
Reprinted from Proceedings, 27th NASA/IEEE Software Engineering Workshop,  
NASA Goddard Space Flight Center, 4-6 December, 2002. 

 
An Investigation of the Applicability of  

Design of Experiments to Software Testing 
 
 

D. Richard Kuhn                     Michael J. Reilly 
National Institute of Standards and Technology 

Gaithersburg, MD  20899 
kuhn@nist.gov             michael.reilly@nist.gov 

 
  
 

Abstract 
Approaches to software testing based on methods 

from the field of design of experiments have been 
advocated as a means of providing high coverage at 
relatively low cost.  Tools to generate all pairs, or 
higher n-degree combinations, of input values have 
been developed and demonstrated in a few 
applications, but little empirical evidence is available 
to aid developers in evaluating the effectiveness of 
these tools for particular problems.  In this paper we 
investigate error reports from two large open-source 
software projects, a browser and web server, to 
provide preliminary answers to three questions:  Is 
there a point of diminishing returns at which 
generating all n-degree combinations is nearly as 
effective as all n+1-degree combinations?  What is the 
appropriate value of n for particular classes of 
software?  Does this value differ for different types of 
software, and by how much?  Our findings suggest 
that more than 95% of errors in the software studied 
would be detected by test cases that cover all 4-way 
combinations of values, and that the browser and 
server software were similar in the percentage of 
errors detectable by combinations of degree 2 through 
6.  
 
 
1. Introduction  
 

Methods from the field of design of experiments 
(DOE) have been applied to quality control problems 
in many engineering fields for several decades.  DOE 
seeks to maximize the amount of information gained 
in an experiment by optimizing the combinations of 
independent variables.  Software testing using DOE 
methods, often referred to as combinatorial testing 

methods, has been advocated as an efficient means of 
providing a high level of coverage of the input domain 
with a small number of tests [1] [2] [3] [4] [5] [6].  For 
example, consider a device that has 20 inputs, each 
with 10 settings (or 10 equivalence classes if the 
variables are continuous), for a total of 10  
combinations of settings. The few hundred test cases 
that can be built under many development budgets 
would cover less than a fraction of a percent (< 10

20

-15) 
of the possible cases. But the number of pairs of 
settings is in fact small by comparison, and since 
every test case must have a value for each of the ten 
variables, many pairs can be included in a single test 
case. Algorithms based on orthogonal arrays are 
available that can generate test data for all 2-way (or 
higher order n-way) combinations at a reasonable cost. 
One such method makes it possible to test all pairs of 
values for this example using only 180 cases [7]. This 
level of test effort would be practical for many small 
software-controlled devices, or critical components of 
larger systems.  In general, for k parameters with v 
values each, the number of test cases is proportional to 

 (for small n). kv nlog)2/(
Combinatorial testing methods have an industrial 

appeal in their potential to reduce test costs, but there 
is also a significant productivity advantage to applying 
these methods in testing high integrity software.  If we 
were able to know with certainty that all faults in a 
system can be triggered by a combination of n or 
fewer parameters, then testing all n-way or fewer 
interactions is effectively equivalent to exhaustive 
testing for variables with a small set of discrete values 
(possibly using equivalence classes for continuous 
value variables).  In reality, of course, we can never 
know in advance what degree of interaction is 
required to trigger all faults in a system.  A practical 



alternative, however, may be to collect empirical data 
on faults that occur in real systems in various 
application domains.  For example, if long term failure 
data show that a particular type of application has 
never required the interaction of more than 5 
parameters to reveal a failure, then an appropriate 
testing goal for that class of applications is to test all 
5-way or fewer interactions. 

Proponents of these methods have reported that 
little empirical work exists to support their use [8].  
Many applications of combinatorial testing methods 
have focused on configuration testing [9].  For 
example, a client-server information system may 
include five types of client operating systems, three 
browsing programs, and five types of server operating 
systems.  Rather than test all 75 configurations of the 
variables  - client operating system, browser, server 
operating system - a smaller number of tests can be 
used to consider all pairs of variables.  A less common 
application of combinatorial methods is in selection of 
input data.  The earliest such example is probably that 
of Mandl [10], who used orthogonal arrays to select 
data types in testing Ada compilers.  Since then, 
combinatorial methods have been used in a number of 
other applications, and tools have been developed to 
simplify their use in test data selection.  Dalal et al. 
[11] demonstrated the effectiveness of pair-wise 
testing in four case studies, but did not investigate 
higher-degree interactions.  The Remote Agent 
Experiment  (RAX) software on NASA’s Deep Space 
1 mission [12] is another example of applied 
combinatorial methods.  The RAX is an expert system 
that generates plans to carry out spacecraft operations 
without human intervention.  This work found that 
testing all 2-degree pairs of input values and all 
individual values detected 88% of bugs classified as 
correctness and convergence flaws (i.e. successfully 
finding a feasible path), but detected only 50% of 
engine interface bugs.  The NASA study did not 
investigate higher-degree interactions required to 
trigger a failure.  Another study [13] reviewed 15 years 
of medical device recall data from the US Food and 
Drug Administration to characterize the types of faults 
that occur in this application domain.  Only 109 of the 
342 recalls of software controlled devices contained 
enough information to determine how many 
conditions were required to replicate a failure.  Of 
these 109 cases, 98% of the reported flaws could be 
detected by testing all pairs of parameter settings, and 
only three of the recalls indicated that more than two 
conditions were required to cause a failure.  The most 
complex of these failures required four conditions.  A 
serious limitation of this study was the limited data 
set. 

