
www.hssworld.com E-mail: info@hssworld.com

May 2001

WHITE PAPER

 Software Tool for
STATE

 Automated Test Environment.

STATE - Software Tool for Automated Test Environment.

2

COPYRIGHT INFORMATION

© Copyright Hughes Software Systems, 2001

All information included in this document is under a licence agreement. This publication and its contents
are proprietary to Hughes Software Systems. No part of this publication may be reproduced in any form or
by any means without the written permission of

Hughes Software Systems
Plot 31, Electronic City,
Sector 18, Gurgaon 122 015, INDIA
Tel: +91-124-6346666, 6455555
Fax: +91-124-6455150, 6455155
Website: www.hssworld.com
E-mail: info@hssworld.com

TRADEMARKS

All the brand names and other products or services mentioned in this document are identified by the
trademarks or service marks of their respective owners.

DISCLAIMER

The information in this document is subject to change without notice and should not be construed as
commitment by Hughes Software Systems. Hughes Software Systems assumes no responsibility or
makes no warranties for any errors that may appear in this document and disclaims any implied warranty
of merchantability or fitness for a particular purpose.

3

C o n t e nt s

I n t r o d u c t i o n 4
Protocol / Stack Basics 4
Protocol Conformance 5
Challenges before the Test Manager 5

STA TE 6
Overview 6
Features 7
Architecture 7
Phases of Testing 9
Benefits of STATE 10
Conclusion 11

STATE - Software Tool for Automated Test Environment.

4

Introduction

Software testing is an integral, costly and time-

consuming activity in the software development life
cycle. Since testing involves running the system under

test under variety of configuration and circumstances,

automation of testing activities is a potential source of
saving in testing process.

Testing a complex system (like UMTS, GPRS,
SoftSwitch) calls for sophisticated test tools that are

required at almost every phase of the testing.

Development of such tools requires time & effort. This
calls for a need to have a generic test framework,

which can be adapted to perform in diverse scenarios,

test the item to the maximum possible extent and
provide performance and capability comparable to the

standard test tools (e.g. K1297, MGTS (Tekelec),

EAST (IPNetFusion) etc). Requirement of a generic
test framework becomes more crucial if the

interfaces/protocols are non-standards.

The purpose of this paper is to describe Software

Tool for Automated Test Environment (STATE) - HSS

Interface for Testing Systems. STATE is a Test and
Emulation platform for testing protocol

implementations. Intended audience of this paper

include Test Managers, Technical Leads, Developers
and Testers, who want to understand what STATE is

and how it can help them to simplify testing of

protocol implementations.

STATE provides a user-friendly test environment

for developing and executing Test Scripts to test
protocol implementations. The user can execute Test

Suites for various protocols on STATE platform and

verify protocol implementations. STATE is a cost
effective Solution that caters to a user’s protocol

testing needs whether it is Unit Testing, Integration

Testing or System Testing.

The first section in this paper is a refresher on

the key concepts and Terminology of Protocol testing.

STATE Solution and how it can be used to meet user
protocol testing needs forms the subject of the second

section. Benefits of STATE are also explained in this

section.

Protocol / Stack Basics
A communication protocol defines the rules for

sending blocks of messages (each known as a

Protocol Data Unit (PDU)) from one node in a network

to another node. In order to reduce the complexity of
the system, the rules are usually partitioned into

hierarchical structure of protocol layers. A protocol

specification defines the operation of the protocol and
its interfaces with the adjacent layers. It may also

suggest how the protocol should be implemented.

Protocol specifications are usually governed by
standards international bodies like European

Telecommunication Standards Institute (ETSI) and

International Telecommunication Union (ITU).

Protocol for each layer is concerned with

providing peer-to-peer service with the corresponding

layer at the other end of the path. Each layer uses the
services of the layers below it, by communicating via

a service interface as shown in Figure 1. During peer-

to-peer communication, information flows down
through lower layers in the same node, across the

communications path and up through layers in the

other node until it reaches the peer layer.

Boundaries between adjacent layers in the same

system are called Service interfaces. The service
interface is used to access services provided by a

lower layer to a higher layer (or vice versa) through

the use of service primitives. The point at which a
service is provided is called the Service Access Point

(SAP).

