
- 1 -

Software Process Improvement (SPI): Modeling Return on Investment (ROI)1
by David F. Rico

ABSTRACT

The purpose of this article is to
exhibit metrics and models for
estimating return on investment
(ROI) of software process
improvement (SPI). Additionally,
this article is designed to show
software managers and
engineers: 1) how to estimate ROI
early, quickly, and accurately, 2)
how to maximize ROI using total
life cycle costs, and 3) how to
estimate ROI for Inspections,
Personal Software Processsm
(PSPsm), Team Software
Processsm (TSPsm), Software
Capability Maturity Model (SW-
CMM), ISO 9001, and CMM
Integrationsm (CMMIsm). While,
this article draws upon
authoritative sources of data for
estimating ROI and exhibits
relevant approximations of ROI,
it is not intended to be an
exhaustive analysis of ROI data in
of itself. (This article is
exemplified by the powerful
combination of late-breaking
research in cost and benefit
analysis for SPI “and” scholarly
methods in ROI analysis.)

INTRODUCTION

ROI, as its name implies, is the
quantification of the benefits

1 This article is based on Rico [1].
sm Personal Software Process, PSP,
Team Software Process, TSP, Capability
Maturity Model Integration, and CMMI
are service marks of Carnegie Mellon
University.
 Capability Maturity Model and CMM
are registered in the U.S. Patent and
Trademark Office.

received or financial return of any
given investment. Organizations
make many investments in
software engineering in order to
grow their business base, satisfy
customer requirements, or
improve lagging productivity and
quality. These investments often
come in the form of hiring
practices, tools and technologies,
methods and processes, training
and education, and adoption of
government and industry
standards.

However, software engineering
investments often turn into
expenses, sunk or irrecoverable
costs, or simply failed attempts at
satisfying short and long-term
business goals and objectives.
The ability, or rather inability, of
software managers and engineers
to accurately quantify the costs
and benefits of such investments,
or rather expenditures, before,
during, and after their
introduction is partly to blame.

Therefore, methods are needed to
accurately estimate, calculate, and
quantify investments in software
engineering technologies before,
during, and after their
introduction. In particular,
methods are needed to estimate
the even narrower field of SPI
tools, techniques, methods, and
standards, because the goal of SPI
is specifically to increase business
value, satisfy customers, and
improve market competitiveness
in terms of productivity and
quality.

This article is designed to show
software managers and engineers
how to estimate ROI early,
quickly, and accurately by
applying practical top-down
methods for rapidly producing
early and authoritative estimates
of ROI. It is also designed to
show software managers and
engineers how to maximize ROI
using total life cycle costs by
applying practical, authoritative,
and well established techniques
for producing holistic, well-
rounded, and convincing
estimates of ROI for SPI. And, it
is designed to show software
managers and engineers how to
apply simple, but powerful
techniques for producing
estimates of ROI for Inspections,
PSP, TSP, SW-CMM, ISO 9001,
and CMMI.

The goals and objectives of
showing software managers and
engineers how to estimate ROI
early, maximize ROI using total
life cycle costs, and apply simple
but powerful techniques to
estimate the ROI of popular SPI
approaches, include:

• Provide authoritative guidance
for beginners to estimate ROI
for justifying SPI initiatives,
CMMI, PSP, and TSP adoption,
and other forms of SPI.

• Consolidate the myriad of
research, books, methods, and
collective knowledge into a
single portable source that can
easily be applied by anyone
right out-of-the-box.

- 2 -

• Provide authoritative guidance
on key strategies for identifying
and quantifying all life cycle
costs, which contribute to
accurately, professionally, and
convincingly modeling ROI for
CMMI, SW-CMM, PSP, TSP,
and other SPI approaches.

• Exhibit a highly simplified
explanation of classical
techniques, which cover the
entire life cycle of a product
from development through
maintenance, which are highly
regarded by the U.S.
Government for mission critical
system acquisitions.

• Provide simple
examples and
methods for
producing
authoritative
estimates of the
most relevant
approaches to
SPI.

• Provide simple,
practical, and
extremely
useful ROI
techniques
based on total life cycle costs,
which are rarely used in state-
of-the-art ROI literature and
practice (even by the most
mature software organizations).

DEFINITIONS

ROI, in spite of its relative
simplicity and maturity as an
outright discipline, is not well
understood by the fields of
software engineering and SPI.
This is partly due to the fact that
software managers and engineers
are still struggling to identify and

define their own relevant metrics
and models, measure and model
the relevant characteristics of
their processes and products, and
pinpoint the drivers of costs and
benefits that contribute to
accurately determining ROI.

While, there have been great
strides or quantum leaps forward
in the fields of software metrics
and models by the likes of Kan
[2], Pham [3], and Humphrey [4],
the average software practitioner
continues to refute the foundation
established by these scholars and
practice their discipline without

the light of software metrics and
models. However, it is primarily
McGibbon [5] and Phillips [6]
that have provided us with an
oracle for unlocking the mystery
and ultimately the definition of
ROI. Proper identification and
analysis of McGibbon’s and
Phillips’ works leads us to the
authoritative definitions of ROI in
Figure 1.

A proper interpretation of these
four definitions is simply adding
up all of the benefits and
subtracting out the costs. The

benefits may or may not be
greater than zero, and may or may
not exceed the costs.

Before investing in any SPI
method, software managers and
engineers should estimate the
costs and benefits of multiple
alternatives. And, ultimately, of
course, select a SPI method with a
greater ROI than the alternatives.

A fundamental assumption is that
there are benefits to SPI, those
benefits are quantifiable, and the
benefits not only exceed the costs,
but outweigh the costs

convincingly
enough to justify
the difficulties
associated with
contemporary
SPI methods
(e.g., complexity,
time, and labor).
Practitioners,
even from very
mature
organizations,
continue to
believe there is
no ROI for SPI
[10], ROI is

nominal [11], or the payback
period for SPI lies far out into the
distant future [12, 13].

Rico [14] stands alone in
producing ground-breaking
evidence that ROI is not only
possible and substantial, but can
be achieved in hours and days
(even within the bounds of a
single project). This is an
important aspect of ROI, since the
one percent of defense contractors
that finally submit to the
application of SPI, demand early

Source

Phillips [6]

Lim [7]

Poulin [8]

Reifer [9]

Actual value developed by comparing program costs to benefits

Definition

Measuring magnitude of benefits relative to costs

Net benefit after expending some level of resources

Profit computed by dividing net income by assets used

Figure 1: Definition of ROI

- 3 -

results within the least possible
constraints of time and cost.
(Defense contractors are not in the
least enamored with research
projecting ROI into the far distant
future.) “Early” ROI will be
discussed in further detail in the
section on Advanced Issues.

METHODS

There are quite literally a myriad
or plethora of methods for
determining ROI.
The first major
challenge for
software
managers and
engineers is to
identify one or
more approaches
for estimating the
ROI of SPI.
Therein lies the
problem. There
are few
quantitative
studies on the
costs and benefits
of SPI.

There are even
fewer studies
dedicated solely
to the analysis of
ROI for SPI. Cost
and benefit
studies of SPI
have trickled in over the last
decade. However, they have been
too few and far between, they
sparingly report any metrics and
models for costs, benefits, and
ROI, and the few that could have
been truly useful are somewhat
esoteric and confusing.

Rico [14] is a broad survey of
metrics, models, methods, and

data for costs and benefits of SPI
(as well as an in-depth analysis of
ROI and breakeven points). Rico
[1], upon which this article is
based, focuses solely on simple
methods for estimating the ROI of
SPI.

However, even these studies and
analyses tend to be somewhat
lengthy and even esoteric. It’s
quite a challenge to summarize
the cost and benefit factors and

values that contribute to
estimating ROI, without failing to
provide a scholarly analysis of the
assumptions surrounding each
factor. (This article will attempt to
summarize the factors and values
surrounding ROI metrics and
models, as well as their associated
assumptions in order to help
software managers and engineers
estimate ROI for SPI.)

Here is a summary of decision
analysis methods which may be
used for analyzing the costs and
benefits of SPI, and even ROI
itself, in Figure 2.

Except for Rico [14] and Reifer
[17], few of these texts focus
specifically on ROI for SPI.
While, Reifer provides a rare
survey of techniques for
constructing generalized business
cases, Rico gets closer to the issue

at hand by
providing a
methodology for
analyzing the
costs and benefits
of SPI, as well as
ROI and
breakeven
analysis of SPI.

Phillips [6] zeros
in on the most
relevant approach
for estimating
ROI, both
simplistic and
advanced.
However, since
Phillips only
provides
generalized ROI
models for any
application, the
harder part of
quantifying the

atomic-level costs and benefits for
SPI cannot be found in his text.
Once again, therein lies the
problem.