It is noted in Smith, Feather, and Muscetolla [12] 
that pairwise testing detected only 20% more errors 
than all-values testing.  Although they did not test 
beyond pairwise combinations, the authors proposed 
the reasonable hypothesis that a point of diminishing 
returns is reached for some small value of n, so that an 
effective test strategy is to test n-way combinations of 
parameter values, with additional tests for selected 
higher order combinations.  Some important questions 
in this regard are:  

1. Is there in fact such a point of diminishing 
returns?  

2. What is the appropriate value of n for 
particular classes of software?  

3. Does this value differ for different types of 
software, and by how much?  

4. Does the value increase as software moves 
from development to stable use? 

5. Does it continue to increase with version 
upgrades? 

In this paper we report on work that begins to answer 
the first three of these questions. 
 
2. Procedures  
 

We characterized faults in two large open source 
software projects by the number of conditions 
required to trigger the fault.  That is, what percentages 
of known faults were triggered by a single condition, 
an interaction between two conditions, three 
conditions, and so on?  The Mozilla web browser and 
Apache web server projects provide publicly 
accessible databases of bugs for use by developers.  
Each bug is classified according to characteristics 
such as severity, priority for repair, and current state 
(e.g. fixed or pending).  A description of each bug is 
given with instructions on how to replicate the bug 
when available.  We reviewed a total of 194 bug 
reports in the browser database 
(http://bugzilla.mozilla.org) - all entries classified as 
“Verified, Fixed, Critical.”  Using the descriptions in 
the database, bugs were categorized by the number of 
conditions required to trigger the associated fault.  For 
example, bug 106763 has a description which states 
“Subscribe window is blank until you enter a search 
term,” has one condition: the subscribe window 
should be opened.  A corresponding procedure was 
used to collect data on 171 bugs from the server bug 
database, although the database used was “Old 
Apache Bug Database,” which has a slightly different 
classification scheme than Bugzilla.  (The new version 
of the Apache database is the same as that for the 
browser, but does not contain a sufficient number of 
bug reports for review.)  The server bug database 



organizes bugs according to the module in which they 
occur, e.g., access control, CGI processing, cookie 
handling. 
 

3. Findings and Discussion   
 

For the two software projects analyzed in this 
paper, some conclusions can be suggested from the 
results shown in Table 1, although more software 
projects must be analyzed to provide a reasonable 
level of confidence 

 
 

Conditions 
(values of n) 

Browser 
(194 bugs) 

Server  Modules 
(171 bugs) 

 (percent) (cumulative 
percent) 

(percent) (cumulative 
percent) 

1 28.6 28.6 41.7 41.7 
2 47.5 76.1 28.6 70.3 
3 18.9 95.0 19.0 89.3 
4 2.2 97.2 7.1 96.4 
5 2.2 99.4 0.0 96.4 
6 0.6 100.0 3.6 100.0 

 
Table 1.  Number and Percent of Faults Triggered by n-way Conditions 

 
• For these projects, there was in fact a point of 

diminishing returns reached at a small 
number of conditions.  Testing all 3-way or 
lower degree combinations would detect 
approximately 90% of the reported bugs, and 
all 6-way and lower degree combinations 
would detect all faults reported in the bug 
databases. 

• The review conducted for this paper was not 
sufficient to determine whether higher degree 
combinations are required to detect faults as 
the software was upgraded in later releases. 

• Both databases contained bug data that were 
unclassifiable in terms of ‘Number of 
Conditions.’  Some bugs were either not 
adequately described to give a determinate 
number of conditions, while others were not 
traditional bugs in the sense that they were 
caused by incorrect use of the product by a 
user (e.g. improper configuration).  

