
Adapted from the forthcoming book, Architecture-Centric Software Project Management: A Practical Guide
by Daniel Paulish. Copyright 2002. Addison-Wesley.

Experience with Global Software Architecture
Design & Development

       Michael L. Greenberg   Daniel J. Paulish Peter Hess
Siemens Corporate Research Siemens Corporate Research Siemens Metering

755 College Road East 755 College Road East Feldstrasse 1
Princeton, NJ 08540 Princeton, NJ 08540 CH-6301 Zug, Switzerland

+1 609 734 3347 +1 609 734 6579 +41 41 724 4374
mgreenberg@scr.siemens.com dpaulish@scr.siemens.com Peter.Hess@zug1.siemens.ch

Abstract: In this paper, we describe our experience designing and developing a system---for acquiring and
processing data from electric, gas, and water meters---among four development sites located in Switzerland,
Germany, and the U.S.    Some of the techniques we used for project planning and management are described.
We observed that a number of multicultural variables affect the overall performance of the development team.
Based on our experience, a set of recommendations is given for managing global software development teams.
Although we collectively felt that a single-site project team is likely to be more efficient than a multi-site team,
the diversity of ideas and skills offered by a multi-site team resulted in a product line architecture that is flexible,
modifiable, and adaptable to different market requirements.
Keywords: Software architecture, project planning, high-level design, global analysis, global development,
multicultural variables.

Background

In 1999, we initiated the design of a software architecture (called Athena) for meter data acquisition and
processing central stations.  A product line architecture was required since multiple application packages were
envisioned in order to support the future business needs.  In addition, existing product architectures were being
evaluated for supporting the envisioned application packages.

Historically, these existing product platforms were often modified and tailored towards customer specific
requirements within project engineering centers located throughout the world.  As a result, proliferation of
platforms and products was occurring so that it was difficult to bring new features back into the baseline
product.  Furthermore, there was a strong trend towards deregulation in the power distribution industry that was
believed would cause changes in requirements as well as new business opportunities.

The headquarters for the Siemens Metering business is located in Zug, Switzerland.  Siemens Metering was
formed by the merger of the metering businesses from Siemens Power Distribution and Transmission located in
Nuremberg, Germany and Landis and Gyr, located in Zug.  In addition to these two sites, Athena team members
were also located in the U.S. in Princeton, New Jersey and Charlotte, North Carolina. Thus, location, country,
language, ethnicity, and corporate culture created a high degree of diversity within the development team.

A meter data processing central station collects data from electric, gas, and water meters connected via
telephone lines and other media.  The meter data is stored and processed.  The type of processing depends on
the type of consumer using the resource and its contractual agreement with the supplier of the resource.  Thus,
many different types of software applications must run on the Athena platform.  For example, the processing
software for commercial consumers using electricity would be quite different than for residential water



2

consumers.  Furthermore, control functions are provided.  For example, commands are sent out to high power
utilization equipment when load must be shed during high demand periods.   Modern electric meters can
provide measurement data as often as once a minute, which allows tariff agreements to be specified between
energy consumers and providers such that the price of energy varies depending on the time of day, week, and
year and also the amount of energy used.  Athena performs calculations on the meter data, the results of which
are typically sent to a utility's billing system.

Five initial application packages were planned for implementation on the Athena platform.  These ranged
from meter data acquisition through calculation and reporting to load management control and payment systems
implementation.  The application requirements were quite diverse and required a high degree of flexibility from
the product line architecture design.  The first two applications were directly supported by the architecture since
their development was initiated shortly after the architecture was designed and reviewed. At the time of the
architecture design, marketing requirements specifications existed for the first two applications but not for the
other three applications.

Why Global Development?

We decided very early during the high-level architecture design that a global development was necessary.  This
decision was a result of an analysis technique called global analysis [1], in which we systematically looked at
influencing factors and the resulting design strategies.  The analysis made it visible that it would be difficult to
implement Athena at any single location, since no site had a full set of necessary development skills.
Unfortunately, global analysis and global development use the word global in different ways.  Global analysis is
a high-level design technique for determining design and project strategies.

Global Analysis

The global analysis considered factors that would influence the design of Athena, grouped into categories of
organizational, technological, and product influences.  Analysis of the influencing factors resulted in a set of
design strategies that have been used to guide both the product line architecture design and implementation of
the application packages.  The organizational influencing factors very much pushed us towards a design strategy
of using a global development team for the Athena design and implementation.

