

Design Patterns in Real Life Object-Oriented Software

 Ashish Srivastava and Dr. Sanjay Gupta
Wipro Technologies, Bangalore, India

In the initial stage of project development phase, design patterns have an
important role. After capturing all the requirements, it is crucial to decide which
design pattern will be most suitable so that we can get the best result out of it in
terms of code optimization, performance, maintainability etc. Design pattern
helps to reuse code and architecture. It is essential that our design should be
specific to the problem at hand but in the same time it should also general
enough to address future problems and requirement.

1. Introduction

Designing object-oriented software is hard, and designing reusable object-
oriented software is even harder. Design pattern describes a problem, which occurs
over and over again in our environment, and then describes the solution to that
problem. Design patterns constitute a set of rules describing how to accomplish
certain tasks in the realm of software development. In general design pattern has
four elements: - Pattern Name, Problem, Solution and Consequences.

The fundamental reason for using varies design patterns are to keep classes

separated and prevent them from having to know too much about one another.
There are a number of strategies that OO programmers use to achieve this
separation, among them encapsulation and inheritance. Nearly all languages that
have OO capabilities support inheritance. A class that inherits from a parent class
has access to all of the methods of that parent class. It also has access to all of its
non-private variables. However, by starting your inheritance hierarchy with a
complete, working class you may be unduly restricting yourself as well as carrying
along specific method implementation baggage.

Instead, Design Patterns suggests that one should always Program to an
interface and not to an implementation. Purring this more succinctly, we
should define the top of any class hierarchy with an abstract class, which
implements no methods, but simply defines the methods that class will support.
Then, in all of our derived classes we have more freedom to implement these
methods as most suits our purposes. Advantages: Clients are unaware of the
specific class of object they are using one object can be replaced by other object
easily. Increase in flexibility. Improves opportunities for composition since
contained object can be of any class which is implementing a specific interface.
Disadvantages: Increase the design complexity

Another approach might be useful is Favors object composition over
inheritance. This is simply the construction of objects that contain other objects.
Encapsulation of several objects inside another one. While many beginning OO
programmers use inheritance to solve every problem, as you begin to write more
elaborate programs, the merits of object composition become apparent. Your new
object can have the interface that is best for what you want to accomplish without
having all the methods of the parent classes. Advantages: (Over composition):
Internal detail of an object is not visible to other, object are accessed by containing

class through their interfaces, good encapsulation, Each class will have only one
task, The composition can be defined dynamically at run-time through objects
acquiring reference to other objects of the same type. Disadvantages: (Over
composition): System will have more objects, Interface must be carefully
designed in order to use many objects. Advantages: (Over inheritance): new
implementation is easy since most of it is inherited, easy to modify or extend the
implementation being reused. Disadvantages: (Over inheritance): Break
encapsulation, since it exposes a subclasses to implementation details of it super
class, sub classes may have to change their implementation if super classes
changes, Implementations inherited from the super class can not be changed at
run time.

2. Design Pattern Catalog

Design pattern vary in their granularities and level of abstraction. Because
there is many design patterns, we need a way to organize them. This section
classifies design patterns so that we can refer to families of related pattern. This
classification will help us to learn the patterns in the catalog faster, and it can
direct efforts to find the patterns as well.

 Purpose

Creational

Structural

Behavioral

Scope Class Factory Method Adapter (Class) Interpreter
Template Method

 Object Abstract Factory
Singleton
Builder

Prototype

Adapter (Object)
Bridge

Composite
Decorator

Façade
Fly weight

Proxy

Chain of responsibility
Command
Iterator
Mediator
Memento
Observer

State
Strategy
Visitor

Fig. 1 Design Pattern Space

As shown in Fig. 1, we classify pattern catalog by two criteria. The first criterion,

called purpose, and reflects what a pattern does. Patterns can have creational, structural
or behavioral purpose. Creational pattern – concern the process of object creation,
Structure pattern – deal with the composition of classes or objects and Behavioral
pattern – characterize the way in which classes or objects interact and distribute
responsibility.

