
Defect Tracking Best Practices

Abstract:

Whether an organization is developing a new system or maintaining an existing system,

implementing best practices in the defect tracking and management processes will save time and

effort. In this paper we discuss typical issues and lessons learned, and map these to preventive

measures.

Bio:

Employed since April ’02 as Bureau Chief for the Engineering Compliance Bureau, Information

Technology Division, New Mexico Human Services Department. In this position I oversee testing

and process improvement for several large maintenance phase applications as well as new projects.

Previously employed and consulted for 18 years in test engineering and test management for NASA

and private satellite communications projects, including NASA TDRSS and Iridium.

Defect Detection Distribution and the SDLC

For the near future at least, software projects will invariably require defect tracking and

management. Until software engineers come up with a method to completely prevent defects from

getting created, defects will require review, fixing, testing, and re-release to the production systems.

Figure 1 illustrates a typical defect detection distribution for a new project. Figure 2 illustrates the

desired detection distribution for a new project. Although the Software Development Lifecycle

(SDLC) methodology in place may somewhat affect the project schedule and defect count at release,

the project will still likely be delivered with a residual defect count that looks more like Figure 1

than Figure 2. For example, a project using the Spiral SDLC model may have the project activities

overlapping each other rather than in discreet phases as shown. And an Agile Scrum management

approach may have development iterations of subsystem functionality. However, all SDLC models

have common constraints: the resources available (skilled staff and tools), accurate requirements

management, the schedule available, and the capabilities of the management team. These constraints

result in delivery of the project with a non-zero defect count. It is therefore imperative that the most

critical and show stopper type of issues be quickly identified and tagged for priority fix and retest.

For a project that has achieved maintenance phase, the objective is to efficiently correct the

deficiencies, especially those affecting the customer. These must also be appropriately identified and

tagged for priority rework, retest, and re-release.

Defect Lifecycle

Figure 3 illustrates a typical defect lifecycle and the relative amount of time for the rework. The

desire to limit the total amount of lifecycle time requires an examination of each defect state and the

transition between states. The time within each state is dependent on the project management

practices and resources (development tools, staffing levels, etc). The time to transition between

states is incurred by the communications and hand-off processes, at the heart of defect tracking.

Defect Tracking Issues

Having supported many types of software intensive projects, I have observed many types of issues

with the defect tracking processes, even for projects with expensive tracking tools in place. In the

following discussion we list and define the types of issues resulting from poor defect tracking, and

the resulting impacts to the defect lifecycle.

1. Defect Repository Uses Ad Hoc Spreadsheet

New projects sometimes are late in acquiring their defect tracking tools and processes, and

can find themselves in this situation. The quick ad hoc response is the spreadsheet repository.

This method requires all the project participants to periodically open the spreadsheet to

update and/or read state changes and status. It also requires a single controlled version so that

everyone uses current information. This method is only helpful while the number of open

defects is small and relatively stable. It is unwieldy and unreliable when there are many

program participants and/or many defects to work. It is a certain recipe for disaster for

complex or large projects.

2. Defect Repository via Email

The use of email to report and store defects is another ad hoc method. All participants must

keep copies of the emailed defects. As status updates are provided, there can become very

many emails for each defect. It gets very difficult to track status as the defect goes through its

fix lifecycle. Utilizing email for a defect repository opens up the possibility for multiple

points of failure.

3. Defect Repository Inaccessible

If the defect repository is not accessible for some project members, they will need to request

those who have access to retrieve or update defect information. This situation can result from

an insufficient number of tool licenses, from inaccessible servers, or from security privilege

issues.

4. Insufficient Issue Description

If the analyst cannot understand the nature of the defect issue, they must contact the defect

originator for clarification. No forward progress can be made on the defect until the

originator provides the missing information.