5

 Layer N-1

 Layer 1

 Layer 2

 Layer N

 Physical Medium

 Layer N-1

 Layer 1

 Layer 2

 Layer N

 Node A Node B
 Layer N peer

 protocol
 Lower SAP
 of

Layer N

 Upper SAP
 of

 Layer N-1

Protocol Layering

Point of Control and observation (PCO) is a point
at which the inputs of an Implementation under Test

(IUT) can be controlled and outputs observed.

Protocol Conformance
Protocol Conformance Testing is essentially a

Black Box Testing activity. In Black Box Testing, the
Tester is not aware of the internal details of the

implementation under Test (IUT) i.e. it is a Black Box

to the user. The response of the Black Box to various
kinds of stimuli are observed and verified against the

specifications.

Purpose of this testing is to rule out all protocol

issues. Protocol layers are tested thoroughly as per

the standard specification. Both positive and negative
scenarios are covered. Following scenarios are

covered as a part of conformance testing.

� Valid behavior tests: Pre-defined state transitions

are considered as valid. The test purposes in the

valid behavior test sub-group covers, as far as

reasonable, the verification of the normal and

exceptional procedures of the various Finite State

Machines (FSMs) of stack entities.

� Invalid behavior tests: This test sub-group is

intended to verify that the IUT (Implementation

Under Test) is able to react properly on receiving

an invalid Protocol Data Unit (PDU). This category

includes transfer syntax errors, abstract syntax

errors & logical errors.

� Inopportune behavior tests: This test group is

intended to verify that the IUT is able to react

properly in the case an inopportune protocol

event occurs. Such an event is syntactically

correct but occurs when it is not expected. An

example for this is when a correctly coded

operation is received in a wrong state (the IUT

may respond by sending error "unexpected

component sequence").

� Timer tests: Different timers and counters are

defined to supervise the various state transitions.

This test subgroup is intended to verify that the

Finite State Machine (FSM) is reacting properly to

an expiry of one of the timers or counter

mismatch.

Challenges before the Test Manager
� Cost and learning: : It is very essential that Unit

Testing, Integration Testing and System Testing

be performed before releasing the Protocol Stack

to the field. Considerable amount of time and

money is spent in procuring different types of test

equipment/tools for each one of the above-

mentioned testing. Training the test personnel to

handle these different types of test equipment is

also a significant effort. One of the challenges

that a test manager faces is to optimize on the

investment in terms of resources and have a

STATE - Software Tool for Automated Test Environment.

6

single cost effective tool for doing Unit,

Integration and System testing.

� Testing on non-target platform: Another

challenge faced by Test/Development team is to

do some amount of testing of the Protocol

Implementation before porting on to the Target

Hardware so that we get an early feel of the

implementation. In addition, in some cases it is

desirable to do testing of the protocol

implementation on the standard operating system

(Owing to the variety of tools available for

debugging etc) before it is cross-compiled for a

particular embedded platform. In these cases, the

test team adopts a Variant of normal System

testing. This involves testing of IUT on

development platform before porting it on the

Target Hardware.

� Changes in protocol specification: Protocols get

refined over a period of time and their

specifications undergo changes to cater to wide

variety of applications. Protocol testers also need

to adapt to these changes and perform testing

accordingly. For the System Testing team, this

means that the Test Suite needs to be upgraded

to cater to the changes in protocol specifications.

Vendors who had earlier supplied the test

equipment would now have to supply the Test

Suite upgrade for the next version of Protocol

Specifications. This could be an expensive and

time-consuming proposition for the test Team. In

this scenario, a simple, cost effective migration

path for the Test Suites to the next version of the

protocol specifications is something that has been

a challenge to the testers and developers. A

Testing Platform that aids in adding new Test

Cases easily and also allows a user develop them

in Open Scripting Language like TCL would be a

perfect combination to enhance the unit testing

effectiveness.

� Automation: Testing is a repetitive, time

consuming and tedious activity. To reduce the

testing time and keep the testers motivated, it is

necessary that testing activities are automated.