It’s not just a matter of identifying
the correct approach for
determining ROI, as provided by
Phillips [6]. But, software
managers and engineers are faced

Source

Turban [15]

Reifer [17]

Mathematical programming, goal programming, transportation-
assignment, branch and bound, decision tables, decision trees,

forecasting, PERT/CPM, inventory, Markov chains, waiting lines,
simulation, heuristic programming, game theory, dynamic programming

Methods

Expected value, optimal decision policy, decision trees, value of
information, Monte Carlo simulation, dynamic project modeling,
parameter method, moments method, fuzzy logic, approximate

integration, etc.

Breakeven analysis, cause-and-effect analysis, cost/benefit analysis,
value chain analysis, investment opportunity analysis, pareto analysis,

payback analysis, sensitivity analysis, trend analysis

Schuyler [16]

Figure 2: Methods for ROI

Defect removal model, linear optimization, decision analysis model Rico [14]

Benefit/cost ratio, ROI (%), ROI Process Phillips [6]

- 4 -

with the fundamental inability to
identify the cost and benefit
factors of SPI, which drive an
authoritative ROI approach as
exhibited by Phillips.

Therefore, when the cost and
benefit factors of SPI as presented
by Rico [14] are combined with
the fundamental ROI model as
presented by Phillips [6], a model
for estimating the ROI of SPI
suddenly emerges. Phillips’ basic
model for ROI will be presented
in the next section, while Rico’s
cost and benefit factors for SPI
will be presented and explained in
the section
entitled,
Examples.

(It’s important to
note that Phillips
doesn’t merely
provide equations
for ROI, but a
comprehensive,
field-proven
methodology for
estimating ROI.
However,
Phillips’
complete ROI
methodology is beyond the scope
of this article, and may even be
considered overkill, and perhaps
unnecessary, for everyday
practical application and use.)

 MODEL

While, one can spend literally
months and years analyzing the
sparse literature and searching for
relevant approaches to defining
and estimating ROI, Phillips [6]
provides one-stop shopping on
this seemingly futile journey.
Phillips defines the basic model

for estimating ROI, as well as a
comprehensive “process” for
applying these simplistic
equations in a scholarly and
professional manner.

Phillips’ [6] fundamental ROI
model consists of two basic
equations (also depicted or shown
in Figure 3):

• Benefit/Cost Ratio (B/CR):
B/CR is a simple process of
dividing the benefits of SPI by
the costs of SPI.

• Return on Investment (ROI%):
The ROI% equation is similar

to the B/CR equation, except
that the costs of SPI are
subtracted from the benefits of
SPI before dividing by the costs
(and then converting the result
into a percentage).

(While, Phillips [6 and 18] go on
to provide a patented process for
applying these basic equations,
this labor and cost-intensive
approach is considered beyond
the scope of this article, not
particularly applicable to SPI, and
unnecessary for rapid and

authoritative development of ROI
estimates for SPI.)

Let’s stop and examine Phillips’
[6] basic ROI equations for just a
moment. Notice that the ROI
equations consist of only two
terms:

• Benefits: For SPI, benefits
generally consist of the
quantitative value, payback, or
interest that is returned for an
investment in SPI.

• Costs: For SPI, costs refer to
the expenses, expenditures, and
capital outlay necessary to

apply a SPI
approach,
which will
result in some
benefit.

We’ve essentially
arrived at the
crossroads, or
impasse as some
may assert, in the
estimation of
ROI for SPI. As
simple and
innocuous as the
terms benefit and

cost may appear on the surface,
they are terms surrounded in the
darkness of the medieval SPI era
that we live in, ambiguity and
inconsistency of definition,
application, and use, and even
outright controversy, dismay, and
disbelief.

One of the most amazing
phenomenon that has arisen from
the battle over the costs and
benefits of SPI, is the categorical
rejection of cost and benefit
metrics, models, data, and

Type

Benefit/
Cost
Ratio

Return
on

Investment

Model

Program Benefits

Program Costs
BCR =

Program Benefits Program Costs

Program Costs
ROI (%) = X 100

Figure 3: Model for ROI

- 5 -

especially comparative studies
that do not shine brightly upon
prevailing methods, standards,
approaches, and conventional
wisdom. In other words, when a
study begins to compare the costs
and benefits of multiple
alternatives, someone is bound to
be offended that their favorite
approach to SPI tends to have
fewer benefits and more costs
than a more efficient alternative.

This was certainly the case when
McGibbon’s [5] seminal classic
emerged in 1996, it has certainly
been the case with Rico’s [14]
comparison of the top eight
approaches to SPI, and it was
certainly the case when Rico [1]
was presented in early 2002. It’s
not uncommon for U.S. military
officers in key pentagon
acquisition positions to explode in
fury and anger when their favorite
approach to SPI is reported to
have few benefits and many costs.
It’s more often the case that
studies comparing the costs and
benefits of SPI are ignored,
unreferenced, and swept under the
rug because of their seemingly
unflattering view of some
approaches to SPI.

While, some are convinced that
comparative studies of SPI
approaches along with their costs
and benefits are meant to
denigrate and deconstruct the
fledgling discipline of SPI, these
studies are more often than not
created to form a solid foundation
for making quantitatively
beneficial decisions, which will
ensure the success of SPI
initiatives. In other words
comparative studies are meant to

help, not hurt has many would
assert.

McGibbon [5], Rico [14], and
Rico [1] are excellent resources
for objectively analyzing the
fundamental cost and benefit
factors or drivers associated with
SPI methods, approaches,
techniques, and more importantly,
decision-making that will ensure
the success of not only SPI
initiatives, but the success of the
SPI field itself. McGibbon
establishes a seminal framework
for comparing the costs and
benefits of SPI approaches, Rico
[14] builds upon and expands the
breadth and depth of McGibbon’s
basic framework, and Rico [1]
along with this article begin
attempting to bring ROI analysis,
estimation, and quantification into
the center stage of practical,
simplistic, and everyday decision-
making.

It’s important to note here that
ROI estimation is very sensitive
to accurate quantification of both
the costs and benefits of SPI.
Approaches to SPI with high
costs will have a lower ROI,
benefits being equal. Approaches
with low costs will tend have high
ROI estimates.

For example, the same basic
benefit model was used by Rico
[1 and 14]. However, Rico [1]
quantified costs in greater detail
which caused the best two
approaches to change precedence
with respect to ROI, as well as
cost and benefit efficiency. Rico
[14] really illuminated
sensitivities to benefits. Rico [1]
illuminated sensitivities to costs.

(These subtle differences provide
an early clue to success. That is,
apply approaches to SPI with
minimal costs and maximum
benefits.)

The issues of how to accurately
quantify the benefits of SPI will
be enumerated in the Section on
Examples. The issues on how to
accurately quantify the costs of
SPI will be enumerated in the
section entitled, Costs/Benefits.

EXAMPLES

This section provides simple, but
powerful, authoritative, and
relatively accurate examples of
how to apply Phillips’ [6] basic
equations for estimating the ROI
of six major approaches to SPI.
Again, Phillips’ B/CR and ROI%
equations will be applied to
benefit data from Rico [14] as
well as other authoritative sources
of SPI data. The six approaches to
SPI are:

• Inspection: The software
inspection process is a highly-
structured and facilitated group
meeting to objectively identify
the maximum number of
software defects with the
purpose of improving software
quality [19].

• PSP: The PSP is a training
curriculum to teach simple, but
powerful techniques in software
project management and
software quality management
[20]. It requires trainees to
develop a series of
mathematically intensive
computer programs using
increasingly complex software
management techniques. The

- 6 -

purpose of PSP is to convince
trainees to apply these
techniques in everyday practice
by experiencing their value and
benefits first-hand.

• TSP: The TSP is an extension
of PSP, which introduces group
software project management
techniques versus the individual
focus taught by PSP [21].

• SW-CMM: The SW-CMM is a
supplier selection model
created by the U.S. DoD to
evaluate, identify, and select
software contractors that
practice minimum software
project
management
techniques
[22].

• ISO 9001: ISO
9001, like the
SW-CMM, is a
supplier
selection
model created
by the
European
Union to
evaluate,
identify, and
select suppliers
that practice minimum quality
management techniques [23].

• CMMI: The CMMI, which is
the newest version of SW-
CMM, is also a supplier
selection model created by the
U.S. DoD to evaluate, identify,
and select systems engineering
contractors that practice
minimum systems engineering
project management techniques
[24].

The purpose of these examples is
to show software managers and
engineers how to estimate ROI
for SPI using authoritative ROI
metrics, models, and processes.
The purpose is not to serve or act
as an exhaustive scholarly
analysis of the costs of SPI, the
benefits of SPI, or ROI for SPI.

