
Software Development Lifecycle (SDLC) - Overall Project
Measurement

March 2006 - Pragmatic Software Newsletters

Measuring the Software Development Lifecycle

Employing a solid software development lifecycle (SDLC) methodology can drastically increase your
ability to deliver software projects on-time and on-budget. Once a solid SDLC methodology is in
place, how do you know how efficient it is and how well it is performing? In the coming months, we
will look at best practices for measuring the key indicators of the SDLC, and equip you with the tools
to improve your SDLC. Below are the topics to be covered in the coming months:

1. Defect and Test Case Measurement - Defect and Test Case Measurement is a pre-production
activity that allows teams to determine the quality of their software development, and
indicates when the software is ready to be released to production. More...

2. Project Task Measurement - Project Task measurement allows your team to determine how
well individual tasks were estimated, how well they were defined, and whether items are
completed on-time and on-budget. More...

3. Overall Project Measurement - It is important to measure overall project success by
determining if the project was estimated properly, risks were identified and mitigated,
requirements were correctly identified and documented, and if the project was delivered on-
time and on-budget. From this, we learn to provide better estimates, collect better
requirements, and do better risk management. More...

4. Support Ticket Measurement - Support Ticket management is a post-production activity that
allows teams to determine the quality of the software release, the quality of User Guides and
other documentation, and provides insight as to how well the software was architected and
implemented.

5. Measuring Team Goals - For technical teams to flourish, team goals must be established and
measured. Constant evaluation of the goals, and progress towards them, is critical to ensuring
that team goals contribute to departmental goals.

6. Measuring Departmental Goals - Establishing and measuring departmental goals allow your
company to grow, allow your department to identify it's contribution to company growth and
fosters and environment where team members thrive.

Overall Project Measurement

Overall Project Measurement allows you to determine if the project was estimated properly, risks
were identified and mitigated, requirements were correctly identified and documented, and if the
project was delivered on-time and on-budget. From this, we learn to provide better estimates,
collect better requirements, and do better risk management. Below are some best practices for
measuring overall project success:

1. Review Estimate vs. Actual for the Project - Prior to beginning a project, it is important to
estimate each task that must be performed for the project. As the project progresses, team
members should keep track of how much time it took to perform each task. It is also
important to identify an allowable variance. For example, upon completion of the project, if

Page 1 of 4Software Development Lifecycle (SDLC) -

Overall Project Measurement

3/27/2006file://C:\Inetpub\wwwroot\Newsletters\Newsletter_2006_03_SP_NoAd.htm

file://C:InetpubwwwrootNewslettersNewsletter_2006_03_SP_NoAd.htm

our actual hours/costs were within 5% of the estimate, we will consider it a success. Once the
project is completed, run reports that show whether the project was successful (based on your
variance allowance). How do you do this?

First, you must detail each of the requirements and develop a list of tasks for the delivery of
each requirement (if you need help developing requirements, click here). With a good set of
requirements, the project manager can work with the project team (programmers, testers, etc)
to develop a list of tasks that must be completed for each requirement, along with the
estimated effort of each task. Once this is done, record your list of tasks, assign them to team
members, and track their progress. As tasks are completed, record the number of actual hours
it took to complete each task, as to allow you to determine the correctness your estimation
process. Upon completion of the project (all tasks are 100% complete), run reports that show
you how well you did. You can use this information on future projects, to create a buffer for
improving the estimation process.

Basic Approach

- If you do not have a software development lifecycle tool, a low-cost and
simple approach to this is to create a spreadsheet that contains a list of your tasks and
assignment information. As your team members work on items, each day you should make note
of actual hours and costs thus far, and percentage complete. As items are finished, update the
spreadsheet with Actual Hours, Actual Costs, and Completion Date. After all tasks are
completed, analyze whether the project was successful, see attached spreadsheet to see how
we did it.

Example: ProjectOverview.xls

Advanced Approach

- A better approach is to utilize an SDLC tool that allows tracking of
project tasks, assignment of the tasks to team members, tracking of hours and costs, and allows
the team members to update their percentage complete. For ease of update, the software
should be web based, so that it can be accessed from any location. To do this, you can use
Software Planner, Microsoft Project or some other project management tool. The disadvantage of
using windows-based tools (like Microsoft Project) is that they are not web based, so individual
team members can not easily update their hours, costs and percentage complete; the project
manager is forced to update that information. Software Planner (and other web based tools),
empower the people doing the work to update this information, and has email alerts that alert
the Project Manager as items are updated. Once the project is completed, run reports that
analyze whether the project was successful, see attached reports so you can see how we did it.

Examples:
A) Project Tasks By Project Report

- By reviewing this report, we can quickly see that our project
went OK. The cost overruns were 5 hours of work, relating to $1,035 in costs. At the beginning
of the project, we had agreed that if we were within 5% of our hours can and costs, we would
consider the project a success. Based on reviewing this report, we were within 2% variance,
which is OK. However, it would be good to drill down a little further and determine what tasks
and what resources (people) contributed to the overage. See the next report to determine
that.
B) Project Tasks By Assignee Report

- By reviewing this report, we can see that a couple of team
members really excelled. Notice that Jennie Jones, Mary Jones, and John Tester actually
finished their tasks under budget. However, John Doe and Joe Millionaire finished their tasks
over budget. We may want to analyze their tasks further to determine why they had overages,
and if we need to change our estimating techniques when assigning tasks to these individuals.

