	Agile Methodology for Team Rehabilitation

	

	 Development teams fail to reach their full potential for many reasons but dysfunctional teams all have common characteristics: Lack of trust, Poor communication, Low morale, Highly segmented members, Limited personal investment in project’s success. Traditional software development methodologies exasperate these problems. Methodologies such as SDLC and Waterfall do not create these issues but they do allow these problems to grow and intensify. Agile principles, when properly applied, can address these issues and lead to true team rehabilitation. Even the most dysfunctional team can be transformed into a high performing and self-correcting team. These Agile principles are: customer satisfaction by rapid and continuous delivery of useful software, working software is delivered frequently (weeks rather than months),working software is the principal measure of progress, late changes in requirements are welcome, close cooperation between business people and developers, co-location is used to facilitate communication, projects are built around motivated and trusted individuals, continuous attention to technical excellence, simplicity, self-organizing teams, regular adaptation to changing circumstances (Beck, Kent; et al. (2001). "Principles behind the Agile Manifesto"). These principles require team members to trust each other and communicate in an open and transparent way. Members are also required to take ownership in the product through commitment to their team. Finally, the team becomes self-correcting through the project retrospective. Using Agile Methodology to create this environment has been proven to be successful in actual real world circumstances.

	

	

Agile Methodology for Team Rehabilitation

Dysfunctional Teams
There are many different reasons that teams perform poorly, but the primary reason is bad interpersonal dynamics. Due to these dynamics the team does not work well together and often fails to reach its goals. Individuals may exceed expectations in the short term, but even these high performers will eventually succumb to the overall team attitude or leave. Dysfunctional teams all share common characteristics: lack of trust, poor communication, segmented members, limited investment in the project’s success, and low morale.

Lack of Trust

One of the most serious issues common to dysfunctional teams is a basic lack of trust between members. This is probably the single most difficult problem to correct. Over time, the pressure of timeline based projects creates resentment and friction between team members as dates get missed and blame is assigned. The lack of trust acts as a decay that destroys the ability of the group to work as a team.

Poor Communication

As trust on the team deteriorates, the members stop communicating. Discussions take place via e-mail as a way of documenting the conversation. Escalation to management typically occurs over the smallest misunderstanding. Obviously teams separated by geography are especially susceptible to this issue, but even teams working in close proximity can experience the same problem. I have experienced members of a group who have discussions via e-mail despite sitting almost shoulder to shoulder.

Segmented Members

As the communication breaks down, the team breaks up into cliques. Instead of working towards a common goal, the segmented members begin distancing themselves from members outside their clique. This segmentation can even lead to the different cliques trying to undermine the other members. Tension within the group can begin to increase and this will force some members to leave the group or even leave the company.

Limited Investment in Project’s Success

Whenever a team exhibits these characteristics, members tend to become very task oriented. Members only concern themselves with their individual assignments; rarely volunteer when issues arise, and almost never step-up to help carry the load of someone else on the team. This situation will have serious impact on the quality of work. Since no one is concerned with the overall quality of the project, issues result in finger pointing and management escalation. In this environment problem solving becomes a time consuming tensioned filled process. As a manager, I was once included on 24 emails over a 5 hour period to solve a simple problem that could have been resolved in less than 20 minutes with direct communication.

Low Morale

The overall impact of these issues on the team is very low morale. In addition to poor product quality and poor response to issues, attrition will certainly be high in this environment. The cost of replacing experienced personnel is very high, especially if a high level of product knowledge leaves with the employee. The biggest problem is the people you can least afford to lose are usually the ones who can find other employment the easiest. Typically these people will leave just before the project is complete because they do not want to be part of “the fallout” that is sure to come from the poor quality. This absence will put additional stress on the team as the remaining members will see their workload increase. New employees might be difficult to find since you are unlikely to get a recommendation from the current team. New hires will also be tainted by the atmosphere described previously. Turnover on a team exhibiting these characteristics will be very high.
Waterfall Methodology: Dysfunction by Design

The team dynamic described can lead to a miserable work environment. Unfortunately, the widely used development methodology, Waterfall (or SDLC) can exasperate these issues.

Overview of Waterfall

Waterfall is a project management methodology designed to be date driven with defined handoffs between functional groups. Very specific deliverables are due at the conclusion of each of Waterfall’s six stages (Analysis, Design, Development, Testing, Implementation, and Maintenance). A specific group is responsible for the completion of these deliverables and then hands them over to the next group. For example, the typical output from the design phase is a detailed design document that includes items such as use cases, architectural diagrams and database diagrams. The developers are expected to take this document and produce the code for the testing phase. Responsibility from the design group ends when the document is complete and handed over. Each step in the process is specified at the beginning of the project and dates are assigned up front.