Any in-depth, scholarly study of
ROI for SPI must contain an
empirical analysis of the costs and
benefits of SPI, perhaps consider
more than one ROI approach, and
then make assertions about the
ROI of SPI after considering valid

cost and benefit data. However,
this article certainly serves as a
framework and highly structured
proposal for such an in-depth
study.

At a minimum, this article
provides practical tools to
estimate the ROI of SPI for
immediate application and use.
(And, of course, the selection of
Inspections, PSP, TSP, SW-
CMM, ISO 9001, and CMMI in
no way assumes these are these
are the best or only SPI methods.

In fact, there are many SPI
approaches. And, the best ones
are yet to be identified,
quantified, and exploited [25]. In
fact, while these may be good
short-term solutions to begin
with, one would surely be
succumbing to imminent failure if
even lower cost, higher payback
approaches to SPI weren’t
employed. However, it is
important to note that these six
approaches to SPI are considered
best-in-class for this early era in
SPI history, and other approaches
to SPI have not even been
mentioned because they are

unquantifiable,
subjective, and
may do even
more harm than
good. Many
digressive and
deconstructive
rapidly sweeping
fads were omitted
from this
analysis, because
of their primitive
notions.)

INSPECTION

Inspections are
manually intensive meetings to
perform static analysis of
software products to objectively
identify the maximum number of
software defects possible. Many
have challenged their costs,
benefits, effectiveness, and even
asserted the greater benefits of
highly structured individual
reviews [26]. (This fails to even
mention the cultural barriers and
hopeless resistance to this non-
programming activity.) However,
what these studies completely fail

Inspection PSP TSP SW-CMM CMMI

10:1

20:1

30:1

40:1

ISO 9001

B
en

ef
it/

C
os

t R
at

io

37:1

32:1

14:1 14:1

5:1
8:1

Figure 4: Examples for ROI

- 7 -

to mention is that Inspections,
when performed, offer substantial
benefits to omitting any sort of
pre-test software defect removal.
In other words, as inefficient as
they are, they offer many
incontrovertible benefits.

Let’s examine the dynamics of
Inspection cost, benefit, and ROI
analysis using Phillips’ [6]
equations for B/CR and ROI%.
Remember, there are only two
basic terms, 1) costs and 2)
benefits.

• Training Cost: Let’s begin by
modeling the training costs for
implementing
Inspections on
a four-person
project. The
average market
price for
Inspection
training is
about $410 per
person. The
average length
of time for
Inspection
training is three
days or 24
business hours. At a minimum
cost of $100 per hour, training
time comes to $2,400. Add
$410 to $2,400 for a total of
$2,810 per person for
Inspection training. Multiply
$2,810 by four people and that
comes to $11,240 to train four
people to perform Inspections.

• Implementation Cost: Now let’s
examine the cost of
implementing Inspections by
our four trained inspectors.
Let’s assume the project will
develop 10,000 software source

lines of code (SLOC), which is
not unlikely for a web project in
modern times. (Inspections of
requirements, designs, and tests
drive the Inspection costs even
higher, but are omitted for
simplicity’s sake.) At an
Inspection rate of 240 SLOC
per meeting, that comes to
approximately 41.67 meetings.
(The optimal Inspection rate is
120 SLOC per meeting, so
we’re lowering the cost and
efficiency of Inspections a
little.) Since each Inspection
run requires about 17 hours for
planning, overviews,

preparation, meetings, rework,
and follow-up, we then
multiply 41.67 by 17 for a total
of 708.33 hours. Once again, at
$100 per hour, that comes to
$70,833 for our four trained
inspectors to perform
Inspections on 10,000 SLOC.
(See Rico [14] for an in-depth
analysis of Inspection and Test
metrics, models, effort, and
costs.)

• Total Cost: So, we add the
training cost of $11,240 to the
implementation cost of

$70,833, and we arrive at a total
cost of $82,073 for four trained
inspectors to Inspect 10,000
SLOC.

• Total Life Cycle Benefits: The
estimated maintenance hours
for 10,000 SLOC after our four
trained inspectors perform their
Inspections are 11,806. The
estimated maintenance hours
for 10,000 SLOC with no
Inspections are 41,800. So, our
four trained inspectors have
saved 29,994 maintenance
hours on their very first
implementation of Inspections.
(Maintenance savings are

underestimated
by up to four
times. The
maintenance
hours assume a
world class
testing
capability,
which few
organizations
actually have.)
Multiply
29,994 by $100
and the
estimated

savings are an eye-popping
$2,999,400. (See Rico [14] for
an in-depth analysis of software
maintenance effort with and
without Inspections.)

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $2,999,400
by $82,073 and the B/CR for
Inspections is 37:1.

• ROI%: (The formula for ROI%
is benefits less costs divided by
costs times 100.) Therefore,
first subtract the $82,073 in
Inspection costs from the

Model

Training
Cost

Project
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

($410 fee + $2,400 labor) x 4 people = $11,240

Estimation

10 KSLOC / 240 LOC per meeting * 17 * $100 per hour = $70,833

(41,800 - 11,806 maintenance hours) * $100 per hour = $2,999,400

$2,999,400 benefits / $82,073 costs = 37:1

ROI% ($2,999,400 benefits - $82,073 costs) / $82,073 costs = 3,555%

Figure 5: ROI for Inspections

- 8 -

$2,999,400 in Inspection
benefits and divide the results
by the $82,073 in Inspection
costs and multiply by 100 for
an impressive ROI% of
3,555%.

(Remember, the total payback
period is only four staff months,
so it is unnecessary to use
complex discounting methods to
determine the value of the
investment, which are more
applicable to capital investments
in plants, buildings, and facilities.
In fact, the $82,073 in total
Inspection cost was completely
recovered during the first of 42
Inspections. The
remaining 41
Inspections were
all profit. See
Rico [14] for an
in-depth analysis
of breakeven
points for
Inspections.)

PSP

As mentioned
before, PSP is a
highly effective
training curriculum designed to
teach software engineers the
benefits of simple, but powerful
techniques in software project
management and software quality
management. PSP is composed of
seven simple software life cycles
consisting of increasingly
complex methods in software
project management and software
quality management.

The goal is for software engineers
to develop a series of complex
mathematical computer programs
using each of the seven software

life cycles. (PSP-trained software
engineers often complain that the
mathematical exercises confound
the process of learning PSP
itself.) PSP is designed for
software engineers to experience,
firsthand, the increasing benefits
in terms of precision and quality
of using basic software project
and quality management
techniques. (PSP has as its
underlying foundation, the notion
that if software engineers find
twice as many defects before
testing as during testing, the result
will be greater project precision
and product quality.)

PSP is not merely meant to be an
academic classroom training
methodology, but is designed to
convince software managers and
engineers with personal empirical
data to be bold enough to transfer
these techniques into everyday
practical use with similar benefits.
(Issues of cost, obscurity,
difficulty, scalability, and
overzealous copyright protection
have relegated PSP to the dusty
shelves of academic libraries. It’s
really a darn shame; because PSP
as a software project management

training curriculum is orders of
magnitude more effective than the
courses of most consultants and
authors. Rico [27] produced a
524-page software life cycle to
help software engineers transition
PSP from the classroom to the
field, which is prohibited from
distribution by Carnegie Mellon
University for business-
competitiveness reasons.)

Now, let’s examine the dynamics
of PSP cost, benefit, and ROI
analysis using Phillips’ [6]
equations for B/CR and ROI%.

• Training Cost: Let’s begin by
modeling the
training costs
for
implementing
PSP on a four-
person project.
The Software
Engineering
Institute’s
(SEI’s) price
for PSP
training is
$5,000 per
person. The
costs of the

airline, hotels, meals, and
parking are about $5,400 for
two weeks. The length of time
for PSP training is 10 days or
80 business hours. Each hour of
classroom time requires
approximately one hour of non-
classroom time for a total of 80
more hours. At a minimum cost
of $100 per hour, training time
comes to $16,000. Add $5,000,
$5,400, and $16,000 for a total
of $26,400 per person for PSP
training. Multiply $26,400 by
four people and that comes to

Model

Training
Cost

Project
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

($5,000 fee + $5,400 expenses + $16,000 labor) x 4 people = $105,600

Estimation

10 KSLOC / 25 * $100 per hour = $40,000

(46,646 maint and develop hours) * $100 per hour = $4,664,600

$4,664,600 benefits / $145,600 costs = 32:1

ROI% ($4,664,600 benefits - $145,600 costs) / $145,600 costs = 3,104%

Figure 6: ROI for PSP

- 9 -

$105,600 to train four people to
perform PSP.