For example, let's assume we started a project for a new release of our Widgets product
(Widgets Release 4.1). At the beginning of the project, we collected the requirements,
identified and and estimated each task, and we decided that a 5% variance on the project was
acceptable. As the project progressed, our team members logged time toward each task. Upon
completion of the project, we analyzed the project results. See the Basic and Advanced
Approaches below to see how the project turned out.

Page 2 of 4Software Development Lifecycle (SDLC) - Overall Project Measurement

3/27/2006file://C:\Inetpub\wwwroot\Newsletters\Newsletter_2006_03_SP_NoAd.htm

file://C:InetpubwwwrootNewslettersNewsletter_2006_03_SP_NoAd.htm

Project Management Guidelines - http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf

Functional Specifications - http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf

Architectural Overview - http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf

Detailed Design - http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf

Strategic Planning Document - http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf

Test Design - http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf

Risk Assessment - http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf

Weekly Status - http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf

User Acceptance Test Release Report - http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf

Post Mortem Report - http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf

All Templates - http://www.PragmaticSW.com/Templates.htm

Prior Newsletters - http://www.PragmaticSW.com/Newsletters.htm

Software Planner - http://www.SoftwarePlanner.com

Defect Tracker - http://www.DefectTracker.com

Remoteus (Remote Desktop Sharing) - http://www.PragmaticSW.com/Remoteus.asp

About the Author

2. Post Mortem - As projects are completed, you must perform a "post mortem" to identify the things
you did well, and the things you did poorly. Use this information to improve future projects. How do
you do this?

1. Plan Your Post Mortem Review - Upon completion of a project, the Project Manager
should conduct a "Post Mortem" review. This is where the Project Manager invites all
the major players of the team (Analysts, Lead Programmers, Quality Assurance Leaders,
Production Support Leaders, etc) to a meeting to review the successes and failures of the
project.

2. Require Team Participation - Ask the attendees to bring a list of 2 items that were done
well during the project and 2 things that could be improved upon.

3. Hold the Post Mortem Review Meeting - Go around the table and have each person to
discuss the 4 items they brought to the meeting. Keep track of how many duplicate
items you get from each team member. At the end of the round table discussion of
items, you should have a count of the most popular items that were done well and the
most agreed upon items that need improvement. Discuss the top 10 success items and
the top 10 items that need improvement.

4. List Items Done Well and Things Needing Improvement - Upon listing of the 10 success
and improvement items, discuss specific things that can be done to avoid the items that
need improvement upon the next release. If some items need more investigation, assign
specific individuals to finding solutions.

5. Create a Post Mortem Report - The best way to keep this information organized is to
create a "Post Mortem" report, where you document your findings. Send the Post Mortem
report to all team members. Before team members embark on their next project, make
sure they review the Post Mortem report from the prior project to gain insight from the
prior project. We have created a template that you can use for the document, download
it by clicking here.

Helpful Templates

 Below are some helpful templates to aid you in developing software solutions on-time and on-budget:

Page 3 of 4Software Development Lifecycle (SDLC) - Overall Project Measurement

3/27/2006file://C:\Inetpub\wwwroot\Newsletters\Newsletter_2006_03_SP_NoAd.htm

http://www.PragmaticSW.com/Pragmatic/Templates/ProjectMgtGuidelines.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/FunctionalSpec.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/ArchitectureOverview.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/DetailedDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/StrategicPlanning.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/TestDesign.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/Risk%20Assessment.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/WeeklyStatusRpt.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/UATRelease.rtf
http://www.PragmaticSW.com/Pragmatic/Templates/PostMortem.rtf
http://www.PragmaticSW.com/Templates.htm
http://www.PragmaticSW.com/Newsletters.htm
http://www.SoftwarePlanner.com
http://www.DefectTracker.com
http://www.PragmaticSW.com/Remoteus.asp
file://C:InetpubwwwrootNewslettersNewsletter_2006_03_SP_NoAd.htm

Steve Miller is the President of Pragmatic Software (http://www.PragmaticSW.com). With over 20 years
of experience, Steve has extensive knowledge in project management, software architecture and test
design. Steve publishes a monthly newsletter for companies that design and develop software. You can
read other newsletters at http://www.PragmaticSW.com/Newsletters.htm. Steve's email is
steve.miller@PragmaticSW.com.

Pragmatic Software Co., Inc.
383 Inverness Parkway
Suite 280
Englewood, CO 80112

Phone: 303.768.7480
Fax: 303.768.7481
Web site: http://www.PragmaticSW.com

E-mail: info@PragmaticSW.com

Page 4 of 4Software Development Lifecycle (SDLC) - Overall Project Measurement

3/27/2006file://C:\Inetpub\wwwroot\Newsletters\Newsletter_2006_03_SP_NoAd.htm

http://www.PragmaticSW.com
http://www.PragmaticSW.com/Newsletters.htm
http://www.PragmaticSW.com
file://C:InetpubwwwrootNewslettersNewsletter_2006_03_SP_NoAd.htm

