 days.

 I have also been in many projects where test results are audited for compliance with the project’s policies and QA standards, and also to meet legal regulations. Many vendors of automated test tools offer test management solutions where test results can easily be stored after the execution of the test procedures and test scripts. The automated test management solutions offer a viable means for storing test results electronically with a time and date stamp as opposed to creating screen shot print outs of the test results and manually storing these hard copies in file cabinets.

Another salient benefit of working with automated testing tools is that after many releases of the ERP system and testing phases the testing team will have a library of automated test scripts. I have been in projects where they had repositories of test scripts with thousands of automated test scripts for every business process. These automated test scripts followed strict naming standards and had version control, which helped to identify them for future testing releases. Some of the testing scripts that were data driven could be re-executed without any modifications.

Methods for test script automation

Many ERP test managers or QA managers have sundry approaches for automating test scripts. Some test managers have the functional testers document in detail the test scripts to a level of detail where the test script is self-explanatory and contain instructions for a person inexperienced with the ERP system to read the test steps within the test script and understand the test steps that are necessary to execute a business process within the ERP system (i.e. create a contract, create a scheduling agreement, create a pay scale, etc).

Other test managers implement some ad-hoc approaches for developing automated test scripts without actually documenting the test steps within the test script.

I have a strong predilection and often urge my clients to fully document the test scripts with test steps that have valid data, expected results, expected output, and instructions for validating verification points within the business process. I consistently find and contend that there is no substitute for a test script containing test steps that are well written in coherent English containing the necessary information to execute the test step with its expected result. The reader should note that a documented test script should support and correspond to a requirement, or a test scenario, or a business process.

The reader should decide which method best fits him/her based on his/her IT environment and ERP application. The chosen method should be consistent and repeatable and be widely accepted by the testers within the testing team or QA team.

I described below some of the processes that I have seen at various ERP projects for developing automated test scripts.

1) Video Tape of Business Process or Test Scenario

I can recall some ERP projects that I consulted for where the subject matter experts (SME) and ERP functional experts recorded a business process with the Lotus Screen Cam utility. The recorded process is a video recording of the keystrokes that the functional tester or SME made and plays back like a movie. The SMEs and ERP functional experts capture a business process with the Lotus Screen Cam utility and send the videotaped business process to the technical tester (core automator) for automation.

The reader should note that a video taped business process with Lotus Screen Cam is not the same as a recorded test script with an automated test tool since the Lotus Screen Cam plays back as a video movie and does not affect the application under test during playback.

The Lotus Screen Cam is similar to a videotaped training guide and the videotaped business process assists the technical tester in comprehending the specific test scenarios and test steps for the application under test that need to be automated with an automated testing tool. The Lotus Screen Cam recorded processes can also be recorded with voice to demonstrate to the testers how to perform complex tasks with voice commands.

To learn more about the Lotus Screen Cam and to download the software please visit the website below:

www.lotus.com/products/screencam.nsf
2) Shared Sessions – Emulated Environments
Another method for recording test scripts when there is no test script documentation is to work directly with the ERP functional experts via emulated desktop sessions. One can emulate another user’s desktop session with software such as PCAnywhere(, Netmeeting(, Webex(, or Citrix(.

Under this approach the ERP functional expert shows the technical tester directly on the tester’s PC through an emulated session how to navigate the business process, what fields to populate, what data to use, and how to execute the entire business process or test scenario. After seeing the emulated test steps the tester can thus begin to automate the test script and should the tester encounter any problems during the test script automation he/she can initiate another emulated session with the ERP functional expert to demonstrate the problem.

Emulated sessions are useful for testing ERP systems when you have global ERP implementations and you have the tester and the functional expert in different work locations.

As an example I was able to automate many ERP processes related to inventory management, goods receipt, shipping and invoicing with the help of a remote ERP functional expert who was working from Europe whereas I was working from the States. The ERP functional expert and I used PCAnywhere where the European ERP functional expert emulated a virtual session on my desktop and was able to show me exactly how to execute the test steps for the test scripts in question that needed automation.

