A Checklist for Good Agile Testing Practices
By Biswajit Nanda
Summary:
While conducting a session on agile testing in Nokia, I got the idea to create a checklist to assess different teams on good agile testing practices. The original idea was to assess different teams in the organization itself. The objective was not to assess the delivery capability of agile teams—after all, teams that don’t follow these practices might still deliver good software. Rather, this checklist was meant to give an indication of the extent to which teams follow a set of fundamental agile testing practices that have helped a number of teams to improve their productivity and remove technical and managerial debt.
The checklist has five categories, each containing multiple items. At the end, there is a link to download the checklist.
Build and Environment

Is your build deployment automated or scheduled?

Build deployment is repetitive, so it is good to automate this activity. An automated build process including a sanity test suite gives immediate feedback on the stability of the build and saves time. Many companies still follow a manual deployment process to production and test environments. This process is time consuming, and the feedback on the correctness of the build usually arrives late. For an agile team with sprints as short as two weeks, this is very costly. Lisa Crispin and Janet Gregory in their book Agile Testing: A Practical Guide for Testers and Agile Teams have recommended to have a fully automated and reproducible build that runs several times a day which has proved to be a key success factor for many agile teams.
Do you have a separate test environment?

There are many reasons why agile teams should have dedicated test environments. It is not uncommon to see developers hard coding, setting the configuration settings or environment variables with temporary values, or making references to invalid objects to make things work (for example, temporarily creating an object under the assumption that the real one will be available at a later date). But, when the software is deployed to production, issues get overlooked. Deploying to a test environment exposes many of these problems.
I had one example where the code was working in a developer’s local box because the box had SQL Server SP1. But it did not work in test server because SP1 was missing there. The production server was also not having SP1 installed. In this case, if the code would have been deployed in production directly, it would have been broken. It is also a good practice to have the configuration of the test environment as much close to production as possible.
Planning

Are there clear story acceptance criteria or initiative to improve this clarity?

Scrum does not mandate how the product backlog is defined, but most of the agile teams prefer user stories. A user story should be associated with clear acceptance criteria. Acceptance criteria define how a story can be tested. If the acceptance criteria consist of too many items, the story should be split into multiple stories. In Agile Product Management with Scrum, Roman Pichler has advised product owners to accept product backlog items that comply with the definition of done and fulfill the acceptance criteria. He has also mentioned unfinished or defective items earn zero points and should be put into backlog. Though it might be the sole responsibility of the product owner to define acceptance criteria, the team should give feedback in case it is not clear. Many effective agile teams do a pre-planning exercise before the actual sprint planning meeting. This helps in better understanding and defining the story and its acceptance criteria in the planning meeting.
Development

Do you practice test-driven development (TDD)?
Test Driven Development is a Software Development Process where the developer writes a test first, runs the test to see if it fails and then writes a piece of code to make the test pass. In Agile Coaching, Rachel and Liz have mentioned that developing using TDD technique helps the developer to work from the outside in than inside out because for each test they consider the interface of the code before its internal logic. In Test Driven Development using Fitnesse, Gojko has also mentioned many advantages of TDD like building quality right from the start, validating interfaces early, providing a safety net for the code etc.
In Agile Testing: How to succeed in an Extreme Testing Environment by John Watkins, Lucjan Stapp, an assistant professor at the Warsaw University of Technology, presents a case study on TDD. The study shows that there is a learning curve for teams new to TDD. But, once the team gets used to it, the number of bugs reduces significantly.
Do you practice code review or pair programming?
Code Review should be mandatory for every piece of work as it is a way cheaper than having customers find those bugs in production. Code reviews can catch issues that are difficult for tools like readability, clarity, consistency in names etc. Additionally, Code Reviews can also focus on hard-to-test issues like quality of tests, proper error handling, resource leak, buffer overflows, race conditions, format string exploits, security issues, performance, portability etc. Reviews can be done in various forms like Pair programming, informal walkthroughs and/or formal inspections.
In Pair Programming illuminated, authors Laurie Williams and Robert Kessler have enlightened us on the advantages of Pair programming. They have shared their story of how they got interested in pair programming after hearing many extreme programming success stories with this technique. From Ward’s wiki they read "Get two people programming in pairs, and they'll work more than twice as fast as one could have" (Wiki 1999, contributed by Paul Chisholm).
A few out of the many advantages of Pair programming the authors have mentioned are as follows.
a) Pair Programmers work harder and smarter on programs as they do not want to let the partner down
b) They work intensely as they are motivated to complete the task at hand during the session

c) They discuss and determine the best plan of attack. Knowledge and experience of both the partners get used in finding the right solution.
d) In pair programming, a number of defects get identified and removed from the start

e) Often the programmers identify bug in their code while explaining to a partner