Organizational Influencing Factors

Organizational factors such as schedule and budget apply only to the product currently being designed.  Other
organizational factors such as organizational attitudes, culture, development site(s) location, and software
development process can impact every product developed by an organization.

An example of an organizational influencing factor for Athena was that the technical skills necessary to
implement the application packages were in short supply since prior products had been Unix-based with local
user interfaces and marketing required new products to be Windows-based with web-based user interfaces.  The
resulting strategy to address this influence was to bootstrap and exploit expertise located at multiple
development sites, to invest in training courses early in the development and to make use of consultants.  Also, a
second level of design specification documentation was developed at a lower level than the high-level design.
This system design specification concentrated on describing the interfaces between major subsystems of the
architecture, so that it was easier to parcel out a subsystem development to a remote software engineering site.



3

Another organizational factor was that company management wanted to get the product to the market as
quickly as possible.  Since the market was rapidly changing, it was viewed as critical to quickly get some
limited features of the product to potential users so that their feedback could be solicited.  Our strategy to
address this factor was to develop the product incrementally such that scheduled release dates were met even if
some features were missing from the release.  Thus for Athena, project schedule took priority over functionality.
A build plan was developed for each engineering release identifying the sequence for adding functionality.  The
project functionality and schedule were baselined after each engineering release.  We found that a 6-8 week
development cycle for each engineering release worked well for the development team to provide a reasonable
set of features that could be tested and evaluated.  With such a strong emphasis on speed to market, we needed
to acquire development resources wherever we could find them, which resulted in a development team located
in four locations.

Design Strategies

Design strategies determine the priorities and constraints of the architecture and help identify potential risks
associated with the implementation of the software system.  As a result of the Athena global analysis, twenty-
four design strategies were identified that we believed could address the influencing factors.  From these twenty-
four design strategies, six major conclusions were derived and used as guiding principles for the Athena
architecture design and resulting development.  One of the major conclusions resulting from the global analysis
was to set up a global development team.  This put constraints on the design so that components could be more
easily distributed for development at multiple locations, and the development environment and tooling were set
up for multiple locations.

Architecture Design

A high-level design team was formed originally consisting of five engineers with a mixture of domain and
architecture design expertise. A chief architect was appointed from Princeton, and the team began the
architecture design in Zug by analyzing the marketing requirements, developing the conceptual architecture,
investigating applicable development technologies, and doing some simple prototyping.

The Athena high-level software architecture was designed using our four views approach - conceptual,
module, execution, and code [1].  This design approach decreases the complexity of the implementation and
improves understanding, reuse, and reconfiguration (Figure 1).  The architecture was reviewed using the
Architecture Tradeoff Analysis Method (ATAMSM) [2], which is a structured analysis technique that evaluates a
software architecture with respect to multiple desired qualities (e.g., survivability, modifiability, performance,
security), developed at the Software Engineering Institute (SEI).

We also analyzed the architecture to provide inputs to the project's development cost and schedule
estimation [3]. With our architecture-centered software project planning approach (ACSPP) (Figure 2), the
software architecture design document is a primary input to the top-down and bottom-up project schedule and
effort planning processes.  From this we derived an incremental development build plan such that the product
functionality is built up feature by feature within engineering releases that are system tested until the
functionality and quality are adequate for beta testing with prospective customers.



4

Conceptual

Module

Code

Source Code

E
x
e
c
u
t
i
o
n

H
a
r
d
w
a
r
e

Figure 1. Four views of software architecture.

High-
Level

Design

Bottom-
Up

Estimate

Top-
Down

Schedule

Release
Planning

Project
Schedule

Software
Development

Plan

Personal
Schedules

Figure 2. Architecture-centered software project planning.

The software architecture of Athena is based on a three-tiered model (user interface tier, business logic tier,
and database tier), such that new metering applications can be easily added in the future at the middle or
business logic tier (Figure 3).  The user interface tier consists of a set of web pages, a web server, and a web
browser for interaction with the user.  The business logic tier is a group of subsystems that defines the business
applications.  The database tier contains the database interface, database tables, and database procedures. The
business logic subsystems use the database interface or call database procedures to obtain and manipulate data
in the database tables.

Customer accounts are managed through the consumer tree subsystem, where the relationships among
master accounts, accounts, contracts, and consumers are described within a hierarchical structure (Figure 4)
called the consumer tree.  Each node in the consumer tree contains information about the account and a set of
active elements. An active element is an object that encapsulates a part of the knowledge necessary to describe
the data processing required for a node in the tree (e.g., a contract).  Active elements include meters, tariff
agreements, calculations, and reports. Active elements are interconnected to form calculation chains. Schedules
of actions are maintained at each node such that a daily schedule is automatically generated and loaded to the
meter data acquisition package from the data processing package.  A design goal was to make the system easy
to extend by the addition of new active elements.