The second criterion called scope - specifies that the pattern primarily to classes
or objects. Class pattern deals with relationships between classes and their subclasses.
These relationships are established thru inheritance, so they are static, fixed at compile
time. Object pattern deal with object relationships, which can be changed at runtime and
are more dynamic. Creational (purpose) pattern scope - Class – defer some part of

object creation in subclasses, Creational (purpose) pattern scope - Object – defer some
part of object creation to other object. Structural (purpose) pattern scope - Class – use
inheritance to compose classes. Structural (purpose) pattern scope - Object – describes
ways to assemble classes. Behavioral (purpose) pattern scope - Class – use inheritance
to describe algorithm and flow of control. Behavioral (purpose) pattern scope - Object –
describes how a group of objects perform a task that no single object can carry out alone.

3. Pattern in real life object oriented softwares

As we have seen that there are lot of patters in design catalog, but some of them
are used very frequently and very effectively. I will try to explain some of them, which I
found to be the most useful.

3.1 The Factory Pattern

One type of pattern that we see again and again in Object oriented programs is the
Factory pattern. A Factory pattern is one that returns an instance of one of several
possible classes depending on the data provided to it. Usually all of the classes it returns
have a common parent class and common methods, but each of them performs a task
differently and is optimized for different kinds of data.

Fig 2: Factory Pattern

In Fig 2, x is a base class and classes xy and xz are derived from it. The Factory is

a class that decides which of these subclasses to return depending on the arguments we
give to it. On the right, we define a getClass method to be one that passes in some value
abc, and that returns some instance of the class x. which one it returns doesn't matter to
the programmer since they all have the same methods, but different implementations.
How it decides which one to return is entirely up to the factory. It could be some very
complex function but it is often quite simple. We should consider using a Factory pattern
when A class can’t anticipate which kind of class of objects it must create or a class uses
its subclasses to specify which objects it creates or we want to localize the knowledge of
which class gets created.

3.2 The Abstract Pattern

The Abstract Factory pattern is one level of abstraction higher than the factory

pattern. We can use this pattern when we want to return one of several related classes of
objects, each of which can return several different objects on request. In other words, the
Abstract Factory is a factory object that returns one of several factories. One classic

xy xz

x

Factory x getClass

abc

application of the abstract factory is the case where our system needs to support multiple
“look-and-feel” user interfaces, such as Windows-9x, Motif or Macintosh. We tell the
factory that we want our program to look like Windows and it returns a GUI factory, which
returns Windows-like objects. Then when we request specific objects such as buttons,
check boxes and windows, the GUI factory returns Windows instances of these visual
interface components.

In Fig. 3 (see below), Abstract Factory – declares an interface for operation that

creates abstract products objects, Concrete Factories – implements the operations to
create concrete product objects, Abstract Products – declares an interface for a type of
product object, Concrete Products - defines a products objects to be created by the
corresponding concrete factory. We should consider using a Abstract Factory pattern
when system is independent of how its product are created, composed and represented,
When a system is configured with one of multiple families of product, We want to provide
the class library of products and we want to reveal just their interfaces not their
implementations

Fig 3: Abstract Pattern

3.3 The singleton Pattern

The Singleton pattern is grouped with the other Creational patterns, although
it is to some extent a “non-creational” pattern. There are many numbers of cases in
programming where we need to make sure that there can be one and only one instance
of a class. For example, our system can have only one window manager or print spooler,

AbstractFactory
createProductA()
createProductB()

Client

ConscreteFactroy1

CreateProductA()
CreateProductB()

AbstractProductA AbstractProductB

ProductA1 ProductA2 ProductB1 ProductB2

ConscreteFactroy2

CreateProductA()
CreateProductB()

or a single point of access to a database engine. In other way, the singleton pattern
ensures that a class can have only one instance, and provide a global point of access to it.

Fig 4: Singleton Pattern

In Fig. 4, Singleton – defines an instance operation that let clients access its unique
instance, it may be responsible to create its own unique instance. We should consider
using a Singleton pattern when there must be exactly one instance of a class, and it
must be accessible to client from a well-known point.