STATE
Overview

Software Tool for Automated Test Environment
(STATE) is a generic test tool designed to test any

protocol stack or product even at the stage of

development. It can simulate all the IPC mechanisms
of the Implementation Under Test (IUT) at upper,

lower, or peer layers.

STATE can test the behavior of IUT according to

pre-written Tool Command Language (TCL) based test

scripts based on the test plan. Inter-Process
Communication (IPC) between STATE and IUT is

preformed through message queues, Transmission

Control Protocol (TCP) Sockets, User Datagram Packet
(UDP) Sockets or Raw Sockets.

It is possible to send Protocol Data Units (PDUs)
to the IUT from the Upper Layer Simulator (Upper

Tester) and to receive and analyze the response from

IUT at the Lower Layer Simulator or Peer Simulator
(Lower Tester), and vice versa.

STATE distinguishes the Upper Tester, Lower

Layer Simulator, and Lower Tester, depending on the
respective interfaces with a logical name.

7

MQ/TCP
UDP/RAW

MQ/TCP

UDP/RAW

MQ/TCP
UDP/RAW

STATE
(Upper Layer

Simulator)

IUT
(Implementation

under Test)

STATE
(Lower Layer
Simulator)

STATE
(Peer

Simulator)

STATE Simulating Upper/Lower/Peer
Interfaces

STATE also supports functional interface to
enable calling functions through test scripts.

Features
STATE provides an aggregate of most of the

features provided by industry standard commercial

tool. Some of the important features of STATE are

listed below.

� Supports any Protocol & Message/Data format

� Useful for any stage of Testing

� Simulates Upper and Lower Layer

� Portable across widely used Platforms

� GUI as well as CLI mode

� On-line help

� Support for timers & time stamping

� Automatic Script Generation

� Standard Language for Scripting (TCL)

� Test Session/suite with conditional execution

� Interpretation of Test Verdicts

� Statistics with Graphical Presentation

� Supports TCP, UDP, Raw Socket and Message

Queue interfaces.

� Supports Multiple Interfaces

� Provision to integrate the stacks directly with the

STATE in case of functional interface.

� Supports Octal/Binary/ASCII/Structure formats

� Supports TLV,TV,LV,V data format

� Supports decimal and hexadecimal

presentation.

� Supports signed, unsigned and BCD

numbers.
� Supports all the basic data types, enums,

structures and unions.

� Supports little-endian and big-endian formats

� Support for default & range values

� Automatic generation of Dictionary file using

Stack Header file

� Automatic calculation of message length field

� Extraction of a parameter from an incoming

message and filling in an outgoing message

� Calling of a user defined function from script.

� Calling of a Test Case(s) within a Test Case

� Embedding of APIs

Architecture
STATE provides a user friendly test environment

for development and execution of test scripts to test
the complete functionality of a protocol. Functional

overview of various components of STATE is described

in the figure below.

STATE - Software Tool for Automated Test Environment.

8

 Implementation

 Under
 Test

 STATE
 Backend

 Dictionary Resource

 Test
 Suite

 Test
 Script

 Logs
 Event

 Trace

 Help

Graphs

 TCP/UDP/

MQ/Raw

STATE Components

Dictionary: All the protocol specific information

(Headers/ APIs) is defined in the dictionary file.

Dictionary can be created manually through GUI.
STATE also provides a utility for automatic creation of

dictionary from stack header files. This utility is

extremely important when the size of the header files
is very large.

Resource File: IUT interfaces for Inter Processor
Communication (IPC) are defined in the resource file.

STATE supports UDP, TCP, Message Queue and Raw

Sockets for IPC.

Help: STATE has an extensive help utility to assist

the user in efficient use of STATE. Command line help
is available on-line. Complete User Manual is also

available on-line.

Test Script: STATE provides a simple procedure

for automatic creation of Test Scripts. All the protocol

information defined in the dictionary file is available in
GUI at the time of constructing test script. Test scripts

with default, minimum and maximum values of

various parameters (defined in the dictionary) can be

automatically created with a few selections in GUI.
Power of TCL language can be utilized to construct

complex scenarios.

Test Suite: Test Scripts can be arranged in the

Test Suite. These scripts can be executed any number

of times. It is also possible to set delays between the
execution of various scripts. Test suite becomes

extremely useful in Regression Testing.