• Implementation Cost: Now let’s
examine the cost of
implementing PSP by our four
PSP-trained engineers. Let’s
assume the project will develop
10,000 software source lines of
code (SLOC), once again,
which is not unlikely for a web
project in modern times. At an
average productivity rate of 25
SLOC per hour, that comes to
approximately 400 hours. At
$100 per hour, that comes to
$40,000 for our four PSP-
trained engineers to produce
10,000 SLOC
using PSP.
(See Rico [14]
for an in-depth
analysis of PSP
metrics,
models, effort,
and costs.)

• Total Cost: So,
we add the
training cost of
$105,600 to the
implementation
cost of
$40,000, and
we arrive at a total cost of
$145,600 for four PSP-trained
engineers to produce 10,000
SLOC using PSP.

• Total Life Cycle Benefits: The
estimated maintenance hours
for 10,000 SLOC after our four
PSP-trained engineers apply
PSP are zero. The estimated
maintenance hours for 10,000
SLOC without PSP are 41,800.
So, our four PSP-trained
engineers have saved 41,800
maintenance hours on their very
first application of PSP.

(Maintenance savings are
underestimated by up to four
times. The maintenance hours
assume a world class testing
capability which few
organizations actually have.)
Typical software development
hours for 10,000 SLOC are
5,088. However, software
development hours with PSP
are only 242, for an additional
savings of 4,846 hours. Add
41,800 maintenance hours
saved to 4,846 development
hours saved for a total of
46,646 saved software
maintenance and development

hours. Multiply 46,646 by $100
an the estimated savings are an
impressive $4,664,600. (See
Rico [14] for an in-depth
analysis of software
maintenance effort with and
without PSP.)

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $4,664,600
by $145,600 and the B/CR for
PSP is 32:1.

• ROI%: (The formula for ROI%
is benefits less costs divided by
costs times 100.) Therefore,

first subtract the $145,600 in
PSP costs from the $4,664,600
in PSP benefits and divide the
results by the $145,600 in PSP
costs and multiply by 100 for
an impressive ROI% of
3,104%.

(Remember, the total payback
period is only three staff months,
so it is unnecessary to use
complex discounting methods to
determine the value of the
investment, which are more
applicable to capital investments
in plants, buildings, and facilities.
In fact, the $145,600 in total PSP
cost was completely recovered

during the first
hours of applying
PSP. The
remaining 399
PSP hours were
all profit. See
Rico [14] for an
in-depth analysis
of breakeven
points for PSP.)

TSP

TSP, an
expansion of

PSP, guides software engineering
teams in developing software
products. Use of TSP improves
quality and productivity of
software engineering teams while
helping them meet cost and
schedule constraints. TSP is
designed for teams of up to 20
members, and larger multi-team
TSP processes are designed for
teams of up to 150 members.
However, these larger scale TSP
versions have not been made
publicly available, as is the case
with much of the TSP. Several

Model

Training
Cost

Project
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

($9,000 fee + $8,100 expenses + $20,000 labor) x 4 people = $148,400

Estimation

10 KSLOC / 6.12 * $100 per hour = $163,400

(45,254 maint and develop hours) * $100 per hour = $4,525,400

$4,525,400 benefits / $311,800 costs = 14:1

ROI% ($4,525,400 benefits - $311,800 costs) / $311,800 costs = 1,351%

Figure 7: ROI for TSP

- 10 -

completed textbooks on TSP have
been withheld by Carnegie
Mellon University at the time of
this writing for unknown reasons.

Now, let’s examine the dynamics
of TSP cost, benefit, and ROI
analysis using Phillips’ [6]
equations for B/CR and ROI%.

• Training Cost: Let’s begin by
modeling the training costs for
implementing TSP on a four-
person project. The SEI’s price
for TSP training is $4,000 per
person. The costs of the airline,
hotels, meals, and parking are
about $2,700 for one week. The
length of time for TSP training
is 5 days or 40 business hours.
At a minimum cost of $100 per
hour, training time comes to
$4,000. Add $4,000, $2,700,
and $4,000 for a total of
$10,700 per person for TSP-
specific training. Add the
$26,400 for PSP training to the
$10,700 for TSP training and
the total overall TSP costs
come to a breathtaking $37,100
per person. Multiply $37,100
by four people and that comes
to a budget-busting $148,400 to
train four people to perform
TSP.

• Implementation Cost: Now let’s
examine the cost of
implementing TSP by our four
TSP-trained engineers. Let’s
assume the project will develop
10,000 software source lines of
code (SLOC), once again,
which is not unlikely for a web
project. At an average
productivity rate of 6.12 SLOC
per hour, that comes to
approximately 1,634 hours. At
$100 per hour, that comes to

$163,400 for our four TSP-
trained engineers to produce
10,000 SLOC using TSP. (See
Humphrey [28] for an in-depth
analysis of TSP metrics,
models, effort, and costs.)

• Total Cost: So, we add the
training cost of $148,400 to the
implementation cost of
$163,400, and we arrive at a
total cost of $311,800 for four
TSP-trained engineers to
produce 10,000 SLOC using
TSP.

• Total Life Cycle Benefits: The
estimated maintenance hours
for 10,000 SLOC after our four
TSP-trained engineers apply
TSP are zero. The estimated
maintenance hours for 10,000
SLOC without TSP are 41,800.
So, our four TSP-trained
engineers have saved 41,800
maintenance hours on their very
first application of TSP.
(Maintenance savings are
underestimated by up to four
times. The maintenance hours
assume a world class testing
capability, which few
organizations actually have.)
Typical software development
hours for 10,000 SLOC are
5,088. However, software
development hours with TSP
are only 1,634, for an additional
savings of 3,454 hours. Add
41,800 maintenance hours
saved to 3,454 development
hours saved for a total of
45,254 saved software
maintenance and development
hours. Multiply 45,254 by $100
and the estimated savings are
an impressive $4,525,400. (See
Rico [14] for an in-depth
analysis of software

maintenance effort with and
without Test.)

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $4,525,400
by $311,800 and the B/CR for
TSP is 14:1.

• ROI%: (The formula for ROI%
is benefits less costs divided by
costs times 100.) Therefore,
first subtract the $311,800 in
TSP costs from the $4,525,400
in TSP benefits and divide the
results by the $311,800 in TSP
costs and multiply by 100 for
an impressive ROI% of
1,351%.

(Remember, the total payback
period is only eleven staff
months, so it is unnecessary to
use complex discounting methods
to determine the value of the
investment, which are more
applicable to capital investments
in plants, buildings, and facilities.
In fact, the $311,800 in total TSP
cost was completely recovered
during the first hours of applying
TSP. The remaining 1,600 TSP
hours were all profit. See Rico
[14] for an in-depth analysis of
how to estimate breakeven
points.)

SW-CMM

SW-CMM is a set of minimum
criteria for evaluating the
software engineering management
capabilities of U.S. military
suppliers. SW-CMM is a
derivative work of Crosby’s [29]
Maturity Grid, a product of the
ITT Corporation. Radice [30]
then copied and adapted Crosby’s
Maturity Grid for IBM, entitling it

- 11 -

as IBM’s Process Grid.
Humphrey [31] then copied and
adapted Crosby’s and Radice’s
Maturity Grid and Process Grid,
entitling it as Carnegie Mellon
University’s Process Maturity
Grid. Paulk [32] then transformed
Humphrey’s work into what we
now know as Carnegie Mellon
University’s SW-CMM.

While no one would argue that
the SW-CMM is less than the
ideal approach to SPI, SW-CMM
has become the de facto
international standard for SPI. In
fact, the majority of organizations
applying SW-CMM are not from
the U.S. DoD
community, but
from the
international
commercial
industry. In fact,
only less than one
percent of U.S.
military suppliers
apply SW-CMM.

Now, let’s
examine the
dynamics of SW-
CMM cost,
benefit, and ROI analysis using
Phillips’ [6] equations for B/CR
and ROI%.

• Deployment Cost (Level 2):
Let’s begin by modeling the
deployment costs for
implementing SW-CMM for
four projects as a representative
sample of a software producing
organization. Rico [33] makes
the following estimates: 66
hours for 6 policies, 264 hours
for 24 procedures, 512 hours
for 32 documents, 304 hours for
76 work authorizations, 464

hours for 116 records, 544
hours for 136 reports, and 304
hours for 76 meeting minutes.
The total deployment hours for
SW-CMM Level 2 are 2,458.
Multiply 2,458 by $100 and
that comes to $245,800.

