Simple SST Unhooker

Written by:
Victor Milokum,

Development Leader of Network Security Team,

Apriorit Inc.

www.apriorit.com
1. SST: references

2. Algorithm

3. Memory mapped files

4. Implementation

5. Demonstration
6. How to build

1. SST: references

This article is a logical continuation to the article "Driver to Hide Processes and Files" by Ivan Romananko.
You can find all necessary information about System Service Table (SST) and its hooking in it.

In this article I would like to present how to write your own unhooker that will restore original SST hooked by Ivan.

2. Algorithm

My goal is to write a simple driver for SST hooking detection and removing purposes.

This means that our driver should not use various Zw-functions and SST table because I suppose that SST table is corrupted by unknown rootkits.

I do not care about filter drivers and function code splicers for now, but maybe I will come back to them in future.

The simplest way to detect and remove hooks is to compare SST that is placed in memory with the initial SST from ntoskernel.exe file.

So the goal is:

1) to find ntoskernel module in memory;

2) to find the section of ntoskernel where SST is placed and to calculate relative offset of SST in the section;

3) to find this section in the ntoskernel.exe file;

4) to calculate real address of SST in the file;

5) to read values from the file and to compare them with SST.

But before the implementation I would like to present some additional information.
3. Memory mapped files in kernel mode

"A memory-mapped file is a segment of virtual memory which has been assigned a direct byte-for-byte correlation with some portion of a file or file-like resource". (c) Wiki

Yeah, we want to parse the PE file and memory mapped files are very useful for this task.

And it is easy enough to use mapped files API from the kernel mode, because it is very similar to Win32 API.

Instead of CreateFileMapping and MapViewOfSection functions in kernel mode driver should access

NTSTATUS

 ZwCreateSection(

 OUT PHANDLE SectionHandle,

 IN ACCESS_MASK DesiredAccess,

 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

 IN PLARGE_INTEGER MaximumSize OPTIONAL,

 IN ULONG SectionPageProtection,

 IN ULONG AllocationAttributes,

 IN HANDLE FileHandle OPTIONAL

);

and

NTSTATUS

 ZwMapViewOfSection(

 IN HANDLE SectionHandle,

 IN HANDLE ProcessHandle,

 IN OUT PVOID *BaseAddress,

 IN ULONG_PTR ZeroBits,

 IN SIZE_T CommitSize,

 IN OUT PLARGE_INTEGER SectionOffset OPTIONAL,

 IN OUT PSIZE_T ViewSize,

 IN SECTION_INHERIT InheritDisposition,

 IN ULONG AllocationType,

 IN ULONG Win32Protect

);

functions.

But if we use these functions we will break our own rule not to use SST.

Also, it is good for antirootkit to use extremely low level functions in the hope of being invisible to the possible rootkits.

With regard to this we can use undocumented functions of Memory Manager (Mm), of course at our own risk:

NTSTATUS

MmCreateSection (

 OUT PVOID *SectionObject,

 IN ACCESS_MASK DesiredAccess,

 IN POBJECT_ATTRIBUTES ObjectAttributes OPTIONAL,

 IN PLARGE_INTEGER MaximumSize,

 IN ULONG SectionPageProtection,

 IN ULONG AllocationAttributes,

 IN HANDLE FileHandle OPTIONAL,

 IN PFILE_OBJECT File OPTIONAL

);

NTSTATUS

MmMapViewOfSection(

 IN PVOID SectionToMap,

 IN PEPROCESS Process,

 IN OUT PVOID *CapturedBase,

 IN ULONG_PTR ZeroBits,

 IN SIZE_T CommitSize,

 IN OUT PLARGE_INTEGER SectionOffset,

 IN OUT PSIZE_T CapturedViewSize,

 IN SECTION_INHERIT InheritDisposition,

 IN ULONG AllocationType,

 IN ULONG Protect

);

NTSTATUS

MmUnmapViewOfSection(

 IN PEPROCESS Process,

 IN PVOID BaseAddress

);

NTSTATUS drv_MapAllFileEx(HANDLE hFile OPTIONAL,

 drv_MappedFile * pMappedFile,

 LARGE_INTEGER * pFileSize,

 ULONG Protect)

