
Agile development and functional testing: friend or foe?

Author: Tom Vercauteren, Functional Tester, SD Worx, Belgium

Abstract
Agile Development methodologies (in our case: Scrum) often assume that
the customer and developers work together so closely that there is no
need for a functional analyst or tester to be present on the team. In real
life, our customer does not always know what he wants, so you do need
an analyst, and our developer occasionally makes a mistake, so you do
need a tester. This document explains how you can fit “functional testing”
into the Scrum methodology, without too much overhead, or deviation
from the basic principles of Scrum. This method was successfully tested
in at least 2 projects.

What is Scrum?
For those of you who have not yet heard of Scrum, this is what you need
to know: Scrum is a time-boxed methodology, that uses time-frames of
typically 2 to 4 weeks.
During this time, called a Sprint, a team of developers programs one or
more “User Stories”. These “User Stories” are things that the Product
Owners wants to be able to do with the new software.

For example: During Sprint 3 we will develop these User Stories:

 The customer wants to check the balance of his account

 The customer wants to withdraw money of his account

That’s all we start from. As the Product Owner works closely with the
Developers, all further details will be filled in while development is in
progress.

All team members are present at a short daily meeting during which all
issues, and To-Do’s are discussed. This is called the “Daily Standup”,
because we don’t use chairs…

For more (accurate) information, look around on stickyminds.com

User stories

Acceptance Criteria

As a tester, all we get is the User Stories, and when they’ll be done.

See the example above: During Sprint 3 we will develop these User
Stories:

 The customer wants to check the balance of his account

 The customer wants to withdraw money of his account

We know that “Sprint 3” ends in 4 weeks, so that’s when these User
Stories will be “done”, which means that we could theoretically go live with
them. This also means we need to have them tested by then!

As a tester, I need more information than “The customer wants to
withdraw money of his account” (and so does the developer), so we start
asking questions:

 What if there is no money on the account?

 How can we be sure that it’s his own account he is withdrawing money
from? How is this secured?

 Where can you withdraw money? Only at the ATM of your own bank,
or at any ATM?

 …

The answers to these questions ALWAYS surfaces during the Sprint,
whether it is the tester, the developer or the analyst that asks the question.
The problem is, it’s almost NEVER formally captured…

This information is called “Acceptance Criteria”, and it should be added to
the user story it belongs to!

We use yellow sticky notes to write the User Stories on, and we attach
orange sticky notes with this extra information to the original note.

In the end, a User Story looks like this:

And at the end of the Sprint, we add this information to our documentation.

Test Plan

1. A User Story should be tested as soon as it is developed.

2. Up to the last moment, new information about the Story can be
discovered

This means that even at the last moment, you never have a valid “Test
Plan”. There is never time for:

 writing a rigorous test plan

 creating in depth, fully detailed test scripts

 running a complete set of regression tests (manually)

You can only keep up with the work by working Agile yourself!

 Only write the documentation that is absolutely necessary!
o Don’t: “press button X, fill in field Y, …”
o Do: “withdraw money from account that contains no money”

 Use “exploratory testing”, e.g. write down your test cases as you
execute them.

 Use the Acceptance Criteria.

 Regression Testing needs to be automated.

Sprint Backlog

Bugs

A Sprint Backlog gives us an overview of the work we have to do during
this Sprint. Each User Story is broken up into tasks, and these have a
status: to do, in progress, done, …

Not all User Stories are going to be tested:

 A “Spike” (a short – often technical – research) will not be tested

 Technical User Stories (stuff like “set up the test environment”) will
automatically be tested once the functionalities are tested.

Eventually, our Sprint Backlog looks like this: For User Story “25504”, we
have 5 tasks, 3 “to do”, 1 “in progress” and 1 “done”

The fourth column, “In Test” is not standard Scrum.
When a User Story has completed all tasks, except “Test this”, then all
development is done, and the Tester can do his thing.
At that moment, the sticky note of the Story is moved to “In Test”:

At that moment, the Tester should:

 move the task “test this” to “in progress”, as soon as he starts testing.

 add “red sticky notes” for all the bugs that he finds

Bugs are reported during the Daily Standup, and the team decides one of
these:

 to fix this during this sprint

 to add it to the product backlog, for later fixing

 that this is not a bug

As soon as a bug is fixed, the developer moves the note to “in test”, and
adds some comments: “in what release is this fixed?” and “what was the
problem?”.