5. Supporting Data Unavailable

The analyst often requires the supporting data for an issue to fully understand it. If this was

not provided, the analyst must contact the originator for the location of the data. No forward

progress can be made on the defect until the originator provides the supporting data. The

analyst may have no choice but to declare the defect as closed due to insufficient data. Time

is wasted in either trying to recreate the test results data or in reopening the defect when it

eventually recurs in the test lab or with the customer.

6. Sequence of Events Unclear

The analyst sometimes requires information regarding the sequence of events leading up to

the issue. If it is not properly documented in the defect write up, and if the tester cannot

recreate the sequence in the test environment, the analyst may have no choice but to declare

the defect as closed due to insufficient information. Time is wasted in either trying to recreate

the sequence or in reopening the defect when it eventually recurs in the test lab or with the

customer.

7. Insufficient Defect History

An insufficient record of the changes and state transitions can create confusion. Suppose for

example that a defect has gone through the fix-test cycle twice and failed both times. If the

history record does not properly indicate the information for each failure, then the assigned

analyst might not use the current test information for the failure analysis.

8. Unclear Assignment

If the team members cannot determine who is currently assigned to the defect, chances are

that it is not being worked. The defect may languish until the next review meeting.

9. Incorrect Assignment

If the wrong team member is assigned the defect, it may not be getting the attention it

deserves. If the team member is not the most proficient in the system domain for the defect

(software or hardware domain, subsystem, or function), the defect might not get resolved

correctly or efficiently.

10. Incorrect Priority Assigned

The effects of incorrect priority assignment are obvious – the lower priority work is being

tasked before the higher priority work. Once this situation is discovered and the team is re-

tasked, the actual higher priority defect is completed later than when it should have been

completed. The lower priority item gets placed onto the “to do later” queue and may not be

revisited for some time, resulting in the Old Defects issue.

11. Poor Prioritization Scheme

The defect prioritization scheme for the development phase of a new project is slightly

different from the prioritization scheme for the maintenance phase. Since the project phase is

concerned with on-time delivery of a not yet used system or product, the prioritization

scheme is based on the affect to the implementation schedule. During the maintenance phase,

the prioritization scheme is based on the impact to the customer. In addition, adding or

changing priority levels mid project creates confusion and can leave defects incorrectly

prioritized. Assigning too many defects the highest priority defeats the purpose of having

priorities, as it creates confusion in determining which tasks to work first.

12. Old Defects

A low priority defect that has not been worked for a long time can become problematic. The

product users may develop a work around for the defect, which over time may become part

of their standard operating procedure. In addition, the data or knowledge for the defect may

be lost over time, making it more difficult to work once reassigned.

13. Defect State Incorrect

This issue can easily occur when the assigned participant completes their task but fails to

update the defect status with the change of state. The defect may not be properly assigned or

tasked until the incorrect state is corrected.

14. Defect Not Classified

System defects can result from a number of issues, and can originate during all phases and

from all realms of the project. Classifying defects by root cause (code, design, requirement,

CM, etc) and by domain (software or hardware subsystems) helps to sort and assign them.

More importantly, classification metrics can help reveal systemic issues. For example, many

recent defects classified as CM related may indicate poor code migration processes.

15. Backlog Trend Unknown

Figures 4 and 5 provide example defect trending metrics, used to analyze defect density

distributions. The defect density is the number of defects per size of the application or

domain. If you don’t know the trends in the domains or subsystems, it may not be clear

whether you may need hire new resources or reassign resources from one domain to another.

16. Increasing Defect Backlog

The backlog of defects may indicate a resource tasking problem or a systemic problem (such

as architecture, implementation, or design) as seen in Figure 5. The backlogs must be

reviewed periodically.

17. Defects Renumbered or Deleted

Deleting or renumbering of the defects affects the capability to research historical issues and

trends.

18. Infrequent Defect Review Meetings

Periodic defect review meetings are required to assign new defects and to review the status of

the backlog as needed for possible state changes or reassignments. Failure to review often

enough can delay assignments or reassignments, can delay state changes, and can delay

escalation of serious system or resource issues.