{

 NTSTATUS status = STATUS_SUCCESS;

 PVOID section = 0;

 PCHAR pData=0;

 LARGE_INTEGER offset;

 offset.QuadPart = 0;

 // check zero results

 if (!pFileSize->QuadPart)

 goto calc_exit;

 status = MmCreateSection (§ion,

 SECTION_MAP_READ,

 0, // OBJECT ATTRIBUTES

 pFileSize, // MAXIMUM SIZE

 Protect,

 0x8000000,

 hFile,

 0

);

 if (status!= STATUS_SUCCESS)

 goto calc_exit;

 status = MmMapViewOfSection(section,

 PsGetCurrentProcess(),

 (PVOID*)&pData,

 0,

 0,

 &offset,

 &pFileSize->LowPart,

 ViewUnmap,

 0,

 Protect);

 if (status!= STATUS_SUCCESS)

 goto calc_exit;

calc_exit:

 if (NT_SUCCESS(status))

 {

 pMappedFile->fileSize.QuadPart = pFileSize->QuadPart;

 pMappedFile->pData = pData;

 pMappedFile->section = section;

 }

 else

 {

 if (pData)

 MmUnmapViewOfSection(PsGetCurrentProcess(),

 pData);

 if (section)

 {

 ObMakeTemporaryObject(section);

 ObDereferenceObject(section);

 }

 }

 return status;

}

This example demonstrates an alternative approach to the usage of mapped files through MmCreateSection/MmMapViewOfSection functions.

The presented approach is pretty good because it doesn’t utilize Zw* functions and even handles at all, but it has one restriction.

If you start this sample from DriverEntry it will work fine, but if you start it from the IRP_MJ_DEVICE_CONTROL handler you will see that MmCreateSection function fails with STATUS_ACCESS_DENIED. Why?

The answer is: Zw* functions do one good thing - they set previous mode to KernelMode and this allows to utilize kernel mode pointers and handles as parameters for them (for more information see Nt vs. Zw - Clearing Confusion On The Native API article)
So, the presented above function can be called only from DriverEntry or from the system thread.

4. Algorithm implementation

I designed the following structure to save all ntoskernel parsing results:

#define IMAGE_SIZEOF_SHORT_NAME 8

typedef struct _Drv_VirginityContext

{
 drv_MappedFile m_mapped;

 HANDLE m_hFile;

 UCHAR m_SectionName[IMAGE_SIZEOF_SHORT_NAME+1];

 ULONG m_sstOffsetInSection;

 char * m_mappedSST;

 ULONG m_imageBase;

 char * m_pSectionStart;

 char * m_pMappedSectionStart;

 char * m_pLoadedNtAddress;

}Drv_VirginityContext;

And I implemented the chosen algorithm as follows:

static NTSTATUS ResolveSST(Drv_VirginityContext * pContext,
 SYSTEM_MODULE * pNtOsInfo)

{

 PIMAGE_SECTION_HEADER pSection = 0;

 PIMAGE_SECTION_HEADER pMappedSection = 0;

 NTSTATUS status = 0;

 PNTPROC pStartSST = KeServiceDescriptorTable->ntoskrnl.ServiceTable;

 char * pSectionStart = 0;

 char * pMappedSectionStart = 0;

 // Drv_ResolveSectionAddress function detects
 // to which section pStartSST belongs

 // pSection will contain the section of ntoskernel.exe that contains SST

 pContext->m_pLoadedNtAddress = (char*)pNtOsInfo->pAddress;

 status = Drv_ResolveSectionAddress(pNtOsInfo->pAddress, pStartSST, &pSection);

 if (!NT_SUCCESS(status))

 goto clean;

 // save section name to context

 memcpy(pContext->m_SectionName, pSection->Name, IMAGE_SIZEOF_SHORT_NAME);

 // calculate m_sstOffsetInSection - offset of SST in section

 pSectionStart = (char *)pNtOsInfo->pAddress + pSection->VirtualAddress;

 pContext->m_sstOffsetInSection = (char*)pStartSST - pSectionStart;