5

Microsoft's Excel is used as a general-purpose computation and reporting engine.  This provides both power
and ease of use since most users are already experienced with using Excel spreadsheets for calculations.

Web Browser

Web Server, Web Pages

DB Interface

S
u
b
s
y
s
t
e
m

Acquisition

Intranet or Internet

Internet

Internal network

Private
Tables

Shared
Tables

Database
Tier

Processing

Business Logic
Tier

} User Interface
Tier

}
Private
Tables

Figure 3. Three-tiered architecture.

Top Node

Master
Account

Master
Account

Consumer
Workset

Report1
...

Consumer

Workset

Report
Socket

Contract

Contract

Workset

Report1
Report2
Computation
Scheduled Event

Workset

Report1
...

Figure 4.  Consumer tree.
The web-based GUI (top tier) provides marketing, implementation, and cost advantages.  User capability is

simplified and empowered through the use of templates.  Operators of Athena can manage the system
(depending on their security profile) from a web browser on any client computer connected to the Internet or
their intranet.  The architecture is designed for scalability since multiple users can access the system
simultaneously, with customer data segmentation and checkin/checkout capabilities for avoiding conflicts.



6

We believe that the resulting architecture is much more general and flexible than it would have been if it
were designed within a single-site development effort.  We observed that within a multi-site/multicultural
project environment, communication is more difficult.  By being more flexible, we are allowing more
possibilities for increasing the functionality.  As understanding is increased, we are able to increase functionality
without changing the design.  This generality does come at a cost.  The architecture is more complicated than it
would have been otherwise.  One way in which the flexibility has paid off is with the ease of adding active
elements.  Initially, we expected to implement five types of active elements.  Now there are eight, with several
more expected.  Another example is with the use of Excel.  At first, there was significant resistance to using a
general-purpose tool such as Excel, since prior projects had implemented specialized "lighter weight"
calculation engines.  Had we instead implemented our own calculation and reporting engine, we would have
had significant problems as the requirements have evolved and become clearer.

Project Planning

We planned the software development as a sequence of incremental engineering releases with increasing
functionality.  The first release consisted of a 'vertical slice' through the architecture layer diagram, which
functioned as a prototype of the architecture.  The last release is the first set of functionality that can be sold as a
package to a customer.  We also planned alpha and beta releases that were tested by an in-house system testing
function in Switzerland or by lead users.  The project schedule was structured such that while in-house testers or
users are testing a release, the development team is working on the next release. The cycle time for these
incremental releases depended on the times needed for testing and feature development, as well as business
constraints such as when the first set of useful functionality is needed by customers.  For our global
development, we found a 6-8 week cycle time between incremental releases to work best.  The release plans
were also driven by the dates of trade shows, at which time a new release with the latest functionality is
required.  We suggest fixing the release dates and release cycles, and then fitting in the functionality for each
release depending on the bottom-up estimates and what makes sense for functionally testing the software as a
set of user visible features.

The incremental release process was also a result of our global development process.  We found that one of
the best means of communication was by using the system itself.  Only after parts of Athena were prototyped
was it possible to fully understand and discuss the requirements.  Perhaps this is because the operation of the
system itself became a common language for us all.  Incremental releases also encouraged the developers to
quickly learn and start using new technologies, since they needed to learn enough to be able to implement even
partial functionality.

ER1 ER2 ER3 R1 R2+
Schedule Maker

Search Consumer Tree for Scheduled Events √√ √√
Create a Schedule √√ √√
Handle Report Events √√ √√
Handle Acquisition Events √√ √√
Optimize Acquisitions √√
Handle set Parameter Scheduled Events √√ √√
Display and manual Update of Schedules √√ √√

Figure 5. Build Plan.



7

With consultation from marketing and project management, a build plan (Figure 5) was completed detailing
which product feature would be incorporated in which engineering release.  From the build plan, a Software
Development Plan (SDP) for each release was made.  The SDP contains individual task assignments, sets of
features, dependencies between features, risks, and test plans.  Like the architecture, the SDP is a
communications vehicle, and thus it must be simple enough to be understood by everyone on the team. Also, it
is better for the engineers to plan the details of their work within their personal schedules, rather than for project
management to schedule everything for them. This is especially true for multi-site development, where the
developers must be flexible and responsive to the work going on at the other sites.

