
Certification Does Not Equal Quality
by Paul Tsuda

If you’re not developing software to control nuclear reactors, nor trying to sell in the
commercial shrink-wrap market, this article is for you.

I work in a company that traditionally developed software for the cable television
industry, stuff to do their subscriber management and billing. A saying used to circulate in the
industry before convergence (combining telephone, cable and data communications into a one-
stop service), ‘It’s Only Cable’. This usually meant it wasn’t worth the effort to fix the last crop
of minor bugs because failures would not be catastrophic nor life-threatening. The phrase also
tacitly acknowledged that cable companies operated in a monopoly environment where it was the
only game in town.

Well, convergence changed all that, along with competition from the satellite TV
companies.

But getting competitive hasn’t been easy, especially reining in the cowboy coding style of
the company founders. In the mid-90’s a new VP was brought in to tighten up the process, and
within two years the company had its Process Certification proudly hanging on the wall.

But the problem then became one of enforcing the standard and getting people to actually
think and act in a more structured way. You see, the founders worked endless hours to get a
working product out the door. But when they left, with them went the visionary spark which
made the process and the product come together. Without them it became easier to go home at a
decent hour, or to spend the time at your desk working in a less focused and therefore less
productive way.

As it turned out Certification did not produce higher quality code. The developers were
able to go through the motions dictated by their new procedures but, without the motivation
provided by their departed leaders, were unwilling to put in the extra effort that differentiates the
Microsoft’s from the also-rans. They had a formal QA department who performed inspections,
walkthroughs and reviews but lacked both product experts to do final testing and visionary
leaders who could keep the team working together during that final difficult push to get a
polished product shipped.

Well, a new management team has been brought in to figure out why Certification failed.
My hope is that they see what seems obvious to me: too much emphasis was placed on
prevention activities (inspections) and not enough on appraisal (testing). Of course the obvious
oft times goes unnoticed because we choose not to see the paths we know will be harder. I guess
it all depends on how badly the new management wants to win the game.

And turning a blind eye toward an effective solution might not be the only reason real
software quality is elusive. It also might have to do with the implicit thinking behind the software
engineering paradigm itself.

Testing the Product, Not the Process

 'It seems to us that every company already has a proper group to set standards, evaluate and train
staff, and generally monitor and work to improve every phase of product development. That
group is called Management. Management is the real quality assurance group in every company.'

- Kaner, Falk and Nguyen from Testing Computer Software

The first graphic projected on the overhead screen in a QA seminar shows a rising curved
line representing the cost of bugs as the software project proceeds. It’s displayed to demonstrate
that bugs caught during the requirements phase are much less costly than bugs caught during the
design phase, that the ones identified during design cost less than those caught during coding, and

that coding defects cost less than test defects. Of course the big no-no are bugs reported after
delivery. The cost of bugs reported by customers is huge, and many a creative graphic artist has
depicted this fact by making them appear larger in the later phases of development (a good
example can be found on page 18 of the book Software Testing, by Ron Patton).

I have a problem with this graphic. I think it’s original intent was to dramatize the
necessity of front-loading the development effort, i.e., not skimping when it comes to doing
requirements analysis or program design. The problem is that now it’s used to downplay the
importance of system testing and the subject matter expertise needed to do it right. It’s also
encouraged a QA culture that emphasizes the role of tester as process-expert rather than product-
expert. How many times have you heard a QA person say that ‘you can’t test quality into a
product, it has to be built in’. To me, they are saying the narrow role of ‘tester’ ignores the more
important role of identifying bugs in the development process itself.

Getting back to the bug-cost graphic, I look at it in the following critical way: the small
bug depicted in the requirements phase is the cost of finding a requirements bug in this phase; the
larger one in the design phase is the cost of this same requirements bug if found during this
phase; and the largest one looming above the delivery phase is the cost of this same requirements
bug if found during this later phase. The fact that these are all the same bug gets lost in the
chart. And the subtle message slipped into your mind is, “it’s terrible to allow bugs to live this
late in the development process.” (Cleanroom fantasies of software development may begin to
germinate in one’s fertile brain).

But if you look at the graph in this new way the defects found in the final testing phase
are not so big and scary. Instead of seeing them as monsters that should have been caught earlier
in the development cycle, they become normal sized because few will have been created during
the requirements phase. This more critical way of ‘seeing’ the chart might even make finding
bugs in the system test phase seem as natural and important as finding bugs during requirements
or design.

I hope my point is coming across: testing during the final stages of development is just
as important as creating a solid requirements or design document. As a matter of fact, common
sense tells you that testing is one of the most useful tools to ensure a quality product. Why do
you think we require doctors and lawyers pass tests before getting their license to practice? And
why do you think professors test their students several times during the semester, and base final
grades on the outcome of these tests? I think it’s because we all know that ‘the test’ motivates
people to do their best. The end result is a doctor we can trust and, when applied to the software
engineering discipline, a program we can rely on.

So besides turning a blind eye and hidden assumptions what else could be a root cause of
the elusiveness of software quality? One explanation might be the inevitable result of both
human nature and the nature of problem solving in general.

Development’s Natural Flow
“The complexity of practice has always dwarfed the simplicity of theory”

 - Robert N. Britcher from The Limits of Software, 1999

In larger programming shops that use software engineering methodology (any
waterfall-like approach) to create non-safety-critical applications (no air traffic control
systems), work naturally flows away from appraisal activities like system testing and
toward prevention activities like requirements, design and code reviews, for the same
reason that water flows around an obstacle: it’s easier.

In the software quality assurance industry there is a formal process called V&V
(Verification and Validation). Verification has to do with prevention. It’s when a
requirements document is scrutinized to verify the development team is creating what the

customer wants; or when a design specification is verified to make sure the proposed
product satisfies the stated requirements; or when a programmer’s code is reviewed for
fidelity to the design objectives. It’s easier for developers to focus on these documents
because they are basically ‘theoretical’ in nature. No real product (program) exists. At
this point there is no right or wrong. The customer will never see this stuff!

Now let’s talk about the other ‘V’, validation. Validation has to do with
appraisal, testing. It’s when the programmer actually unit tests a module, or when a QA
analyst does system testing. At this point a concrete object exists, the program, and it
either works or it doesn’t. It’s usually right or wrong, valid or invalid. This is the hard
part, the nitty-gritty detail work. The programs are tested, and if they don’t work, they
are fixed and retested. This is repeated until the tester says that the program is ‘right’ (or
at least right enough to release to the customer). Most people, like flowing water, will try
to get around this kind of work because it’s really ‘work’. The customer actually sees
this stuff, and if it’s wrong they won’t be happy.

So this is my point: if you’re leading a development effort your job is to keep the
group’s activity focused on the tasks that make a difference in the quality of the delivered
product. Since your task is both prevention and appraisal you have to keep the effort
balanced on both kinds of activities. Of course, your life will be a lot easier if you
concentrate more on prevention, but you can’t let that happen. I know it’s tempting—
when it gets down to the system testing phase almost everyone just wants to get the
product validated and out the door so they can start working on something new and more
interesting. But the only time ‘easier’ makes sense is if you don’t have any competitors.
If this is the case, it’s much more practical to let customers do the hard work of catching
those pesky little bugs. But not everyone has this luxury. Do you?