Waterfall was embraced because it promises many of the features that companies’ desire in their processes: control, detailed steps, documentation, predictable cost, and highly visible completion targets. Waterfall projects tend to last for an extended period of time from 6 months to a few years. Obviously with any project lasting this long, cost can be expected to be high. Companies need to know that the money is being spent wisely and will result in the product they anticipate. As a result, the output from each step gives the company comfort in the progress taking place and the final goal is on target. Unfortunately the truth is typically just the opposite.

Problems with Waterfall

Waterfall is derivative of the project management in the manufacturing and construction industries. Projects in these industries are very predictable with a great deal of historic data to drive the planning. Software development is a completely different animal. While individual tasks might be similar to previous projects, every new development project is different. The environment in which the product is developed is also very different. On the whole the environment is much more fluid. Technology changes, skill levels of the different developers vary, and business pressures change both internally and externally. Since the planning is done up front, the fluid nature of the environment can wreak havoc on the plan. For example, developer time lines are decided upon before requirements are gathered and the system is designed. Developers are required to meet very specific timelines based on very high level project requirements. Project dates are also subject to business pressures. I was part of a project that was scoped out at 12 months, but that time was reduced to nine months because the implementation cycle was a better fit for the business. The scope was not reduced, just the time frame. Despite the promises of Waterfall, projects using this methodology tend to exceed budget and fail to deliver on time. These pressures directly take teams down the path of dysfunction.

Functional Separation

Teams within Waterfall are typically segmented by functional group. As a result the members of these groups are usually located together (i.e. developers sit with developers, business analyst sit with business analyst). Social interactions between functional groups are limited. Direct communication is usually limited to handoff from one phase to the next. All other communication typically happens over indirect methods such as e-mail. As discussed previously, indirect communication is fraught with problems. It usually slows down the process and results in frequent escalations for problem solving. Waterfall by definition promotes this functional separation. The communication between groups is limited to the documentation provided at handoff. The unintended consequence is a group of separate teams with different goals instead of working together for a single purpose.

Handoff of Accountability

In Waterfall, each one of the functional groups has a very well defined deliverable. This deliverable is the goal and sole responsibility of the group. When a functional group completes its defined task, it then hands off responsibility to the next group. This creates a unique circumstance where none of the groups are accountable for delivering a quality product. This responsibility falls to the project manager. When problems arise, each group typically blames the input to its stage as the reason the group cannot deliver. Instead of coming together to resolve issues, the groups resort to blaming one another (i.e. Developers blame missed deadlines on late or incomplete design documents).

Breakdown of Trust

Once the finger pointing starts, trust goes out the window. But the trust breakdown is not restricted to the inter-group; it also spreads within the functional group. Developers start to accuse each other for bugs, Architects blame each other for poor design, etc. These tensions destroy the trust and the damage to the relationships will last well beyond the current project. The group further deteriorates as described previously and these issues are carried over to the next project. Management is then forced to handle personality and communication issues. This task is next to impossible to resolve in an environment that perpetuates these problems. Management’s solution tends to be instituting more structure and control.

More Control, More Problems

As described before, Waterfall is broken down into highly segmented functional groups. Typically each one of these groups has one or more managers. As problems continue to develop between groups, managers are pulled in to help. More often than not, the solution is to increase the amount of oversight and documentation. Communication between groups happens only through managers which creates further separation. In many cases, managers will build an “empire” around their group and filter information in and out of the team as a means of building power. These actions just increase the amount of indirect communication between team members. As explained previously, indirect communication increases the likelihood of miscommunication and unnecessary escalation. This escalation requires more managerial oversight. Relationships become administered by management. This change slows down the process, breeds mis-trust, and negatively affects quality.

Agile Methodology: Teamwork by Design

Successful software development requires a strong team dynamic and, unlike Waterfall, Agile Methodology was created with software development as its primary focus. The basic characteristics of short iterations (quick delivery of software), co-location of team members, and output as the primary measurement of success, foster the type of team behaviors necessary for successful software development.

Short Iterations

The most visible, and many ways the key difference between Agile and Waterfall is the length of time between deliveries. Waterfall releases happen in months or years, while Agile delivers new software in weeks or even days. These short timeframes have two significant effects on the team.

First the team also develops more ownership over the solutions and enforces the corrective behavior necessary for the team to improve. As opposed to blaming other teams or individuals for the problems, Agile teams are responsible to themselves for finding solutions. Short iterations also means checkpoints and feedback happen far more frequently. The effects on code quality have been documented, but the effects on the team are just as significant. A key activity in Agile is the retrospective. This occurs at the end of each iteration and release. During the retrospective the team identifies what went well and what went wrong. This includes revisiting what went wrong in the previous iteration. The team then determines what will be done to correct the problems in the upcoming iteration. The team drives this discussion and resolution. Over time these discussions will help bring out leaders.

Second, the team as a whole defines and commits to goals. This commitment is the key. Short timelines force the team to focus on the task at hand. In order to meet such aggressive time lines the team has to define very specific and realistic goals. In Waterfall so many of the task and deadlines are dictated from outside individuals and the deadlines can be so far in the future that teams become distracted or misdirected. This lack of focus often results in the stress normally associated with the conclusion of a project. In Agile there is no time for distractions. The team has made a group commitment and the team leaders guide the team to completion. This dynamic has an empowering effect on the team. Through this commitment the entire team takes ownership of the deliverables. This can have dramatic effect on the morale of the team and the resulting quality of work.

