From Software Quality Control to Quality Assurance
Dr. Panos Ntourntoufis

UPSPRING Software

panos@upspringsoftware.com
http://www.upspringsoftware.com
Abstract

This paper addresses the transformation of traditional software quality control techniques to a proactive quality assurance program within embedded systems and other mission critical software:

Software plays an increasingly important role in every product and organization. The number of mission critical applications, those with a high cost of failure (air traffic control systems and other life support products), or a high cost to fix (cellular phones and other consumer products), have increased exponentially in recent years. Software for embedded systems more often than not fits this profile of “mission critical,” and with the forecast for embedded systems continuing to accelerate, the need for proactive quality assurance is higher than ever before.

This paper previews a two-stage approach to transforming quality control to quality assurance:

· Quality Assessment (Stage 1) provides objective quantitative evaluation of quality while identifying and fixing software defects early in the development cycle, before they get to the customer and even before testing;

· Quality Assurance (Stage 2) helps prevent defects from entering the code base by enforcing coding standards during, and by preventing new defects from occurring during times of change through accurate impact analysis.

1 Introduction

Software plays an increasingly important role in every product and organization. The number of mission critical applications, those with a high cost of failure (air traffic control systems and other life support products), or a high cost to fix (cellular phones and other consumer products), have increased exponentially in recent years and will continue to increase at 31 percent CAGR through 2003 [6].

Software for embedded systems more often than not fits this profile of “mission critical,” and with the forecast for embedded systems continuing to accelerate, the need for proactive quality assurance is higher than ever before.

According to the U.S. Defense Dept. and the Software Engineering Institute at Carnegie Mellon University, there are typically 5 to 15 flaws in every 1,000 lines of code. Just tracking down each bug eats up about 75 minutes, according to a five-year Pentagon study. And fixing them takes two to nine hours each. On the outside, that’s 150 hours, or roughly $30,000, to cleanse every 1,000 lines [5]. Even these cost estimates are conservative for embedded systems where one key flaw can mean the difference between life and death.

The following sections of the paper describe a means to dramatically reduce the number of defects in a software code base in two stages:

· Quality Assessment (Stage 1) provides objective quantitative evaluation of quality while identifying and fixing software defects early in the development cycle, before they get to the customer and even before testing;

· Quality Assurance (Stage 2) helps prevent defects from entering the code base by enforcing coding standards during, and by preventing new defects from occurring during times of change through accurate impact analysis.

2 Software Development Information Systems

A software Development Information System (DIS) is defined as a database that captures the interrelationships between all entities in the code base (files, functions, macros, variables, etc), and its associated tools - to provide the critical information needed both by management and development teams, in order to increase productivity, quality and process [Figure 1].

The concept of an Information System has been applied to other industries for a number of years and has produced systems used in manufacturing (such as MRP and ERP), in human resources (HRIS), and design (CAD/CAM) [2].

It is only recently that the idea of a DIS aimed at Software Development teams has emerged. It provides an integrated set of tools and utilities that help developers understand the nature of the coding involved, apply coding techniques more effectively and accurately, and re-engineer or reorganize complex software systems [3].

Figure 1: Software Development Information System

3 The Software Development Crisis

3.1 Definition

As software ages and complexity increases due to market pressure, maintenance costs increase exponentially while product quality steadily decreases.

As applications mature, source code grows in size and complexity, resulting in poor quality and long release cycles. In addition, software development consists of multiple error-prone tasks such as navigation, impact analysis, code review and comprehension that are tedious, difficult to perform, and often do not yield complete or accurate results.

The increased product complexity due to market pressure creates a “software complexity crisis”.

3.2 External and Internal Software Quality

Two types of software quality can be distinguished: External Quality and Internal Quality.

External quality is that which can be seen by customers and which is traditionally tested. Bad external quality is what can be seen: system crashes, unexpected behavior, data corruption, slow performance.

Internal quality is the hidden part of the iceberg, i.e. program structure, coding practices, maintainability, and domain expertise. Bad internal quality will result in lost development time, fixes are likely to introduce new problems and therefore require lengthy retesting. From a business point of view, this will invariably result in loss of competitiveness and reputation.

External quality is a symptom whereas the root problem is internal quality. Poor internal quality leads to high maintenance costs. In order to improve software quality, internal quality must be improved.

4 The Information Management Solution

4.1 STAGE 1: Quality Assessment

4.2.1 Introduction

A software defect and repair cost 10 to 100 times as much to fix during testing phase if not caught earlier in design and coding. Studies have also demonstrated their cost will grow up to 40 to 1000 times the original if not found until after software has been released [4]. Finding defects earlier in the cycle saves, therefore, over $10,000 per defect.

The following sub-sections describe a series of steps which will enable this development information system to identify and fix defects before the software is released to the customer.

4.2.2 Establish an information model

Establishing an information model requires the following steps:

1- Build and deliver the database that captures all software entities, their attributes and inter-relationships, together with software artifacts such as tests and documentation.

2- Synchronize the model build process with the software build process itself

4.2.3 Establish standards for software development: standard quality filter sets (QFS)

Identify and define industry-standards for a variety of categories such as programming constructs, software structure, adherence to globalization standards, portability, statistics, metrics, time and date constraints, etc.

As an example of standard, we consider Programming Constructs, which measure the use of questionable programming constructs that may be unsafe or may conflict with site-specific programming guidelines [3]. Use of questionable programming constructs adds to overall complexity of the code base, compromises security and makes the code less manageable and modular than intended. Examples include Empty statement bodies, functions using global data, functions that return a pointer to a local stack, potential memory leaks, etc.
4.2.4 Assess initial quality and identify defects

These standards may now be applied to create a quantitative assessment of an application in statistical and graphical form plus identify a list of construct violations. The Quantitative baseline may now be used to measure improvements in product quality and for comparison to other software development organizations.