3) Detailed Test Script Documentation

As previously mentioned this is de rigueur, most viable and optimal method for automating test scripts. Many companies fail to properly document their test scripts because: 1. They have unrealistic schedules and time frames for the various testing phases, 2. Testing is not a top priority, 3. The testing team does not have enough resources, or 4. The subject matter experts or ERP functional experts are dedicated exclusively to configuring and customizing the ERP application.

Whatever the pretext or excuse is for not documenting a test script, the fact remains that documenting a test script is the most efficient method that serves as the input for the creation of automation of a test script. The detailed test script should contain at the very least a description of the business process to be tested, pre-conditions and post conditions for executing the test script, expected results, valid data, verification points, traceability to a requirement or test scenario, information for correlating processes, etc. The documented test script should be unequivocal, self explanatory, and pre-validated before actual test script automation begins.

Documenting test script also helps for closing defects when a developer or programmer is unsure as to what steps the tester took to execute a business process and open a defect against the executed business process. With fully documented test scripts the programmers and developers can re-trace all the test steps that the tester executed that led to the identification and reporting of a defect.

4) Working side by side with the functional ERP expert

This method is the second preferred alternative to having fully documented test scripts.

With this approach the tester who has in depth knowledge of the automated testing tool sits next to the functional or ERP expert to automate the test script. The functional or ERP expert in essence instructs the tester orally on a step-by-step basis on how to execute a business process and test step within the ERP application. The tester has the “record button” turned on in the automated testing tool as the business processes is being executed with the assistance of the functional or ERP expert.

Every time the functional or ERP expert instructs the tester to execute a test step with the ERP application the test step is recorded until a full business process is automated with the test tool. After the entire test steps are recorded for the test script, the tester proceeds to playback the test script, embed programming logic within the automated script (adds verification points, loops, error handling, parameterizations, etc), and troubleshoots the test script until it is fully robust.

Unfortunately, many business process team leads are hesitant or unwilling to assign functional experts and ERP functional experts for protracted periods of times to help the testing team automate the test scripts. The test manager should work closely with the process owner leads in order to get the testers the necessary level of support and cooperation from the subject matter experts or ERP functional experts.

Tool Resistance

Some project members initially resist automated test tools, and do not see the benefit of test tools at all. In some of the projects that I have consulted for where the project members resisted the automated test tools, the project members have created the testing artifacts such as the test cases, test scripts, test scenarios, etc in a word processor as opposed to entering the testing artifacts directly within the test management automated tool. Other project members find it tedious to document test scripts and test results or to assist technical testers with functional knowledge in automating a test script. I have also witnessed projects where the test members are considered a “nuisance” to the developers and programmers and consequently the association of a tester being a “nuisance” is also propagated to the automated testing tools.

Whatever the cause might be for the automated test tool resistance the project’s quality assurance team and QA manager carry the burden of demonstrating through presentations and kick-off meetings the value of the automated test tools. The project members need to be indoctrinated and acquainted with the benefits of the test tools. Unfortunately, at some projects the politics relegate the testing team members to “second-class citizens” and this notion is hard to overcome. The QA manager and QA team need to effectively demonstrate how the test tools facilitate the testing activities and educate the project members on how to work effectively with test tools for test management, and defect reporting in order to gain the maximum benefit from the automated test tools.

Test Data –

Data for the test scripts is one of the most important ingredients for successfully testing an ERP application such as SAP R/3(. Properly identifying data for test scripts is so important that I have seen many testing efforts come to a complete halt because the testers failed to identify the various data combinations, dependencies, constraints, requirements that are necessary for testing their ERP application.

For an ERP application the following data types are available: transactional, test, configuration, master, training, legacy data, converted data and production data. The testing team members should discern the differences between all the different types of data and the sources of data for their ERP implementation. In the next paragraph I describe the potential sources of data for an ERP implementation.

In an ERP application data for a given environment might come from interface programs, conversion programs, manually inserted by the end user (i.e an end user might create a material), from automated test scripts (ad-hoc data loads), or be entirely copied from another environment.

In many cases the test team creates a test script with sets of data from one environment such as the development environment, and the technical tester proceeds to automate the test script with the identified test data in the development environment. However, during the testing execution phase the test scripts are played back in a test environment where the test data is not congruent with the development data parameterized in the test scripts and this creates problems for script playback. The technical tester then needs to spend much time working with the functional testers or ERP functional experts trying to determine what are the valid sets of data in the test environment that will permit correct playback for the data driven automated test scripts.