3.4 The Adapter Pattern (class and object scope)

 The Adapter pattern is used to convert the programming interface of one class
into that of another. We use adapter pattern whenever we want unrelated classes to work
together in a single program. The concept of an adapter is thus pretty simple; we write a
class that has the desired interface and then make it communicate with the class that has
a different interface. There are two ways to do this: by inheritance and by object
composition. In the first case, we derive a new class from the nonconforming one and
add the methods we need to make the new derived class match the desired interface. The
other way is to include the original class inside the new one and create the methods to
translate calls within the new class. In brief, the Adapter pattern convert the interface of
a class into another interface client expect, and lets the classes work together that
couldn’t otherwise possible because of incompatible interface.

Singleton

Returns
unique
instance

Adapter

Request()

Client Target

Request()

Adaptee

specific Request()

Defines an existing interface
that needs adapting

collaborates with objects
confirming to the target interface

Specify the domain specific
interface that the client uses

Adapts the interface of
Adaptee to the target interface

Fig 5: Adapter Pattern

In Fig. 5, Target – defines the domain-specific interfaces that the client uses, Client
– collaborates with objects conforming to the target interface, Adaptee – defines an
existing interface that needs adapting, Adapter – adapts the interface of Adaptee to
the target interface. We should consider using an adapter pattern when we want to
use an existing class and its interface doesn’t match with the one we need, and when
we want to create a reusable class that don’t necessarily have compatible interfaces.

3.5 The composite pattern

Frequently we develop systems in which a component may be an individual object
or it may represent a collection of objects. The Composite pattern is designed to
accommodate both cases. We can use the Composite to build part-whole hierarchies or
to construct data representations of trees. In summary, a composite is a collection of
objects, any one of which may be either a composite, or just a primitive object. In tree
nomenclature, some objects may be nodes with additional branches and some may be
leaves.

Fig 6: Composite pattern

In the Fig 6, Component – Declares the interfaces for objects in the composition,
Implement default behavior for the interface common to all classes, as appropriate,
Declares an interface for accessing and managing its child components (optional), Defines
an interface for accessing a component’s parent in the recursive structure, and
implements it if that’s appropriate, Client – manipulates objects in the composition
through the component interface. Leaf – represents leaf objects in the composition. A leaf

Client
Component

Add(Component)

Remove(Component)
GetChild(int)
operation()

Leaf

operation()

declare the interface for objects
in the composition

manipulates objects in the composition
through the component interface

Declare an interface for
accessing and managing

its child components

Implements the default
behavior for the interface

common to all classes

Composite

Add(Component)
Remove(Component)

GetChild(int)
operation()

represents leaf objects
in the composition. A leaf

has no children

define behavior for
component having children

store child
component

implement child related
operation in the component

interface

has no children, Defines behavior for primitive objects in the composition. Composite –
Defines behavior for component having children, Store child component, and Implements
child-related operations in the Component interface. We should consider using a
composite pattern when we want to represent hierarchies of objects, when we want client
to be able to ignore the difference between composition of objects and individual objects.

3.6 The Decorator Pattern

The Decorator pattern provides us with a way to modify the behavior of individual
objects without having to create a new derived class. Sometimes we want to add
responsibilities to individual objects, not to an entire class. One way to add responsibilities
is with inheritance. Inheriting a border from another class puts a border around every
subclass instance. This is inflexible, however, because the choice of border is made
statically. A client can’t control how and when to decorate the component with the border.
A more flexible approach is to enclose the component in another object that adds the
border. The enclosing object is called Decorator. It attaches additional responsibilities to
an object dynamically, provide a way to modify the behavior of individual objects without
having to create a new derived class.

 Fig 7: Decorator Pattern

In Fig 7, Component – defines the interface for objects that can have
responsibilities added to then dynamically, ConcreteComponent – defines the object to
which additional responsibilities can be attached, Decorator – maintains a reference to a
component object and defines an interface that conforms to Component’s interface,
ConcreteDecorator – adds responsibilities to the component. We should consider using a
decorator pattern when we want to add responsibilities to individual objects dynamically

component
Operation()

ConcComponent

Operation()

Decorator

Operation()

ConcDecoratorA

Operation()
addedState

ConcDecoratorB

Operation()
addedBehavior()

defines the interface for objects
that can have responsibilities added

to them dynamically

 defines an object to which
additional responsibilities can

be attached

 maintains a reference to a
component object and defines

an interface that confirms to
component’s interface

 add responsibilities
to the component

and transparently that is without affecting other object, for responsibilities that can be
withdrawn.