• Deployment Cost (Level 3):
Rico [33] makes the following
estimates: 77 hours for 7
policies, 154 hours for 14
procedures, 1,280 hours for 80
documents, 176 hours for 44
work authorizations, 592 hours
for 148 records, 336 hours for
84 reports, and 192 hours for 48
meeting minutes. The total

deployment hours for SW-
CMM Level 3 are 2,807.
Multiply 2,807 by $100 and
that comes to $280,700.

• Assessment Preparation Costs:
Let’s estimate four projects of
five people in 13 indoctrination
courses at 2 hours each which
totals 520 hours. Let’s similarly
estimate four projects of five
people in 13 response-
conditioning courses at 2 hours,
each which also totals 520
hours. Finally, let’s estimate
four projects of five people in

one 40 hour mock assessment
or two 20 hour mock
assessments for total of 800
hours. Now, let’s add 520
indoctrination hours, 520
response conditioning hours,
and 800 mock assessment hours
for a total of 1,840 hours.
Finally, let’s multiply 1,840 by
$100 for a total of $184,000 in
assessment preparation costs.

• Total Deployment Costs:
Combine $245,800, $280,700,
and $184,000 for a total SW-
CMM Level 2 and 3
deployment cost of $710,500.

• Assessment
Cost: The SEI
estimates that
an assessment
requires up to
3,208 hours of
internal labor
(not including
the assessors
effort).
However, for
our four
projects of five
people let’s
estimate 62
hours for

planning, 234 hours for
preparation, 646 hours for the
appraisal itself, and 57 hours of
follow-up which totals 1,000
hours. (This doesn’t include the
assessor’s time, and the SEI
estimates over three times more
internal effort.) So, now
multiply 1,000 by $100 for a
total labor cost of $100,000
plus $40,000 in assessment fees
for a total assessment cost of
$140,000.

• Total SW-CMM Cost: Take a
deep breath and add the

Model

Deployment
Cost

Assessment
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

(7,105 implementation and prep hours) x $100 per hour = $710,500

Estimation

1,000 hours * $100 per hour + $40,000 fee = $140,000

(121,642 maint and develop hours) x $100 per hour = $12,164,200

$12,164,200 benefits / $850,500 costs = 14:1

ROI% ($12,164,200 benefits - $850,500 costs) / $850,500 costs = 1,330%

Figure 8: ROI for SW-CMM

- 12 -

$710,500 in total deployment
costs to the $140,000 in
assessment costs for a total
SW-CMM cost of $850,500.

• Total Life Cycle Benefits: Let’s
assume each of our four
projects also build 10,000
SLOC software products. Let’s
also assume that each of our
four projects apply Inspections
to satisfy their SW-CMM Level
3 goals. Now, we’re ready to
begin estimating the benefits.
Let’s assume each of our four
projects saves an average of
27,867 maintenance hours by
performing Inspections for total
maintenance
savings of
111,466 hours.
Now, let’s
assume our
productivity
doubles at SW-
CMM Level 3
as reported by
Diaz [34],
which results
in a per project
savings of
2,544 hours for
a total of
10,176 development hours
saved. Add the 111,466 hours
in maintenance savings to the
10,176 hours in development
savings for a total of 121,642
hours saved at SW-CMM Level
3. Multiply 121,642 by $100 to
arrive at an estimated savings
of $12,164,200.

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $12,164,200
by $850,500 and the B/CR for
SW-CMM is 14:1.

• ROI%: (The formula for ROI%
is benefits less costs divided by
costs times 100.) Therefore,
first subtract the $850,500 in
SW-CMM costs from the
$12,164,200 in SW-CMM
benefits and divide the results
by the $850,500 in SW-CMM
costs and multiply by 100 for
an impressive ROI% of
1,330%.

ISO 9001

ISO 9001 at most is a generalized
international standard for any
kind of quality management
system for the delivery of any

kind of product or service. ISO
9001 is better characterized as a
minimum set of strategic criteria
for the design of any kind of
quality management system, to be
used for supplier discrimination
and selection.

This description of ISO 9001 is
by no means meant to trivialize
the importance of this quality
management system standard. In
fact, organizations may not trade
products and services in Europe
without certification to this
standard. ISO 9001 has taken a

greater foothold throughout the
world than any other standard of
its type, including SW-CMM or
any other approach to SPI.

The latest version, ISO
9001:2000, closely aligns itself
with ISO 12207, an international
software life cycle standard, for
interpretation, application, and
use by software organizations. It’s
unclear how CMMI, a peer of
ISO 9001:2000 aligns with ISO
12207, as CMMI seems to
supersede ISO 12207 in
terminological use and
fundamental architecture. In fact,
CMMI seems to overstep the

scope of ISO
12207
substantially.

Now, let’s
examine the
dynamics of ISO
9001 cost,
benefit, and ROI
analysis using
Phillips’ [6]
equations for
B/CR and ROI%.

• Deployment
Costs: Let’s begin by modeling
the costs for implementing ISO
9001 in a 20-person software
organization. El Emam’s [35]
cost model results in 2,184
hours to prepare an
organization for ISO 9001
registration that is currently
non-compliant with 84% of its
requirements. Multiply 2,184
by $100 and that comes to
$218,396. (El Emam’s model is
not calibrated for ISO
9001:2000.)

Model

Deployment
Cost

Assessment
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

12.6 months * 173.33 hours per month * $100 per hour = $218,396

Estimation

640 hours * $100 per hour + $48,000 fee = $112,000

(27,726 maint and develop hours) x $100 per hour = $2,772,600

$2,772,600 benefits / $330,396 costs = 8:1

ROI% ($2,772,600 benefits - $330,396 costs) / $330,396 costs = 739%

Figure 9: ROI for ISO 9001

- 13 -

• Assessment Costs: Let’s
estimate four projects of five
people at 32 hours each which
totals 640 hours to prepare for
the assessment. Multiply 640
by $100 for a total of $64,000
in assessment preparation costs.
Add a $48,000 assessment fee
to the $64,000 assessment
preparation cost for a total
assessment cost of $112,000.

• Total Deployment Costs:
Combine $218,396 and
$112,000 for a total ISO 9001
deployment cost of $330,396
for ISO 9001 registration.

• Total Life Cycle Benefits: Let’s
assume each of our four
projects also build 10,000
SLOC software products. Now,
we’re ready to begin estimating
the benefits. Let’s assume each
of our four projects has a 15%
increase in maintenance
savings, which is consistent
with ISO 9001 experiences.
Multiply 41,800 maintenance
hours by 15% for 6,270
maintenance hours saved per
project. Multiply 6,270 by 4 for
a total maintenance savings of
25,080 hours. Now, let’s
assume each of our four
projects has a 13% increase in
productivity, which is
consistent with ISO 9001
experience. Multiply 5,088
development hours by 13% for
661 development hours saved
per project. Multiply 661 by 4
for a total development savings
of 2,646 hours. Now, add the
25,080 maintenance hours
saved to the 2,644 development
hours saved for a total of
27,726 total maintenance and
development hours saved.

Finally multiply the 27,726
maintenance and development
hours saved by $100 for a total
of $2,772,600 in savings by
using ISO 9001.

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $2,772,600
by $330,396 and the B/CR for
ISO 9001 is 8:1.

• ROI%: (The formula for ROI%
is benefits less costs divided by
costs times 100.) Therefore,
first subtract the $330,396 in
ISO 9001 costs from the
$2,772,600 in ISO 9001
benefits and divide the results
by the $330,396 in ISO 9001
costs and multiply by 100 for
an impressive ROI% of 739%.

CMMI

CMMI is the newest set of
minimum criteria for evaluating
the systems and software
engineering management
capabilities of U.S. military
suppliers. Once again, this is the
latest derivative of Crosby’s [29]
Maturity Grid circa 1979 as an
ITT employee.

CMMI has several distinguishing
features. Primarily, it now applies
to systems engineering
management practices, rather than
just software engineering
management. It has a stronger
focus on the use of integrated
product development teams. And,
it comes in two forms:

• Staged: The staged model will
continue to group and prioritize
strategic process criteria by
increasing complexity into five
stages.

• Continuous: The continuous
model enables acquisition and
supplier personnel to group
strategic process criteria on a
case-by-case basis.

CMMI, unlike its SW-CMM
predecessor, also has a stronger
focus on the end-to-end systems
engineering life cycle. This is a
departure from the SW-CMM,
which focuses on software
management versus development
processes. CMMI now begins to
blur the line between supplier
selection models and system
engineering standards. (In
addition, its individual specific
practices will be treated more like
requirements and less like
guidelines as in the case of the
SW-CMM’s key practices.)

CMMI may very well have
breached the gap between
minimum supplier selection
criteria and outright industry
systems engineering standard.
This is somewhat ironic as
CMMI’s alter ego, ISO
9001:2000, has now become more
strategic, while CMMI has
become more tactical.