They advise to do pair programming at least on the most complex tasks if working together at all times is not possible.
Do you practice pair testing?
Pair testing has many of the same benefits as pair programming. In Exploratory testing in pairs, Cem Kaner and James Bach have described the benefits of using Pair Testing. Pair Testing is very much different from other type of testing as this involves an idea generation activity. When one tester explains her ideas to another tester, the ideas come to better focus and it triggers new ideas.
Additionally, if pair testing involves the product owner or the customer, it can bring greater results as they can validate the product from the business perspective.
Do you practice unit and integration testing?
I can’t overstate how important unit/integration testing is. Your definition of “Done” should clearly mention this, and the development part of the story cannot be said to be complete unless it is unit tested. Gojko in his book Test Driven Development using Fitnesse mentions the fundamental differences of advantages of TDD and Unit Testing. In teams where acceptance tests drive development, some write fewer unit tests as the acceptance tests test the application functionality. However the issue is, failed acceptance tests indicate a problem but do not locate the source as clearly as the unit tests do. Additionally in unit testing, white box testing techniques like statement coverage, branch coverage and condition coverage etc. identify fundamental problems in code which is mostly not covered by acceptance tests.
Testing

Do you use acceptance tests?
Acceptance tests in agile projects are used to verify if the acceptance criteria of the story have been met. As the main objective of these tests is to confirm that the implementation meets the needs of the customer, it is a good practice to involve business users in developing true user scenarios and workflows. These scenarios and workflows then determine the acceptance criteria of the story. The success of the acceptance tests is largely dependent on the clarity of acceptance criteria. If the acceptance criteria are not clear and specific, teams get confused and the right product do not get built. So, agile teams should establish clarity of acceptance criteria and development of effective acceptance tests to validate the acceptance criteria.
Are your regression tests automated?
It is highly recommended to automate regression tests. As the number of completed sprints increases, code gets added incrementally and testing everything manually becomes an impossible task. With an automated regression test suite, testing existing functionality becomes a matter of minutes. Regression tests also provide a safety net by letting the team know immediately the unexpected effect of a change of code. Hence, regression tests should be automated.

Do you practice exploratory testing?
James Bach defines exploratory testing as “simultaneous learning, test design and test execution.” In exploratory testing, a tester designs, executes tests and based on his learning comes up with more scenarios which he then converts into tests and executes. Though useful for all kinds of applications, ET is extremely powerful for web applications because of their complexities. In Exploratory Software Testing, James Whittaker has presented many examples of teams that have implemented exploratory testing and have discovered defects not identified in functional testing. Exploratory testing dramatically improves a product’s quality as it uses the imagination and emerging insight of the tester additionally. For more on effective exploratory testing, see Agile Testing: A Practical Guide for Testers and Agile Teams by Lisa Crispin and Janet Gregory, Elisabeth Hendrickson’s chapter on exploratory testing in The Art of Agile Development, and James Bach’s article on Exploratory Testing Exploratory Testing Explained
Team

Do you have an agile mindset and good team collaboration?

An Agile mindset is very important in agile teams. For challenges like regression test automation or solving a technical problem, the whole team should take responsibility. None of the team members should live in fear for reasons like lack of programming skills. Manual functional testers transitioning to agile teams often lack required programming skills, but they find important or critical bugs that others do not find because of their functional experience. Connecting all the dots and a whole-team attitude makes an agile team great. Teams should create an environment of learning and collaboration.
Do you incorporate customer collaboration?
As customers are the people for whom you are building the product, their involvement early gives a scope of building the right product. In my project, the customer is an internal customer and they often are invited for walkthroughs of the application. It really helps as we get their feedback early. Their feedback gets captured and implemented in the sprint itself or a story gets added in the backlog for the future. We also involve the customers in reviewing acceptance test cases and test data used. It works very well; they identify test scenarios which are not valid from business perspective or test scenarios that need to be added to cover a critical business function. With effective customer collaboration, success becomes predictable for agile teams. In teams where end customer collaboration is not possible, collaboration with the Product Owner and involving him in walkthroughs of the product will help.
Does your team have the motivation and passion to learn new things?
A true agile tester is always motivated to learn and use new tools, technologies and/or processes, so passion and motivation to learn new things is very important. If that passion is missing, higher management should identify ways to make this happen. Additionally, organizations should invest in training for team members and should encourage participation in events like agile meetups to make them more effective.
The list for agility assessment is big but this checklist lists the core ones which are important from testing perspective. I have no doubt that implementing these will improve the effectiveness and quality of deliverables of agile teams in organizations. Organizations can make use of this checklist for agility assessment and identifying areas of improvement (from testing perspective).
Resources

This checklist can be downloaded at Checklist for Good Agile Testing Practices