Quality assessment can be represented graphically using a chart of quality indexes. For instance, Figure 2 shows the overall quality index together with the quality indexes of four areas of examination: programming constructs, portability, globalization and structure. Quality indexes approaching 100 are representative of near ideal quality whereas low quality indexes are representative of dangerously low software quality [Figure 2]. The higher the software quality the lower the risk, the sooner the products will be out to market, and the fewer the defects.

Figure 2: Quality assessment. The chart shows the overall quality index together with the quality indexes of four quality filter sets (QFS).

4.2.5 Defect repair

Once the defects have been detected, their repair is facilitated by quick identification of defect location. DIS systems provide easy navigation and querying of the code base.

4.2.6 Monitor quality

Monitoring of software quality is enabled by regularly generated quality assessments and custom trend chart generation, providing assessment of trends over time.
4.2.7 Stage 1 Benefits summary

Stage 1 (Quality assessment) can be summarized by:

Identifying and fixing problems before customers find them

· Structured evaluations identify and resolve 20+ defects per million lines of code

· Finding defects earlier in the cycle saves over $10,000 per defect

· Scorecard compares application quality to other organizations

4.3 STAGE 2: Quality Assurance

4.3.1 Introduction

Market demands are regularly quoted as being responsible for the abandonment of sound development practices, exhorting a much higher price than most may realize. For example, an often overlooked but extremely valuable facility to detecting bugs is the use of peer reviews, or code inspections. JPL has documented a cost of only $90 to $120 per defect if found during inspections, but an astonishing $10,000 per incident when caught in testing [1]!

In the following paragraphs we go through the successive steps to enable automated defect prevention.
4.3.2 Impact analysis

The understanding of the complex relationships between all the entities in the code base requires not only skill but also extensive experience with the specific source code. Even the best and most experienced engineers can make mistakes in their analysis of changes to the source code. For example, if an engineer changes only a single line of source in a function, there may be 15 other places in the code base that must be examined and may require related changes. Even if the developer remembers 14 of the 15 other places in the code to check, it is the one instance overlooked that can cause the code submission to fail. Such a failure impacts not only the individual developer but may very well impact the entire engineering team, or even the entire company, waiting on a successful build or bug-free release.

DIS based Impact Analysis examines the impact of proposed entity signature changes before they become final. Impact Analysis reduces the risk of making changes before committing to them.

4.3.3 Submission check

Checking code for design flaws and coding defects before it is submitted to the shared source base is widely acknowledged as a good thing to do. The promise of properly conducted code reviews is that they can be effective in improving quality of software. Poor coding constructs can be identified and eliminated before they add complexity to the product. Coding defects can be found and eliminated before they enter and pollute the shared source base.

However, the reality of code reviews usually does not match their promise. Because code reviews are labor intensive and require scarce senior developers, they are viewed by many developers as painful and a waste of time. Code reviews are often not done with the level of attention and energy to be thorough and complete. Because of this reality, code reviews are done on an irregular basis and are frequently ineffective.

Through automation of this labor intensive and time consuming task, a DIS can significantly improve the quality of source code prior to submission to the shared source base thereby preventing potential defects from entering the code base and affecting the entire engineering development and testing team.

4.3.4 Application simplification

Under the premise “simpler is better” and as always with embedded systems, “size matters,” DISs offer 2 significant means to reduce size and save space, as well as reduce compile time.

Dormant code analysis identifies potentially unused code and reduces therefore the application size and complexity.

Header Simplification eliminates redundant header file inclusions in source files.

4.3.5 Stage 2 Benefits summary

Stage 2 (Quality assurance) can also be summarized as follows:

Prevents defects early in the development cycle

· Automated Code Reviews reduce manpower requirements by 50%

· Earlier problem identification reduces costs by a factor of 10

· Impact Analysis cut the introduction of new problems by 50%

5 Conclusion

The cost of software defects places a heavy burden on every software development organization. The business need to address this problem has become critically urgent with the cost of repair and the cost of failure increasing as software takes on more and more “mission critical” applications. Some companies will discover how to cope with the tremendous burden of such rapidly increasing costs…other companies will not. The two keys are; 1) prevention and 2) assuming all prevention is not possible, discovery of errors as early in the process as possible. The Development Information System has been shown to be an extremely useful tool for this purpose.

References

[1]
Bush, Marilyn, “Improving Software Quality: The Use of Formal Inspections at the Jet Propulsion Laboratory,” 12 International Conference on Software Engineering, Nice France, March 26 – 30, 1990.

[2]
B. Boes, “Development Information Systems, A New Paradigm in Software Development: Complexity Begets Complexity – A Vicious Cycle,” White paper, Software Emancipation Technology, May 1999.

[3]
GartnerGroup, “Software Emancipation Technology, Inc.: DISCOVER,” GartnerGroup/DataPro, Nov. 1999.

[4]
B Boehm, Software Engineering Economics, Prentice-Hall, 1994

[5]
N. Gross, M. Stepanek, O. Port, and J. Carey, “Software Hell: Glitches cost billions of dollars and jeopardize human lives. How can we kill the bugs?” Business Week Online – International, http://www.businessweek.com/1999/99_49/b3658015.htm, Dec. 1999.

[6]
Venture Development Corporation, “The 1999 Embedded Operating Systems and Development Tools: Market Statistics Report,” February 2000.

Source code

Reengineer

Build

Report

Monitor

Control

Analyze

Change

Navigate

Query

Information

Model

DATA

Specs

Documents

Tests

E Structure

Navigate

Query

D Globalization

C Portability

B Programming constructs

A Overall quality

B

E

D

C

A

100

0

20

80

60

40