Now, let’s examine the dynamics
of CMMI cost, benefit, and ROI
analysis using Phillips’ [6]
equations for B/CR and ROI%.

• CMMI Policies and Procedures:
Let’s begin by modeling the
costs for implementing CMMI
policies and procedures for four
projects as a representative
sample of a systems
engineering organization. Rico
[36] makes the following
estimates: CMMI Level 2
requires 2,091 hours to develop

- 14 -

56 policies and procedures and
CMMI Level 3 requires 3,771
hours to develop 101 policies
and procedures. So, 5,862 hours
are required to develop CMMI
Level 2 and 3 policies and
procedures. Multiply 5,862 by
$100 and that comes to
$586,200. Half of this is
software engineering, which
amounts to $293,100.

• CMMI Evidence of Use: Rico
[36] also makes the following
estimates: CMMI Level 2
requires 10,304 hours to
develop 138 products for four
systems engineering projects
and CMMI
Level 3
requires 20,533
hours to
develop 275
products for
these projects.
So, 30,837
hours are
required to
develop CMMI
Level 2 and 3
products.
Multiply
30,837 by $100
and that comes to $3,083,700.
Half of this is software
engineering, which amounts to
$1,541,850.

• CMMI Implementation Costs:
Now add $293,100 for CMMI
Level 2 and 3 policies and
procedures and $1,541,850 for
CMMI Level 2 and 3 products
for four projects, and the result
is $1,834,950 for software
engineering.

• Assessment Preparation Costs:
Let’s estimate four projects of
ten people in 20 indoctrination

courses at 2 hours each which
totals 1,600 hours. Let’s
similarly estimate four projects
of ten people in 20 response
conditioning courses at 2 hours,
each which also totals 1,600
hours. Finally, let’s estimate
four projects of ten people in
one 40 hour mock assessment
or two 20 hour mock
assessments for total of 1,600
hours. Now, let’s add 1,600
indoctrination hours, 1,600
response conditioning hours,
and 1,600 mock assessment
hours for a total of 4,800 hours.
Finally, let’s multiply 4,800 by

$100 for a total of $480,000 in
assessment preparation costs.
Half of this is software
engineering, which amounts to
$240,000.

• Total Deployment Costs:
Combine $1,834,950 and
$240,000 for a total CMMI
Level 2 and 3 deployment cost
of $2,074,950 for software
engineering.

• Assessment Cost: For our four
projects of five people, let’s
estimate 636 hours for the plan
and prepare for appraisal stage.

Let’s estimate 1,018 hours for
the conduct appraisal stage.
And, let’s estimate 106 hours
for the report results stage. This
totals to 1,760 hours. Multiply
1,760 by $100 for an internal
labor estimate of $176,000.
Add an assessment fee of
$64,615 for a total assessment
cost of $240,615. (Assessment
costs were based on labor
distributions from Carnegie
Mellon University [37].)

• Total CMMI Cost: Once again,
take a deep breath and add the
$2,074,950 in total deployment
costs to the $240,615 in

assessment
costs for a total
CMMI cost of
$2,315,565.

• Total Life
Cycle Benefits:
Let’s assume
each of our
four projects
also build
10,000 SLOC
software
products. Let’s
also assume
that each of our

four projects apply Inspections
to satisfy their CMMI Level 3
goals. Now, we’re ready to
begin estimating the benefits.
Let’s assume each of our four
projects saves an average of
27,867 maintenance hours by
performing Inspections for total
maintenance savings of 111,466
hours. Now, let’s assume our
productivity doubles at CMMI
Level 3 as with the SW-CMM,
which results in a per project
savings of 2,544 hours for a
total of 10,176 development

Model

Deployment
Cost

Assessment
Cost

Life Cycle
Benefits

Benefit/Cost
Ratio

(18,349 implementation and prep hours) x $100 per hour = $2,074,950

Estimation

1,760 hours * $100 per hour + $64,615 fee = $240,615

(121,642 maint and develop hours) x $100 per hour = $12,164,200

$12,164,200 benefits / $2,315,565 costs = 5:1

ROI% ($12,164,200 benefits - $2,315,565 costs) / $2,315,565 costs = 425%

Figure 10: ROI for CMMI

- 15 -

hours saved. Add the 111,466
hours in maintenance savings to
the 10,176 hours in
development savings for a total
of 121,642 hours saved at
CMMI Level 3. Multiply
121,642 by $100 to arrive at an
estimated savings of
$12,164,200.

• B/CR: (The formula for B/CR
is benefits divided by costs.)
Therefore, divide $12,164,200
by $2,315,565
and the B/CR
for CMMI is
5:1.

• ROI%: (The
formula for
ROI% is
benefits less
costs divided
by costs times
100.)
Therefore, first
subtract the
$2,315,565 in
CMMI costs
from the
$12,164,200 in
CMMI benefits
and divide the
results by the
$2,315,565 in
CMMI costs
and multiply
by 100 for an
impressive ROI% of 425%.

B/CR and ROI% differ from Rico
[1]. This is partly due to a
variation in assumptions based on
refined data resulting from
continuing CMMI analysis. Rico
[1] assumed a lower cost for
CMMI policy and procedure
development while factoring in an
estimate of system engineering

savings. This resulted in a B/CR
for CMMI of 11:1 and an ROI%
of 1,044%.

However, this article now
assumes the CMMI policy and
procedure cost is doubled due to
the added complexity of both
systems and software engineering
policies and procedures. This
article then factors out the cost of
CMMI policies and procedures
for systems engineering while

simultaneously factoring out the
systems engineering savings
resulting in a substantially lower
B/CR and ROI% for CMMI.

In retrospect, both estimates may
be based upon sound assumptions
and may accurately model the
costs of context-specific CMMI
application and use. Therefore, it
is assumed that variance in B/CR

and ROI% estimates may
represent a valid range of
estimated CMMI values for ROI.

COSTS/BENEFITS

This article, the section on
Examples in particular, focused
on some of the factors or drivers
of SPI that were most sensitive to
costs and benefits. By no means
does this article attempt to exhibit
an exhaustive scholarly study of

the cost and
benefit factors of
SPI.

However, this
article is meant as
a starter kit to
help software
managers and
engineers begin
to understand
relevant models
in ROI, sensitive
cost and benefit
factors, and how
to combine the
models with the
factors to
produce relevant
estimates of ROI
for SPI.

TYPICAL COSTS

The typical cost
drivers or factors of SPI that are
essential inputs into the ROI
estimating process, include:

• Training fees, labor hours, and
travel costs.

• Policies, procedures, processes,
and life cycles.

• Project costs, activity costs, and
administration.

Software Effort

So
ftw

ar
e

Pr
od

uc
tiv

ity

SPI Method

 S
PI

 M
eth

od
Investment

Break Even Point

Break Even Point = Investment / Productivity Difference * Productivity Product

Figure 11: Breakeven Point Model

- 16 -

• Documents, reports, records,
and memos.

• Indoctrination costs of custom
processes.

• Response conditioning costs.

• Mock appraisal costs and
appraisal costs.

While, Rico [14] attempts to
provide an in-depth analysis of
the benefits of SPI, it does not
similarly attempt an in-depth
analysis of the costs of SPI. In
order for any ROI estimate to be
accurate, it must include an in-
depth analysis of the total life
cycle costs.

Many of the costs of SPI are
hidden. Hidden costs for SPI
include travel costs, overhead or
fully-burdened hourly costs, and
the costs associated with effort
intensive SW-CMM and CMMI
assessments.

The goal of accurate cost
estimation is not necessarily to
make estimates of ROI believable
for publication as many assert, but
rather to protect SPI initiatives
from underestimation, which may
hurt the application of an
approach to SPI. It’s not as
important to be believable, as it is
to accurately budget SPI
initiatives, and then accurately
estimate the resulting ROI before,
during, and after the deployment
of the SPI method.

TYPICAL BENEFITS

While, miscalculating the costs of
SPI is certainly a common pitfall,
not understanding the benefits of
SPI is a far more common malady

inhibiting the field of SPI
worldwide. Simply put, the
benefits of SPI just aren’t
understood very well, and many
assume SPI must proceed with or
without benefits for some higher
purpose that is not clearly
understood. And, sadly, many
leading researchers continue to
refute the notion that SPI has any
benefits at all.

Once again, this article is not
intended to exhibit a thorough
analysis of the benefits of SPI. It
is, however, intended to point out
factors sensitive to producing
benefits, and show software
managers and engineers how to
exploit these factors for the
purpose of estimating ROI.
Typical benefits of SPI include:

• Higher quality (fewer defects).

• Lower maintenance (less
rework).

• Higher productivity (low
development cost).

• Faster cycle times (quick time-
to-market).