 // find section in mapped file - on disk!

 status = Drv_FindSection(pContext->m_mapped.pData,
 pSection->Name,
 &pMappedSection);

 if (!NT_SUCCESS(status))

 goto clean;

 pMappedSectionStart = (char *)pContext->m_mapped.pData +
 pMappedSection->PointerToRawData;

 pContext->m_mappedSST = pMappedSectionStart + pContext->m_sstOffsetInSection;

 { // don’t forget to save ImageBase

 PIMAGE_DOS_HEADER dosHeader =
 (PIMAGE_DOS_HEADER)pContext->m_mapped.pData;

 PIMAGE_NT_HEADERS pNTHeader =
 (PIMAGE_NT_HEADERS)((char*)dosHeader + dosHeader->e_lfanew);

 pContext->m_imageBase = pNTHeader->OptionalHeader.ImageBase;

 }

 pContext->m_pSectionStart = pSectionStart;

 pContext->m_pMappedSectionStart = pMappedSectionStart;

clean:

 return status;

}

And here is the function that returns real value of SST:

void Drv_GetRealSSTValue(Drv_VirginityContext * pContext, long index, void ** ppValue)

{

 char * pSST = pContext->m_mappedSST;

 ULONG * pValue = ((ULONG *) pSST) + index;

 // now pValue points to the mapped SST entry

 // but entry contains offset from the beginning of ntoskernel file,
 // so correct it

 ppValue = (void)(*pValue + (ULONG)pContext->m_pLoadedNtAddress –
 pContext->m_imageBase);

}

After that it is quite simple to implement main functionality:

virtual NTSTATUS ExecuteReal()

{

 CAutoVirginity initer;

 NT_CHECK(initer.Init(&m_virginityContext));

 // now we are ready to scan :)

 for(int i = 0, sstSize = Drv_GetSizeOfNtosSST();

 i < sstSize;

 ++i)

 {

 void ** pCurrentHandler = Drv_GetNtosSSTEntry(i);

 void * pRealHandler = 0;

 Drv_GetRealSSTValue(&m_virginityContext, i, &pRealHandler);

 if (pRealHandler != *pCurrentHandler)

 {

 // oops, we found the difference!

 // unhook this entry

 Drv_HookSST(pCurrentHandler, pRealHandler);

 }

 }

 return NT_OK;

}

This tiny cycle completely removes all SST hooks and brings SST to its initial state.
6. Demonstration
For testing purposes I developed simple console utility named “unhooker.exe”.

This utility can be started without parameters; in this case it shows information about its abilities:

1) “stat” command shows statistics about SST hooking;
2) “unhook” command cleans SST;

This sample demonstrates how to use utility to detect and erase hooks:

[image: image1.png]e =181]

(=] 5]

12/2009 1201PM A
8/12/2009 1201PM A

Diiver Installation
Diiver Path [CADriverD eviHideDriver sys. J

Diiver Name [FigeDver

5| | Statuptvpe [SERVICE_DEMAND_START ~

Status Started

e | i | 00

B
J§icrosoft Vindous [Uersion 5.2.37901
<C> Copyright 1985-2083 Microseft Corp.
B c:\Docunents and Settings\Adninistratorded \

B unnookes
flusage: Lstat Tunhookl

stat
SST IS PATCHED!
s modified

D
0080897 module: ver.sys module address: FHSF5888 hooked address: FhSfa9dc
B00BBLS module: HideDriverlsys module address: FbSFS0BD hooked address: FhSEb6cd

C:\>unhooker.exe unhook
Success

[Recult: SST is clean

(B crwmwowsrmen] o

Have fun!

6. How to build

Build steps are the same as in the “Hide Driver” article.

They are:
1. Install Windows Driver Developer Kit 2003

http://www.microsoft.com/whdc/devtools/ddk/default.mspx

2. Set global environment variable "BASEDIR" to path of installed DDK.

Computer -> Properties -> Advanced -> Environment variables ->System Variables -> New

Like this: BASEDIR -> c:\winddk\3790

 (You have to restart your computer after this.)

If you choose Visual Studio 2003, then you can simply open UnhookerMain.sln and build all.