 
Before returning to the questions posed in the 
Introduction, there are a number of caveats and 
sources of error to be considered before conclusions 
are drawn.   

 
• The bug reports indicate conditions required 

to trigger faults, but do not describe the level 
of testing conducted.  It is possible that the 
easier bugs – requiring fewer conditions to 

detect – were being found.   
 

• Conditions needed to replicate failures for the 
server modules were frequently reported as a 
list of configuration settings.  It may be that 
many of the settings were “don’t care” 
conditions, and that only one or two of the 
conditions were essential to triggering the 
fault.  In this case, the number of conditions 
required to detect a fault would be artificially 
increased. 

 
• A third possible source of error is attributed 

to the analysts who reported the bugs.  The 
methods for counting the number of 
conditions required to trigger a bug in each 
database are not necessarily the same.  Since 
the bug database for the web browser 
describes specific lines of code and functions 
that are invoked to trigger the bug, the 
number of ways that these functions are 
activated is not addressed.  For example there 
could be two separate ways of calling a 
specific function that triggers a bug.  Also, it 
is not clear how many conditions are set or 
activated by the code in question.  If a 
function that seems to trigger a bug, which 
would be classified as one condition, is 
responsible for setting a number of 
conditions that are, at a finer level of 



scrutiny, ultimately the true cause of the bug, 
the recorded number of conditions for that 
bug would be less than the actual number. 

 
• Viewing the bugs in the server database, we 

also find a number of bugs that are described 
only in terms of a specific web page that, 
when viewed, causes the fault.  These page-
specific bugs cannot be classified with as 
much certainty as bugs that are described 
directly in terms of the conditions required to 
cause them, because their descriptions do not 
allow insight into what conditions are 
required on the coding level to recreate the 
fault (e.g. how to make a separate web page 
that would cause the same fault to occur). 

 
Returning to the questions from the Introduction, 

some preliminary conclusions and implications for 
testing can be suggested: 
 

1. For the systems reviewed, there was in fact a 
point of diminishing returns reached at a 
fairly low level of n-way combinations.  
More than 70% of bugs were detected with 
two or fewer conditions (75% for browser 
and 70% for server) and approximately 90% 
of the bugs reported were detected with three 
or fewer conditions (95% for browser and 
89% for server).  This result is consistent 
with the hypothesis proposed in [12].   

 
2. Depending on reliability requirements, cost 

considerations, and other assurance methods 
available, the appropriate value of n could be 

 to .  It is interesting that a 
small number of conditions (

3≤n 6≤n
6≤n ) are 

sufficient to detect all reported errors for the 
browser and server software.  For the medical 
device software reported in [13] this value is 
even smaller: .  Testing all 
combinations up to these small values of n 
would provide a form of “pseudo-exhaustive” 
testing, although clearly not truly exhaustive 
because of uncertainty as to whether 
remaining errors would be triggered by a 
higher-order combination of n+1 or more 
conditions, and the uncertainty introduced by 
using equivalence classes rather than all 
values for some variables. 

4≤n

3. There is some degree of variation among the 
different types of software discussed in this 
paper for the level of n required to detect a 

high percentage of bugs.  It is somewhat 
surprising that a higher degree of 
combinations was required to detect close to 
100% of browser and server errors ( 4≤n  
conditions for 97% of errors) than was 
required for the medical device software 
( 2≤n

2

 to detect 98% of errors) reviewed in 
[13].  The medical device bug reports were 
from software installed in mature, fielded 
products, while the browser and server bug 
reports came from development efforts.  
However, the sample size for the medical 
device software was smaller and bug reports 
were much less complete than those provided 
by the browser and server developers, so the 

≤n  value may not be truly representative 
of this software.  Another possibility is that 
the browser and server software are simply 
larger and more complex than the majority of 
the medical device applications.  The 
percentage of bugs detected by 2-way 
combinations (approximately 70%) for the 
browser and server software falls in between 
the values reported by [12] for the RAX 
planner (88%) and engine-interface (50%) 
software, again possibly as a result of 
differences in complexity and application 
domain.   

 
For combinatorial testing to be effective in providing a 
high level of assurance, two conditions must hold: 

• For all n-way combinations of values that 
trigger faults, n must be relatively small, to 
make test case development tractable.   

• The number of values to be tested can be 
large, but it must be possible to enumerate 
these conditions from specifications, and to 
create test cases that cover these conditions 
up to the required degree.  