During the planning process for each incremental release, drafts of the proposed schedules and task
assignments were circulated to the team members. The first version was distributed as a proposed development
schedule and staffing plan to get feedback from all the team members.  We would often receive feedback from
the team members such as "this feature cannot be achieved in the time frame planned", "Joe is better qualified
for this task than I am", or "I have vacation or training planned during these weeks".  Based on this feedback, a
second version of the plan would be developed and distributed which contained the "final" schedule committing
the release dates and desired feature set.  We later learned during our intercultural training that the Swiss are
more comfortable with such a consensus building approach (called Vernehmlassung in Swiss German), while
the Germans are more used to management specifying the development schedule.

We found that a clear division of development responsibilities was very important to the European team
members.  The SDP represents a commitment by the project team to develop the software product within the
schedule and staffing requirements described.

We have found that a description of the overall project goals is useful and should be stated within the
software development plan.  An example statement of project goals is, quality will have higher priority than
schedule, which will have higher priority than functionality.  Such a statement of project goals helped the
project manager make the tradeoffs that inevitably must be decided right before a release.  It helped give
guidance in answering the last minute questions such as, should I slip schedule to put in a few more features?
The project goals are important to explicitly state for a global project team, since we observed cultural biases
concerning qualities such as timeliness, perfectionism, quality, openness, and transparency.

Project Management

Each development site had a local manager to manage the team members at that site.  There was also an overall
project manager and a project manager for the software application package development.  Thus, there was
overlapping management responsibility for achieving the project goals.  These managers had to negotiate
individual work assignments; for example, if an individual was planned to work on multiple application
packages in parallel.  The overall project manager resolved conflicts that couldn't be handled at a lower level.  In
practice, many of these types of staffing conflicts surfaced when the proposed software development plan was
distributed for feedback.

The chief architect was responsible for decision making and resolving technical conflicts for the application
package.  Analogous to the overall project manager, there was an overall technical manager.  In practice, key
technical decisions that affected the overall project goals were reviewed with the project and technical
management in Switzerland, before they were implemented.

Each subsystem that was designed and implemented for Athena had a responsible engineer assigned to it.
This approach was strongly supported by the European technical team members, who wanted clear division of
responsibilities and ownership of subsystem code.  In some cases, team members (especially in the U.S.) took
on project nicknames consistent with their role within the project.  For example, "GUI guy" was the person



8

responsible for the user interface development.
A key role for the project was the "buildmeister" who was responsible for building and the integrating the

system daily as new functionality was added.  A centralized source code repository was used with access by all
team members.

Project status tracking was done during weekly teleconferences.  Each team member was encouraged to
report on their development progress and raise information or issues to be shared with other team members.  We
noticed during these teleconferences culturally based communication differences where the Americans
primarily wanted to discuss progress while the Europeans primarily discussed problems.  To help balance the
reporting of problems and progress we requested team members to experiment with role reversals such that the
Americans initially described their problems during development before describing their progress and visa versa
for the Europeans.

Multicultural Variables

Multicultural variables are a factor for projects developed in multiple countries [4].  These variables can be
exploited as strengths for the development or they can get in the way, depending on how they are handled.  Our
project was not only multi-site, but also multinational.  There were also strong multi-company cultural variables,
since part of the development team had come from a company that had been recently acquired by Siemens.

Having gone through team training and multicultural training for Americans, Swiss, and Germans, we were
very aware of the role of multicultural variables on our project, although we sometimes didn't know what to do
about them.  For example, we observed that there are culturally biased attitudes concerning basic qualities such
as punctuality.  These biases often indirectly affect our project schedule planning and execution.  This can lead
to frustrations for certain team members.   Knowing that the frustration is culturally based sometimes helped us
better accept our team members' perceived strengths and weaknesses, and may have reduced the frustration.

Some of the very basic project decisions that are taken for granted by single-site development teams could
have significant overloaded meanings for multinational teams.  For example, a decision such as our design
documentation will be written in English is usually insignificant to a U.S.-based team.  For a multinational team
with team members who are not native English speakers, this decision can affect the task time estimates of team
members with less experience writing specifications in English.  This can frustrate American team members
who are thinking, "why are those Europeans so slow"?

Language can also affect the way that design meetings and reviews are conducted.  In an environment
where design alternatives are expected to be "argued" until a consensus approach is determined, the non-native
English speakers can feel disadvantaged.  They may be less skilled in communicating their preferred design
approach.  Sometimes in such design meetings, the designer who speaks most and the loudest will bias the team
to pursue a specific approach.