19. Insufficient Defect Review Team Membership

Like an Agile Scrum team, the right parties must work together for these reviews to be

productive. Development, Test, and the customer must be represented at the reviews.

Mapping of Issues to Preventive Measures & Best Practices

Figure 6 takes the issues as identified above and maps them to preventive measures. These can be

described within the context of the project plans or deliverables described below.

Project Plan Scheduled Tasks and/or Deliverables:

 Plan for Acquiring a Defect Tracking Tool (software, licenses, admin manuals)

o Tool reviews / decision to purchase or use home grown tools

o The contractor should be tasked with procuring the tool and assigning the rights to the

customer after project warranty.

o Tool Installation & Setup

o Tool Training

 Plan for Platform Needs (infrastructure for supporting tool and defect database)

o Acquisition

o Installation / Network Integration

o Configuration of Security & Access Rights

 Plan for Development of a Defect Tracking Plan to address each of the following *

o Defect Report Content

 Originator / Origination Date

 Defect Description

 Sequence of Events

 Supporting Data

 Defect Lifecycle History

 Subsystem or Domain Category

 Root Cause

o Defect Tracking Process

 Numbering Scheme

 Prioritization Scheme

 Categorization Scheme

 Root Cause Assignment Scheme

 Assignment to Team Members

 Defect Lifecycle Flow (States and State Transitions)

 State Transition Communications

o Defect Reviews

 Required Attendees

 Defect reviews should begin during unit testing.

 Review Schedule (meet more often for new projects)

 Defect Review Agenda (assignment of priorities, assignment of defects to

team members, reassignments, review of backlog, reporting to management)

o Process Training

 Training and User Manuals

* Additional Considerations for Best Practices

1. Defect States. The work flow for each project may be different. The defect management tool

and process should allow for a project team to determine the defect states and the milestones

necessary to transition from state to state. Typical defect workflow states are:

a. New (to be assigned)

b. Analysis (analysis of issue in progress, Analyst assigned)

c. Invalid (duplicate issue, or “works as designed”; may be closed)

d. Ready For Dev (analysis complete, ready for software coding)

e. Development (software coding in progress, Developer assigned)

f. Ready For Test (software change complete)

g. System Test (system testing in progress, Tester assigned)

h. Failed Test (failed system test or UAT, to be returned to Analysis)

i. UAT (Ready for UAT, or UAT in Progress)

j. Migrate (UAT Complete, Ready to Migrate)

k. Closed

2. State Change Communications. The processes and tools should provide for efficient

communication of defect state changes throughout the defect workflow, so that a defect is

never left in limbo. Ideally, the users are provided a notification the instant a defect is

assigned to them. Some defect tracking tools provide this feature.

3. Prioritization. The process and tool should allow for assigning the appropriate priority level.

Most priority schemes use four levels – numbered 1 to 4 where 1=high, 2=medium, 3=low,

and 4=“nice to have”. During the system development phase of a project, defect prioritization

is a function of impact to the implementation schedule (Project Risk), whereas during the

operational phase, defect prioritization is a function of impact to the business.

4. Defect Root Causes. It is useful to assign a defect root cause to the defects. This helps to

facilitate metrics analysis and reporting of defect density distributions for the various

functional areas or software domains. The categories of root causes should include at a

minimum the following process areas:

a. Requirements (Requirements definition error or issue)

b. Design (Design error or design documentation error or issue)

c. Code (Coding error or issue)

d. CM (Configuration Management error or issue, including migration errors)

e. Test (Tester error, works as designed, or test issue)

f. Documentation (Incorrect user manual or operational documentation)

g. Environment (Issue resulted from external or environmental condition)

h. Not Reproducible (Root cause unknown)

i. Invalid (duplicate issue, or “works as designed”)

j. TBD (Root cause is yet to be determined)

5. Metrics Reports. The tools should provide for generation of sorted reports, user specified, to

facilitate team review of the following:

a. Defect backlog (all non-closed defects for the current date).

b. Number of defects opened and closed during a reporting period.

c. Total defects generated by a given date.