3.7 The Observer Pattern

In our new, more sophisticated windowing world, we often would like to display
data in more than one form at the same time and have all of the displays reflect any
changes in that data. For example, we might represent stock price changes both as a
graph and as a table or list box. Each time the price changes, we’d expect both
representations to change at once without any action on our part. The Observer pattern
assumes that the object containing the data is separate from the objects that display the
data, and that these display objects observes changes in that data. This is simple to
illustrate as we see below. We should consider using a observer pattern when a change
to one object requires changing others, when an object should be able to notify other
objects without making assumptions about whom these objects are.

3.8 The Template Pattern

The Template pattern provides an abstract definition of an algorithm, whenever
we write a parent class where we leave one or more of the methods to be implemented by
derived classes, we are in essence using the Template pattern. The Template pattern
formalizes the idea of defining an algorithm in a class, but leaving some of the details to
be implemented in subclasses. In other words, if our base class is an abstract class, as
often happens in these design patterns, we are using a simple form of the Template
pattern. We should consider using a template pattern when to implement the invariant
parts of an algorithm once and leave it up to subclasses to implement the behavior that
can vary, We want all the derived classes to implements the algorithm that can vary
depending upon the behavior of subclass.

3.9 The Strategy Pattern

Defines a family of algorithm, encapsulate each one, and make them
interchangeable. It lets the algorithm vary independently from client and use it, it is also
known as policy.

 Here, In Fig 8 (see below), Strategy (Compositor) – declares an interface
common to all supported algorithms, Context use this interface to call the algorithm
defined by a ConcreteStrategy. ConcreteStrategy – implements the algorithm using the
Strategy interface, Context – is configured with a ConcreteStrategy object, maintains a
reference to a Strategy object, may define an interface that lets the Strategy access its
data. We should consider using a strategy pattern when many related class differ only in
behavior. Strategy provides a way to configure a class with one of many behaviors and
when an algorithm uses data that clients should not know about. Use the strategy pattern
to avoid exposing complex, algorithm-specific data structure.

Fig 8: Strategy Pattern

4. Conclusion

There are several ways in which the design pattern can affect the way we design
object-oriented software, based on our day-to-day experience with them. These design
patterns can make us a better designer. They provide solution to common problems.
Design patters are especially useful in turning an analysis model into an implementation
model. The Factory Pattern is used to choose and return an instance of a class from a
number of similar classes based on data you provide to the factory. The Abstract
Factory Pattern is used to return one of several groups of classes. In some cases it
actually returns a Factory for that group of classes. The Singleton Pattern is a pattern
that insures there is one and only one instance of an object, and that it is possible to
obtain global access to that one instance. The Adapter pattern, used to change the
interface of one class to that of another one. The Composite pattern, a collection of
objects, any one of which may be either itself a Composite, or just a primitive object. The
Decorator pattern, a class that surrounds a given class, adds new capabilities to it. The
Template pattern, defines a general algorithm, although the details may not be worked
out completely in the base class. The observer pattern, Define a one-to-many
dependency between objects so that when one object changes state, all its dependents
are notified and updated automatically. The Strategy pattern, allows selecting one of
several algorithms dynamically.

context

contextInterface()

strategy

AlgorithmicInterface()

ConcStrategyA

AlgorithmicInterface()

ConcStrategyA

AlgorithmicInterface()

ConcStrategyA

AlgorithmicInterface()

declares an interface common to all
supported algorithm

implements the algorithm using the
strategy interface

maintain a reference
to strategy object

References

• Design patterns, Element of Reusable OO s/w by Erirc Gamma, Richards Helm, Raplh johnson,
John Vlissides

• Design Pattern, JAVA COMPANION by James W. Cooper