In order to mitigate problems associated with data driven scripts I’d suggest that the test team has a strategy in place for a QA or test environment where scripts are created and played back. The test team should have complete ownership of the test environment and the data that is loaded within this environment. A logical approach would be to have data in the test environment that closely parallels the production data and that the data is loaded into the test environment in the same fashion as it is loaded into the production environment.

The testers need to understand all the data constraints and requirements for their project and what all the data dependencies are for the project’s business processes and test scenarios. The testers will have to identify all the interfaces and conversion programs that are the sources of data for the production environment. I have worked with projects that have had more than 100 interfaces program loading inbound data from a myriad of legacy applications. Once the testers have a grasp of the data sources and data types for their project then they can start identifying within the test scenarios and test cases what data sets are necessary for the test execution phase. In my experience test teams need to identify data several weeks before the test execution phase begins so that the technical testers (core automators) have a sufficient time window to create and debug the data driven automated test scripts.

Transporting objects

The test manager and the deployment manager carefully need to assess how objects will be transported into the production environment. In particular test managers and deployment managers need to develop a criteria, priority, frequency, and check list of activities that need to be accomplished before a particular object or fix is moved into the production environment once that object has been fixed and re-tested during a testing phase (i.e. regression testing).

Some projects that I have consulted for specify the frequency with which objects will be moved into production (i.e. once a week, daily, etc), the various levels of sign-offs and approvals that are necessary to move an object or fix into the production environment, and the group that is permitted to move the objects into the production environment.

Moving objects and fixes into a production environment is a delicate and sensitive process since ERP applications operate in conjunction and in parallel with other mission critical applications in the production environment and the introduction of a new change in the ERP production environment might have a rippled and cascading effect onto other production applications that could adversely affect the production end users.

Acceptance of the ERP Application

Corporations implementing ERP solutions typically hire implementation partners for the customization, configuring, and integration of the ERP solution. After the ERP solution is deployed to the production environment the corporation’s end users will interact directly with the ERP solution, but before the ERP solution is deployed to production two critical testing phases need to occur which are the end user’s acceptance test and the customer’s acceptance test. These tests are independent tests of the system from the end user’s and customer’s perspective to help assure that the ERP solution meets all the necessary functionality before it is deployed.

During the end users acceptance test, the expected production end users for the ERP application come to the site where the ERP application is being customized and test the application with a criteria that is similar to that one which the testing team employed or with test cases and test sets that may vary from those that the testing team created. In any event the testing team helps to facilitate the end user’s acceptance test phase and provide any necessary assistance to the end users that is necessary for logging defects. The reader should note that end users might not have any experience with the project’s testing procedures, testing standards, automated testing tools for logging defects and storing test results, etc and that the project’s testing team should assist the end users with these matters.

After the end user’s have thoroughly tested the application, which serves the objective of an independent test since the end users did not customize the application or initially test the application, the next testing phase is the customer acceptance test. The customer will own the application once it is deployed into production whereas the end users will interact with the application one it is deployed into production. During the customer’s acceptance test a checklist is created to determine the ERP ability solution’s to meet all of the customer’s needs and requirements. The customer verified and validates the success of the end user’s acceptance test and that all defects have been successfully re-tested and closed. A “go/no go decision” ensues after the customer’s acceptance test to determine whether the ERP application will be deployed into production.

Cut-Over, Deployment (Go Live)

After the ERP application is deployed into the production environment the system goes live and the end users will work with the new changes in the production environment for the first time. The testing team needs to coordinate with the deployment manager how production support and maintenance support will be coordinated. The testing team and the deployment manager may need to allocate 24*7 hours of support for the production end users and set up a dedicated support hot line for any problems initially encountered during go-live phase. The test manager and the deployment manager will need to schedule and appoint dedicated resources for a period of 2-3 weeks to support all production activities, and how the problems encountered in production will be handled, fixed, re-tested, and subsequently transported to the production environment.

Jose Fajardo Page 17 of 17 Email: Fajardo@seas.upenn.edu