Logs: All the information corresponding to test

case execution is captured in Log files. User can

control the amount of information to be logged by
appropriately selecting the log level. Logged

information can be subjected to second level of off-

line filtering for the purpose of viewing only the
relevant information.

Graphs: Important information like test cases
passed / failed, messages sent / received is displayed

graphical for easier analysis of results.

Event Trace: All the messages exchanged

between STATE and IUT is pictorially displayed

through the event trace functionality. This gives a
very clear graphical display of the test case execution.

9

Event Trace

Back End: All the modules described above are

front-end modules, which assist user in using STATE
in a more effective manner. These modules interact

with the back-end of STATE, which in turn

communicates, with IUT through any of the IPC
mechanism discussed before. However, user is

transparent to the functioning of back-end.

Phases of Testing
 Unit Testing (UT)

In this phase, individual units are tested

independently while the interfacing units are

simulated. Messages are injected at the upper / lower
SAPs and the responses are observed on the other

side. STATE supports both socket interface as well as

functional interface with IUT. In functional interface,
the functional unit to be tested is integrated with

STATE and a new STATE executable is created. This

way, the IUT itself becomes a part of STATE. This is a
unique feature of STATE and is very useful for Unit

Testing.

Sub System Integration (SSI)

The SSI focus is on integrating the units, which
are already unit tested, into a subsystem. The Overall

operation and flow within the subsystem is verified

along with the sub-system functions. The units are
added in steps and are tested for the sub-system

functionality. This phase provides additional filter

against coding errors. The test cases of this phase are
mapped to high-level design requirements.

STATE
Test Stubs
Simulation

(Subsystem under
test)

STATE
Test Stubs

Simulation

MQ/TCP
UDP/RAW

MQ/TCP
UDP/RAW

Sub-System Integration Test Setup

Pair Wise Integration (PWI) Testing

The purpose of this testing is to rule out all the

inter-working issues between different

subsystems/elements before the complete system is
put under tests. The focus of the PWI is to test the

ICD between the subsystem/elements. This test

phase, conducted prior to End-to-end Integration,
reduces risks to future testing.

STATE - Software Tool for Automated Test Environment.

10

STATE

 (Subsystem - A)

(Subsystem - B)

STATE

Pair Under Test

Pair-Wise Integration Test Setup

Integration Testing

Integration is putting the components together to

form the system & achieving end-to-end signaling or
data/voice path. Integration is one of the most costly

and time-consuming activities in the system

engineering process. For large and complex systems,
up-to 40% of the development effort may be used in

this activity. The integrated system must be tested to

check that it meets its requirements.

Following are the key features of Integration
testing:

� Functionality testing

� Call Scenarios

� Regression Testing

Performance/Load Testing

The aim of this phase of testing is to verify that

integrated end-to-end path meets the performance
criteria. This phase is the logical extension of the

previous phase & the performance focus is associated
to it. In addition, this phase meets the requirement of

stress/soak testing.

The major item of this phase of testing is
identification of the performance criteria, which forms

basis of the performance testing. System modeling is

carried out and the test scenarios are run on the
model to arrive at the objective figures. This model

can also be used to ascertain the system behavior

during load/stress for different types & quantity.

Following features of STATE would be available

by Jan 2003 and would allow usage of STATE for this
phase.

� Advanced load testing with different load pattern:

Different load scenarios can be planned for a pre-

defined duration. A consolidated report is also

provided.

� Multi Threading: In case of pumping the bursty

traffic, STATE can help in defining the multiple

data sources, load patterns (burst, random,

linear).

Benefits of STATE

STATE provides several benefits for the testers

and developers. Here are a few ways how one can

benefit from using STATE as a testing solution.

� STATE as a Framework: STATE provides the user

with the flexibility to create new dictionaries. All

the protocol specific information is captured in

the dictionary. Therefore, by using STATE, one

can create dictionary for any protocol and

subsequently test it. Thus, STATE provides user

with the power to create his own test tools for

testing various protocols. For all the other

commercially available tools, usage is restricted

11

to a particular protocol and user has to buy a

license for every family of protocol suite.