• Greater value (more product
features).

• Greater variety (more product
variations).

• Higher customer satisfaction
(more contracts).

DATA VALIDITY

No analysis of metrics and
models for SPI is complete
without the requisite plea for
greater data validity. Some
researchers have been
complaining that practitioners
don’t collect enough data to

substantiate their claims about the
benefits of SPI. They often fail to
recognize that potentially valid
data are all around, and that it is
not necessary to collect decades
of data to begin making assertions
about the costs and benefits of
SPI. However, let’s focus on
some less politically self-serving
issues of data validity like:

• Data Accuracy.

• Data Completeness.

• Benefit Isolation.

• Process Compliance.

DATA ACCURACY

Data accuracy and precision are
very important, especially among
small, resource-constrained, and
fast-paced software organizations.
Data accuracy isn’t too much of a
problem for extremely large
organizations or extremely large
programs ranging in the hundreds
of millions or billions of dollars.
In fact, it is pretty common
practice for large organizations to
issue stop-work orders on
expensive SPI initiatives because
the political climate isn’t exactly
right. Smaller firms are bound by
the constraints of guaranteeing
that every dollar spent has some
promising ROI. Factors affecting
data accuracy include:

• Number of people.

• Number of hours.

• Training fees.

• Travel costs.

• Project and maintenance costs.

• Number, size, and variety of
products.

- 17 -

• Estimated, actual, and residual
quality.

DATA COMPLETENESS

Data completeness is closely
related to data accuracy.
However, data completeness has
to do more with ensuring that all
factors have been included, versus
the precision or accuracy of any
one value. Leaving out an
important cost or benefit driver
can have dire consequences on the
outcome of a SPI initiative,
especially for smaller, resource-
constrained software
organizations. Factors affecting
data completeness include:

• Use of bottom-
up versus top-
down
techniques.

• Creation of
complete work
breakdown
structures.

• Inclusion of as
many costs as
possible.

• Use of fully burdened costs.

• Not forgetting training costs.

• Not omitting labor hours for
training.

• Noting that 70% of assessment
cost is internal labor.

BENEFIT ISOLATION

Benefit isolation is another term
for ensuring the accuracy and
validity of the benefits of SPI. It
involves of the use of
experimental and survey research
to quantify the benefits of a

particular SPI approach.
Experimental research is an effort
intensive approach to using
experimental control groups to
ensure benefits actually occur.
Survey research is less effort-
intensive than experimental
research, and often involves
tempering quantitative results
with qualitative objections.
Approaches to benefit isolation
include:

• Use of control groups to
validate benefits.

• Identification of peripheral
contributions to benefits.

• Exploitation of powerful cost

and quality models.

• Retaining consultants to
conduct benchmarking.

• Use of surveys to isolate benefit
contribution.

PROCESS COMPLIANCE

Here’s an interesting perspective
on data validity. Even the finest
experimental researchers fail to
measure process compliance
before attributing costs and
benefits to causes. For example,
researchers will often have
software developers apply a

particular SPI method without
requisite training or measuring the
degree to which the developer
applied the method. When, the
SPI method doesn’t yield the
reported costs and benefits,
researchers often claim there are
no costs and benefits to SPI.
Insignificant costs and benefits
are more likely due to
inappropriate or even non-
application of the SPI method
altogether. Even the most
primitive SPI methods yield
impressive results when deployed
correctly. Factors affecting
process compliance include:

• Use of professional policy and
procedure
principles.

• Design of
simple
processes for
maximum
compliance.

• Aiming for
high process
compliance
(especially
when training

is the primary deployment
method).

• Measurement of process
compliance.

• Noting that low process
compliance will invalidate the
results (good or bad).

ADVANCED ISSUES

There are just a few more
considerations with respect to
estimating ROI for SPI. These
issues include:

• Estimating Breakeven Points.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

Cleanroom Reuse Prevent Inspect Test CMM ISO

N
or

m
al

iz
ed

/U
nw

ei
gh

te
d

Sc
or

es

Cycle Time Reduction

Productivity Increase
Quality Increase

Return-on-Investment

Figure 12: Choosing the Right Solution for SPI

- 18 -

• Choosing the Right Solution.

• Avoiding Common Myths.

• Using Comprehensive ROI
Processes

ESTIMATING BREAKEVEN
POINTS

The breakeven point is generally
the place in time when an
approach to SPI begins to yield its
reported benefit. Technically
speaking, the breakeven point
occurs when the costs equal the
benefits. However, breakeven
points aren’t necessarily time-
dependent, but
more often than
not are dependent
upon number of
units produced.
That is, how
many units must
be produced until
the cost of
production is
paid for and the
software
organization
begins to yield a
profit.

Breakeven point
analysis is a problem of linear
optimization. The breakeven
points for SPI are commonly
believed to exist far out in the
future, perhaps even years or
decades beyond the initial
application of SPI. While,
breakeven point analysis is
certainly a worthy topic for
complete exposition, it will not
analyzed in very much detail here.
However, Rico [14] has an
excellent exposition of breakeven
point analysis, and often exhibits

breakeven points of one or two
hours of initial application for the
best SPI methods.

CHOOSING THE RIGHT
SOLUTION

Again, Rico [14] exhibits an in-
depth analysis of the benefits of
eight approaches to SPI:

• PSP.

• Cleanroom Methodology.

• Software Reuse.

• Defect Prevention.

• Inspections.

• Test.

• SW-CMM.

• ISO 9001.

The objective in pointing out Rico
[14] is to stimulate the awareness
that not all approaches to SPI are
created equal. In fact, the best
methods exhibit a B/CR of up to
1,300:1 over the worst but
common approaches to software
development. It is the

fundamental responsibility of
software managers and engineers
to consider multiple approaches to
SPI, and implement the best ones.
It’s time to stop implementing the
worst approaches to SPI just
because everyone else is doing it.
This is especially true for
commercial software
organizations that have the
latitude to implement the SPI
methods that will yield optimal
benefit to cost ratios, rather than
following standards out of mere
popularity.

AVOIDING COMMON MYTHS

Unfortunately,
many still believe
that approaches
to SPI are merely
fanciful
American fads
that in fact have
no benefits. SPI
antagonists often
believe:

• Software
process
improvement
has no ROI.

• Process
improvement takes a long time.

• Process improvement is too
expensive.

• Process improvement can’t be
performed in a few hours, days,
weeks, or months.

• Process performance can’t be
measured in only a few hours,
days, weeks, or months.

• Process improvement is only
for large, mission critical
programs.

Evaluation
Purposes

Evaluation
Instruments

Isolate
Effects of

Improvement

Collect
Data

Evaluation
Levels

Evaluation
Timing

Calculate
Return on
Investment

Convert
Data to

Monetary
Value

Tabulate
Program

Costs

Identify
Intangible
Benefits

Figure 13: Comprehensive ROI Methodology

- 19 -

The field of SPI, while still in its
infancy, is about to undergo a
metamorphosis, and obsolete
every approach to SPI mentioned
in this article. At a very
minimum, this article can serve as
an archaeological record for
comparison of outdated methods
to killer approaches to SPI that
have unprecedented levels of low
costs and optimal benefits.

USING COMPREHENSIVE ROI
PROCESSES

Also, Phillips [6 and 18] are
must-reads. The basic equations
exhibited by this article are only
the first step in the application of
scholarly ROI processes. Phillips’
ROI process is the de facto
international standard for
scholarly ROI analysis.

RECOMMENDATIONS

This is the most important part of
this article. This section is one of
discovery, reflection, and future
direction. Again, many of the
methods in this article reflect the
early notions of the former
century. The approaches to SPI
which have yet to be discovered
are the ones this article so vividly
points to. These recommendations
are a unique outcome of these
analyses, and were not formulated
in advance:

• Pinpoint High-ROI Factors: It’s
not necessary to identify every
conceivable cost and benefit
factor when producing early,
top-down estimates of ROI.
The law of diminishing returns
applies here. There are only a
few significant drivers of costs
and benefits. Become familiar

with them, and learn how to
exploit them.

• Target High-ROI Approaches:
This article is sufficient to point
out the approaches to SPI,
which yield the greatest
benefits at the least possible
cost. And, it gently reminds the
reader that the best approaches
are yet to come.

• Minimize Cost Incurrence:
Choose a low-cost, low-risk
approach to SPI. It’s probably
not wise to bite off more than
one can chew. Selecting low-
cost solutions to SPI can
guarantee successful, early
returns.

• Avoid Cost-Intensive
Approaches: Don’t be glutton
for punishment. This article
sufficiently exposes the
approaches to SPI which are
sure to drain your
organization’s assets. It is the
reader’s responsibility to
understand the devastating
effects of adopting the most
expensive approaches to SPI.