As soon as the tester verified that the bug is fixed, the note can be moved
to “done”.

When all tests have been executed, and all bugs are fixed, the User Story
is “done”.

Release Management

The trouble with Scrum is that most of the time, the last User Story that we
committed to develop, is testable only a few days before the end of the
Sprint.
In the example below, User Story 24563 can be tested by April 11th, and is
successfully tested by April 14th. Story 26454 is testable by April 24th, but
our Sprint ends on April 25th…

11-04-2009

US-24563 In Test 14-04-2009

US-24563 Done

17-04-2009

US-25504 In Test

23-04-2009

US-26454 In Test

20-04-2009

US-25504 Done

No problem, we just continue testing during the next sprint:

25-04-2009

US-26454 Done

14-05-2009

US-29850 In Test

07-05-2009

US-28968 In Test

12-05-2009

US-28968 Done

The trouble is: when can we go live? When is our product stable enough?

We need to add a short sprint, during which we only fix bugs:

29-05-2009

US-29850 Done

05-06-2009

GO LIVE !

The added bonus of this short sprint is that while the tester is hard at work,
the developers have time to finish the documentation.

Daily stand-up
All team members should be present at every daily stand-up meeting.
That includes the tester. If, like me, you happen to be a “shared tester”,
and you’re working on 2 small teams (a tester can service on average 5
developers, so I ended up with 2 teams of 3 developers), that means you
have two daily meetings of 15 minutes each. If for some reason you can’t
attend each meeting, the team should agree on a fixed weekday, on which
attendance is mandatory (for the tester, the developers, the customer
representative, the project manager, …).

Sprint burn down
Whenever a bug is discovered, you add a “red sticky note” to the task list.
Unfortunately, this causes the “Sprint Burn Down chart” to go up:
(This chart visualizes the number of tasks still remaining in the sprint. The
green line is the “expected number of tasks finished each day”)

As you clearly see, the black line never hits the bottom by the end of the
sprint. This can be a bit demotivating, so we fixed this:

 at the start of the sprint, the team determines the task that need to be
done, and create yellow sticky notes for each of them.

 for 15% of these yellow notes, we add blanc “red sticky notes” and we
already count them when we draw the green line.

 whenever a bug is found, a red note is used. We found that the
presence of these red notes actually encourages developers to start
using them too, so this adds transparency to our process, which is
what Scrum is all about.

 if we have red notes left at the end of the Sprint, we did a good job,
and just chuck them in the “done” column.

The Demo
At the end of each Sprint, there is a meeting where whatever is finished in
the product is demonstrated to the entire team. This is not the same as
acceptance testing! I actually saw one product owner sitting there with his
hands in his pockets muttering “Yeah, it works great. This will do fine by
me. Let’s go live with this…”
No “real user” had actually even seen it, and he never even actually
pressed the button…

It is my opinion that the product owner should conduct a formal
acceptance test, preferably the day before the demo (so he can present
his conclusions there). You might want to cover this issue by having the
product owner formally sign off on acceptance of your product.

No user interface?
Some user stories have to be tested, while they don’t actually deliver a
user interface. Today, more and more software is developed as a service,
and later on someone may or may not slap a user interface on it. If your
team does not deliver a UI, you should ask them to create a “test
application for testing purposes” at the very least. Do remind them that
this test-UI should NOT do any validation! If a function expects an integer,
the tester should be allowed to hand it a text, just to see what the function
does with it!

Definition of DONE
When is something done?

A task is done when it is tested by the developer. He’ll typically have
automated unit and integration tests in place.

A user story is done when it is functionally tested (to the best ability of the
tester, using mostly exploratory testing), and the team agrees that there
are no significant defects left.

A defect is done when it is resolved by the developer, and the tester re-
tested it, found no remaining issue, and closed the defect.