� High level of automation: STATE provides a very

high level of automation for its usage. Test script

/ suite generation can be automated. These can

be executed any number of times and in any

order as per the requirements of the user.

Automation becomes extremely significant in case

of regression testing.

� Easy Usage: STATE requires minimal instructions

for installation and installation can be completed

in a few minutes. STATE is very easy to learn. It

provides complete functionality through GUI thus

ensuring a quick ramp-up. It also provides

complete capability through Command Line

Interface (CLI) for more experienced user.

� Standard scripting language (TCL): All the test

scripts are created in the standard scripting

language, TCL. TCL functionality can be used to

prepare scripts for complex scenarios. Scripts,

once prepared, can be easily modified to simulate

new test scenarios.

� Automatic dictionary generation: STATE provides

a utility for automatic creation of dictionary from

stack header files. This saves very significant time

if the header files are very large in size. This is a

very useful utility, especially in case of Wireless

protocols.

� Functional Interface: This feature allows to carry

out test cases that require functional interface.

This feature is extremely useful, especially in Unit

testing.

� Useful for all stages of testing: STATE can be

used for all phases of testing starting from Unit

Testing, SSI, and PWI to Integration Testing.

This eliminates the need to buy a new license for

every stage of testing. This way, it results in a

better utilization of Test Tool resources across the

various development/testing teams in a project.

It also eliminates the need to learn several tools

for different stages of testing thus reducing the

project cycle time.

� Multiple Interfaces: STATE can simulate multiple

interfaces. This helps in establishing an end-to-

end scenario for a complete call/data flow

consisting of multiple messages across multiple

interfaces.

� Timer: Timer functionality is needed to test the

capability of protocol to handle timing issues.

STATE provides the provision of simulating as

many timers as user wants for testing purpose.

� Load: By January 2003, STATE would have

complete load functionality. This would help in

subjecting IUT to different kinds of load patterns

and monitor its performance under stress.

Conclusion
To improve the efficiency and effectiveness of the

testing process, groups need to find ways to simplify
and automate this process. As a solution to address

these issues, STATE was developed at HSS. Since its

inception, STATE has been used to create a variety of
innovative testing solutions. Using STATE, HSS has

achieved considerable savings with respect to people,

time and hardware necessary to perform testing.

 E-mail: info@h

M
o

The comprehensive set of software building blocks
from Hughes Software Systems consists of both
frameworks and protocol stacks for the Voice over
Packet domain.

Frameworks Stacks
Softswitch Framework MEGACO stack
Media Gateway Framework MGCP stack
Gatekeeper Framework SIP stack
SIP Server Framework H.323 stack
Mini Gateway Framework SIGTRAN stack
ssworld

HSS
Germ
Tel: +
Bosto
Tel: +
Dalla
Tel: +

HSS
San J
Tel: +
Los A
Tel: +

Plot
Tel: +91
Hughes Software Systems is a key
supplier of communication

technologies for Voice over Packet,
Intelligent Networks and High-speed
obile Networks, and is fully focussed
n the needs of its customers to build

Next Generation Networks.
.c

USA
antow
1-240
n

1-617
s
1-972

USA
ose
1-408
ngele
1-323

 31,
-124
Hughes Software Systems
Electronic City, Sector 18, Gurgaon 122 015, India
-6346666, 6455555 Fax: +91-124-6455150, 6348931
www.hssworld.comom

, East Coast
n

-453-2498

-547-6377

-517-3345

, West Coast

-436-4604
s

-571-0032; 571-0114

HSS Europe
Milton Keynes, UK
Tel: +44-1908-221122
Germany
Tel: +49-6155-844-274
Finland
Tel: +358 40 8290977

HSS India
Gurgaon
Tel: +91-124-6455555; 6346666
Bangalore
Tel: +91-80-2286390

	Introduction
	Protocol / Stack Basics
	Protocol Conformance
	Challenges before the Test Manager

	STATE
	Overview
	Features
	Architecture
	Phases of Testing
	Unit Testing (UT)
	Sub System Integration (SSI)
	Pair Wise Integration (PWI) Testing
	Integration Testing
	Performance/Load Testing

	Benefits of STATE
	Conclusion