• Avoid Training-Intensive
Approaches: The market seems
to have a process of natural
selection built into it. Training-
intensive approaches are
generally unsuccessful in the
marketplace because of their
great expense, immense
difficulty, and lack of sufficient
tools for deployment beyond
the classroom.

• Look for Low-Cost Automated
Solutions: The future of SPI
isn’t in large overly-
bureaucratic and manually-
intensive approaches to SPI.
The future is in low-cost, non-

invasive automated tools that
perform the software
management tasks in spite of
us. These are the tools that will
leave an indelible mark on the
21st century.

• Use Professional Methods for
Analyzing ROI: This article
provides a valuable service by
guiding readers toward relevant
methods in ROI analysis and
estimation. However, even the
process of ROI is subject to
low-cost automation. Don’t get
too wrapped-up in manual,
laborious, and effort-intensive
ROI processes. They’re good
reference tools, but look for low
cost automation to ROI analysis
embedded in web-based project
management tools.

BIOGRAPHY

David F. Rico is a software
process improvement (SPI)
consultant specializing in cost and
benefit analysis. He helped design
a $250M software engineering
toolset and the spacecraft
software for NASA's $20B space
station in the 1980s, performed
graduate studies under SEI Level
5 space shuttle managers, helped
a $40B Japanese corporation
design a CMM self assessment
tool in 1993, designed a software
cost model for 37 kinds of U.S.
Navy fighter aircraft, helped
reengineer 36 logistics depots for
America's largest foreign military
customer, played key roles in the
design of U.S. military
intelligence satellite
constellations, and has supported
15 software engineering process
groups (SEPGs) over the last
decade. He's been an international

- 20 -

keynote speaker, published
numerous articles, and holds a
B.S. in Computer Science and a
Master’s Degree in Software
Engineering (with 19 years of
experience).

CONTACT INFORMATION

dave@davidfrico.com
http://davidfrico.com

BIBLIOGRAPHY

[1] Rico, D. F. (2002). Software
process improvement:
Modeling return on
investment (ROI). 2002
Software Engineering
Institute (SEI) Software
Engineering Process Group
Conference (SEPG 2002),
Phoenix, Arizona.

[2] Kan, S. H. (1995). Metrics
and models in software
quality engineering.
Reading, MA: Addison-
Wesley.

[3] Pham, H. (2000). Software
reliability. Springer-Verlag.

[4] Humphrey, W. S. (1995). A
discipline for software
engineering. Reading, MA:
Addison-Wesley.

[5] McGibbon, T. (1996). A
business case for software
process improvement
(Contract Number F30602-
92-C-0158). Rome, NY: Air
Force Research
Laboratory—Information
Directorate (AFRL/IF), Data
and Analysis Center for
Software (DACS).
http://www.dacs.dtic.mil/tec
hs/roispi2

[6] Phillips, J. J. (1997). Return
on investment in training
and performance
improvement programs.
Houston, TX: Gulf
Publishing Company.

[7] Lim, W. C. (1998).
Managing software reuse: A
comprehensive guide to
strategically reengineering
the organization for reusable
components. Upper Saddle
River, NJ: Prentice Hall.

[8] Poulin, J. S. (1997).
Measuring software reuse:
Principles, practices, and
economic models. Reading,
MA: Addison Wesley.

[9] Reifer, D. J. (2002). Making
the software business case:
Improvement by the
numbers. Upper Saddle
River, NJ: Addison-Wesley.

[10] Sanders, J. (2001). SPI 10
Years On: Torturing the
Evidence. 2001 Joint
Euroforum/Dutch Software
Process Improvement
Network Conference (SPIder
2001), Utrecht, Netherlands.

[11] Diaz, M., & King, J. (2002).
How CMM impacts quality,
productivity, rework, and the
bottom line. Crosstalk,
15(3), 9-14.

[12] Humphrey, W. S. (2001).
Winning with software: An
executive strategy. Reading,
MA: Addison-Wesley.

[13] Billings, C., Clifton, J.,
Kolkhorst, B., Lee, E., &
Wingert, W. B. (1994).
Journey to a mature software
process. IBM Systems
Journal, 33(1), 4-19.

[14] Rico, D. F. (2000). Using
cost benefit analyses to
develop software process
improvement (SPI)
strategies (Contract Number
SP0700-98-D-4000). Rome,
NY: Air Force Research
Laboratory—Information
Directorate (AFRL/ IF),
Data and Analysis Center for
Software (DACS).
http://www.dacs.dtic.mil/tec
hs/abstracts/rico.html

[15] Turban, E., & Meredith, J.
R. (1994). Fundamentals of
management science (6th
ed.). Boston, MA: McGraw
Hill.

[16] Schuyler, J. R. (1996).
Decision analysis in
projects: Learn to make
faster, more confident
decisions. Upper Darby, PA:
Project Management
Institute.

[17] Reifer, D. J. (2002). Making
the software business case:
Improvement by the
numbers. Upper Saddle
River, NJ: Addison-Wesley.

[18] Phillips, J. J., Bothell, T., &
Snead, L. (2001). The
project management
scorecard: Measuring the
success of project
management solutions. New
York, NY: Butterworth-
Heinemann.

[19] Fagan, M. E. (1976). Design
and code inspections to
reduce errors in program
development. IBM Systems
Journal, 12(7), 744-751.

[20] Humphrey, W. S. (1996).
Using a defined and

- 21 -

measured personal software
process. IEEE Software,
13(3), 77-88.

[21] Humphrey, W. S. (2000).
Introduction to the team
software process. Reading,
MA: Addison-Wesley.

[22] Humphrey, W. S. (1989).
Managing the software
process. Reading, MA:
Addison-Wesley.

[23] ANSI standard for quality
management system—
Requirements
(ANSI/ISO/ASQ Q9001-
2000). Milwaukee, WI:
American Society for
Quality (ASQ).

[24] Carnegie Mellon University
(2001). Capability maturity
model® integration
(CMMISM), Version 1.1
CMMISM for systems
engineering, software
engineering, and integrated
product and process
development (CMMI-
SE/SW/IPPD, V1.1) Staged
representation (CMU/SEI-
2002-TR-004 ESC-TR-
2002-004). Pittsburgh, PA:
Software Engineering
Institute (SEI).

[25] Rico, D. F. (n.d./2002).
Software process
improvement (SPI): The past
vs. future of SPI methods
[WWW document]. URL
http://davidfrico.com/spi-
futurepdf.htm

[26] Siy, H. P. (1996).
Identifying the mechanisms
driving code inspection costs
and benefits. Unpublished
doctoral dissertation,

University of Maryland,
College Park

[27] Rico, D. F. (n.d./2001). 524-
page PSP 2.1 software life
cycle [WWW document].
URL
http://davidfrico.com/psp-
pols-procshtm.htm

[28] Humphrey, W.S. (2000).
The team software processsm
(TSPsm). (CMU/SEI-2000-
TR-023). Pittsburgh, PA:
Software Engineering
Institute.

[29] Crosby, P. B. (1979).
Quality is free. New York,
NY: McGraw-Hill.

[30] Radice, R. A., Harding, J. T.,
Munnis, P. E., & Phillips, R.
W. (1985). A programming
process study. IBM Systems
Journal, 24(2), 91-101.

[31] Humphrey, W. S. (1987). A
method for assessing the
software engineering
capability of contractors
(CMU/SEI-87-TR-23).
Pittsburgh, PA: Software
Engineering Institute.

[32] Paulk, M. C., Weber, C. V.,
Curtis, B., & Chrissis, M. B.
(1995). The capability
maturity model: Guidelines
for improving the software
process. Reading, MA:
Addison-Wesley.

[33] Rico, D. F. (n.d./2001). SEI
level 2 thru 5: Cost model
[WWW document]. URL
http://davidfrico.com/sw-
cmm-costpdf.htm

[34] Diaz, M., & Sligo, J. (1997).
How software process
improvement helped

motorola. IEEE Software,
14(5), 75-81.

[35] El Emam, K., & Briand, L.
C. (1997). Costs and benefits
of software process
improvcment (IESE-Report
047.97/E). Kaiserslautern,
Germany: University of
Kaiserslautern, Fraunhofer-
Institute for Experimental
Software Engineering.

[36] Rico, D. F. (n.d./2001).
Capability maturity model
integration: CMMI
introductory overview
[WWW document]. URL
http://davidfrico.com/cmmip
df.htm

[37] Carnegie Mellon University
(2001). Standard CMMISM
appraisal method for process
improvement (SCAMPISM),
Version 1.1: Method
definition document
CMU/SEI-2001-HB-001.
Pittsburgh, PA: Software
Engineering Institute (SEI).