 
For both projects reviewed, the first condition 

clearly holds.  Three or fewer conditions triggered 
about 90% of the browser and server bugs.  For high 
quality software, simply testing all 3-way conditions is 
not sufficient, but other testing approaches might be as 
good as or better than combinatorial testing from a 
cost/benefit standpoint.  Empirical studies comparing 
the cost of detecting complex faults through 
combinatorial testing versus other methods would be 
helpful to test planners.  The second condition is more 
problematic.  For the browser, almost all of the 
conditions reported in bug reports were unique, while 
for the server it was not unusual to see a particular 
condition, say P,  involved in more than one bug 

 



report.  For example, one server bug might be 
triggered by , another by RQP ∨∧ SP ∧ , and 
another by TP ∧ , but it was rare to see a particular 
condition P appear in more than one browser bug 
report. 
 
4. Conclusions 
 

For the software investigated in this paper, a 
web browser and server, a relatively low degree of n-
way combinations of values would detect nearly all 
errors in the database.  Appropriate levels of n could 
be  to , according to dependability 
requirements, suggesting that combinatorial testing 
would be effective for this type of software.  If 
experience shows that all errors in a particular class of 
software are triggered by combinations of n values or 
less, then testing all combinations of n or fewer values 
would provide a form of “pseudo-exhaustive” testing. 
Since most variables are likely to have a very large 
range of values, equivalence classes would need to be 
used in practice.  Because the effectiveness of 
combinatorial testing depends on the fact that a single 
test case can include a large number of pairs (or higher 
degree combination) of values, this approach would 
not be effective for most real-time or other software 
that depends on testing event sequences, but it may be 
applicable to subsystems within real-time software.  
Empirical studies of other classes software would be 
helpful in evaluating the applicability of combinatorial 
testing.  

3≤n 6≤n

 
 
References 
                                                 

                                                                           
  
[6] R.S. Pressman.  Software Engineering: A Practitioner's 
Approach 5th edition, McGraw Hill, 2001. 
 
[7] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C. 
Patton. The AETG System: An Approach to Testing Based 
on Combinatorial Design. IEEE Transactions on Software 
Engineering, 23(7): 437-444, (July 1997). 
  
[8 ] J.M. Harrell, “Orthogonal Array Testing Strategy 
Technique”, 
http://www.cvc.uab.es/shared/teach/a21291/apunts/provaOO
/OATS.pdf 
 
[9]  W.B. Perkinson. A Methodology for Designing and 
Executing ISDN Feature Tests Using Automated Test 
Systems. In Proceedings of IEEE GLOBECOMM ’92, 1992. 
 
[10] R. Mandl. Orthogonal Latin squares: An application of 
experiment design to compiler testing. Communications of 
the ACM, 28(10): 1054-1058 (October 1985). 
  
[11]  S.R. Dalal, A. Jain, N. Karunanithi, J.M. Leaton, C.M. 
Lott, G.C. Patton, B.M. Horowitz, “Model-Based Testing in 
Practice”, International Conference on Software 
Engineering, 1999. 
 
[12]  B. Smith, M.S. Feather, N. Muscettola,  “Challenges 
and Methods in Testing the Remote Agent Planner”, 
Proceedings of the Fifth International Conference on 
Artificial Intelligence Planning Systems, Breckenridge, CO. 
 
[13]  D.R. Wallace, D.R. Kuhn, “Failure Modes in Medical 
Device Software:  an Analysis of 15 Years of Recall Data”, 
International Journal of Reliability, Quality and Safety 
Engineering, vol. 8, no. 4, 2001. 

[1]  R. Brownlie, J. Prowse, and M.S. Phadke. Robust 
Testing of AT&T PMX/StarMail using OATS. AT&T 
Technical Journal, 71(3): 41-47 (May/June 1992). 
 
[2]  K. Burroughs, A. Jain, and R.L. Erickson. Improved 
Quality of Protocol Testing Through Techniques of 
Experimental Design. In Proceedings of Supercomm/ICC 
’94, 1994, pp. 745-752 1994. 
 
[3]  D.M. Cohen, S.R. Dalal, J. Parelius, and G.C. Patton. 
The Combinatorial Approach to Automatic Test Generation. 
IEEE Software, 13(5): 83-88, (September 1996). 
 
[4]  I.S. Dunietz, W.K. Ehrlich, B.D. Szablak, C.L. 
Mallows, A. Iannino. Applying Design of Experiments to 
Software Testing. In Proceedings of ICSE ‘97, pages 205-
215, Boston MA USA, (1997). 
 
[5]J.D.McGregor, D.A. Sykes, Practical Guide to Testing 
Object-Oriented Software,Addison-Wesley, 2001. 


	Abstract
	Findings and Discussion
	For the two software projects analyzed in this paper, some conclusions can be suggested from the results shown in Table 1, although more software projects must be analyzed to provide a reasonable level of confidence
	4. Conclusions
	References