Co-Location

In Agile functional groups no longer exist. All of the previous groups are now represented as members of the Agile team. In best case scenarios, the team sits together in an open environment. This co-location dramatically increases the amount of direct communication. Problems are addressed much more quickly and issues raised by miscommunication are dramatically reduced. No longer are bonds created by functional department. Co-location fosters personal bonds on the team which will be reflected in how well the team functions. Management is rarely needed to foster communication. The team is now free to focus on meeting commitments rather than waiting on responses to information request. Obviously co-location does not solve all communication problems; some team shuffling may be required due to personalities. Although there has been some success in solving interpersonal issues by forcing people together. Many times these issues are more the product of miscommunication. On the whole co-location builds team unity and breaks down many of the barriers naturally created by Waterfall’s structure and physical separation.

Output as the Measurement of Success

As described in the definition of the hand off of accountability, Waterfall focuses functional groups on the quality of temporary deliverables rather than the quality of the overall project. With the removal of functional groups in Agile, the team is free to focus only on the ultimate deliverable. The quality of the end product is how the team will be measured. No more can groups point to having “done their part”, everyone is now accountable for the end product. This has a significant positive impact on the team. This naturally generates cohesiveness in the team since all are working towards a common goal. Again this helps identify leaders regardless of functional skill. Leaders will naturally step forward to make sure the team stays on track to meet its commitments. It is also not uncommon in an Agile environment for individuals to become knowledgeable or even experts in different functional skills; Developers gain business knowledge, product owners learn to test, etc. The emphasis is on focus and accountability. Performance being measured on the output of the entire group, increases both of these qualities in individuals and the overall performance of the entire team.

Transformation to a High Performing Team

The ultimate goal of any development methodology is to produce high quality software in a timely manner. The number one factor in accomplishing this goal is how well the team functions together. Agile Methodology starts by designing the process around the team and removes many of the structural barriers created in Waterfall. Empowerment, direct communication, feedback and correction are the keys to developing a high performing team. In fact, these factors lead to a self-correcting team. That is a team that identifies problems (personal or technical) early and corrects them in a manner that most benefits the team. The Retrospective is a major tool for developing these attributes. Leaders will naturally come to the forefront and correction will take place outside the structure of a formal meeting. When this occurs the team’s productivity and quality will exceed previous expectations. New hires will be mentored into the team concept and those who distract from the team can be quickly identified and removed. It is these concepts which make Agile Methodology a great tool for not only developing high quality software, but also building high performing teams from previously dysfunctional ones.

The final and most important piece in completing this puzzle is the role of management. Management’s role in an Agile environment is very different than the role in Waterfall. Waterfall managers tend to manage by gates and deadlines. Gates refer to the hand-offs between groups. As mentioned before, this is a formal process with very specific deliverables and due dates. Management’s role in this environment is ensuring that the team meets deadlines and negotiating the inevitable changes and conflicts between groups. Waterfall teams have very little flexibility which creates tension and requires increased management involvement. Agile management requires empowering teams to make decisions themselves. This change in management philosophy is the most critical layer to success of the Agile process. Empowerment is typically over-used in American corporations, but it is required for Agile teams to develop. Self-correction within the team cannot take place without the responsibility of decision making being embedded in the team. A manager must trust the team to make the right decisions. This can be a difficult transition, but without it, Agile will fail. The manager’s primary role then becomes one of removing obstacles to the team’s success. This could range from acquiring hardware, to dealing with team members who are carrying their weight. This role is distinctively different than the one performed in Waterfall, but is critical to the ultimate success of the team. It is critical that the culture of responsibility and commitment be ingrained with in the entire organization. It is not only the functional managers who must change their philosophy, but a change is necessary all the way to top executives. Agile requires trust, commitment, and responsibility from every member of an organization. When this change takes place, not only will the teams transform, but the entire organization will as well.

“Self-correction within the team cannot take place without the responsibility of decision making being embedded in the team. A manager must trust the team to make the right decisions. ”

“In the best case scenarios, the team sits together in an open environment. This co-location dramatically increases the amount of direct communication. Problems are addressed much more quickly and issues raised by miscommunication are dramatically reduced. No longer are bonds created by functional department.”

“The most visible, and many ways the key difference between Agile and Waterfall is the length of time between deliveries. Waterfall releases happen in months or years, while Agile delivers new software in weeks or even days.”

“When a functional group completes its defined task, it then hands off responsibility to the next group. This creates a unique circumstance where none of the groups are accountable for delivering a quality product.”

Characteristics of a Dysfunctional Team

(((

Lack of trust

Poor communication

Highly segmented members

Limited personal investment in project’s success

Low morale

By Steve Vaughn