Figure 1

Figure 2

Typical New Project Defect Counts
Open

Defect

Count

Design Development

and Unit Test
Integration

& Test

System

Test

Product

Release

Requirements

Definition

Phase

Desired New Project Defect Counts

Open

Defect

Count

Phase

Design Development

and Unit Test

Integration

& Test

System

Test

Product

Release

Requirements

Definition

Figure 3

Defect life time is a function of the time within each state and the time to transition between states.

Defect Lifecycle Time

Time to Fix

Defect

State

Initial Product

Release

New Issue

Found

Issue

Assigned

Analysis &

Rework
Testing Re-Release

Typical

Defect Life

Time

Desired

Defect Life

Time

Figure 4. A proper defect backlog trend

0

10

20

30

40

50

60

70

80

1/30/2005 4/24/2005 7/31/2005 10/30/2005 1/29/2006 4/30/2006 7/30/2006 10/29/2006 1/28/2007 5/17/2007 10/28/2007

DATE

N
U

M
B

E
R

Prty 1

High

Med

Low

Total SIRs

Figure 5. A problematic defect backlog trend

0

5

10

15

20

25

30

35

40

1/30/2005 5/29/2005 9/25/2005 1/29/2006 5/28/2006 9/24/2006 1/28/2007 8/26/2007

DATE

N
U

M
B

E
R

Prty 1

High

Med

Low

Total SIRs

Tracking Issue Source Corrective Action Preventive Measures
1. Ad Hoc Repository Project

Planning
Defect Tracking Plan Require the Defect Tracking Plan and any tools as project

deliverables. Add tool setup and training to project plan.

2. Email Repository Project
Planning

Defect Tracking Plan Addressed above

3. Repository
Inaccessible

Project
Planning

Server and Network Plans Determine accessibility requirement during project planning, and
translate to server & network requirements.

4. Issue Description Process Process & Training Describe level of detail for defect description field, in the Defect
Tracking Plan, schedule process training in the project plan.

5. Data Unavailable Process Process & Training Describe inclusion of defect supporting data and/or location of data, in
Tracking Plan and training.

6. Sequence Unclear Process Process & Training Describe inclusion of details for sequence of events for issue
description field, in Tracking Plan and training.

7. Insufficient History Process Process & Training Describe the inclusion of historical info for the Tracking Plan, and
training.

8. Unclear Assignment Process Process & Training Describe the process for assignment of defects to project team
members, in the Tracking Plan, and provide for training.

9. Incorrect Assignment Process Process & Training;
Reviews

Describe the process for assignment of defects to project team
members, in the Tracking Plan, and provide for training.

10. Incorrect Priority Process Process & Training;
Reviews

Describe the prioritization scheme in the Tracking Plan; and the
process for assigning priorities at the periodic Defect Review
meetings; and provide for training.

11. Priority Scheme Process Process & Training Addressed above

12. Old Defects Project
Planning

Management Reviews Tracking Plan should describe the process for management review of
old defects at the periodic Defect Reviews.

13. Defect State
Incorrect

Process Process & Training; reviews Describe defect states and (state transitions in Tracking Plan; provide
for training, and include in periodic reviews.

14. Defects Not
Classified

Process Process & Training Describe classification scheme for root causes and classifications for
domains in Tracking Plan; and provide training.

15. Trends Unknown Project
Planning

Management Reviews Plan for trending in Tracking Plan; assign trending to a project team
member; plan for periodic review at Defect Reviews.

16. Increasing Backlog Project
Planning

Management Reviews Addressed above

17. Renumbered /
Deleted

Process Process & Training Describe numbering scheme in Tracking Plan; provide for training.

Figure 6. Issues mapped to Preventive Measures