Software engineering is usually concerned with the management of tradeoffs.  Project managers and
development team members constantly wrestle with concerns such as, "if I had a few more weeks to perfect my
design, the resulting code should be higher quality, but the product will take longer to get to the market".
Cultural biases concerning qualities such as perfectionism, quality, work ethic, teamwork, etc. will often color
the tradeoffs that are selected.  Within a project with a tight schedule and limited staff, tradeoff decisions among
quality, schedule, and functionality are made every day.

One of the more difficult cultural differences addressed within Athena was the frequency of interaction and
collaboration among the team members.  We observed that the European colleagues preferred to be assigned a
task, and then they would pursue that task with minimal interaction with their colleagues.  Americans tended to
ask more questions of each other after they had initiated a task, sometimes changing the task characteristics, as



9

new information became available.  This sometimes made it difficult for project management to measure the
progress of development tasks or the relative productivity of team members [5-8].  A project rule was proposed
such that if an individual spent a predefined amount of time on a task, then they were encouraged to ask
questions of a colleague to help move the task along.  Setting up a chief architect was important to support this
rule, since most of the time the team members would direct their questions to him.

Lessons Learned

At the current point of development, we are pleased about our experience with implementing the first two
application packages using the Athena software architecture.  The development of a system design specification
was viewed by some team members as an unnecessary step that delayed the start of the application packages
implementation.  However, new development team members working on both the current and new application
packages have successfully used this specification.  It has been critical for partitioning work packages across the
four development sites located within Europe and the U.S.  We have observed that integration of the various
subsystems has gone remarkably smoothly when the subsystem leaders are brought together in one location.

We've had good experiences with our approach to incremental development.  By publishing the URL for
the test system in Switzerland, all team members and their management can watch the progress of the
development as new features are continually added.  This was a big morale boost for the team, since everyone
was aware of the rapid progress that was being made after the high-level design phase was completed and
development began.  The first engineering release was an implementation of a vertical slice through the
architecture.  This helped validate the architecture and gave the development team the confidence and
understanding of the architecture to be able to implement the future engineering releases.

At the end of the planning phase for each incremental release, each team member has a personal schedule
with weekly milestones for the components that he is responsible for developing. In addition, there is an overall
project schedule, monitored by the project manager that identifies how the components are allocated to the
incremental releases.  The schedules have been developed to a large extent by the development team members,
and thus their ownership of these schedules is relatively high. Business management, marketing, service, and
sales can refer to the SDP and the Release Plan to see when functionality becomes available within the various
incremental releases.

Since we put priority on meeting scheduled release dates and traded off functionality and quality as
necessary, the development team successfully achieved every release date.  This helped build up the credibility
of the development team with management, since they knew that a new set of functionality would be ready for
validation testing by the dates that were planned and committed to at the beginning of the baselined engineering
release cycle.  Fortunately, our quality remained relatively high throughout the development, so the tradeoff
between meeting schedule and quality was never seriously challenged.

In the beginning, project meetings were held monthly, rotating among the development sites.  Currently
meetings are held mainly for major subsystem integrations or when training and/or detailed design work is
necessary to get someone started on a new development task.  We have weekly teleconference meetings to track
schedule status and to bring up common problems that the developers should be aware of.  We publish the goals
of the teleconference in advance, using the techniques we learned to plan and conduct meetings during the team
building training.

Despite our best efforts at communicating among the four development sites and our emphasis on design
documentation with well-defined interfaces, global development is clearly more difficult than single-site
development.  This is a result of occasional miscommunications that are caused by different vacations and
holidays in the three countries, time zone differences, and occasional network or computer outages.  For



10

example, if questions arise for colleagues in Europe during their evening hours while the U.S.-based teams are
working, they likely will need to wait until the next day before they can be resolved.  To compensate for the
unexpected, team members often used the home telephone numbers of their colleagues in the other countries,
and the system is rebuilt almost every day in multiple locations using the latest checked in source code.  We
have also invested in technical training, team building, and multicultural training for the development team
members.

The Athena software product line architecture is designed to be very flexible and expandable to handle a
wide variety of applications.  This is a primary design requirement, since the power distribution industry is
rapidly changing as a result of worldwide deregulation.  The diversity of our development team members with
differing skills and experience has helped us achieve a flexible design.

Recommendations for Global Development Teams

Based upon our experience on the Athena project, we provide the following recommendations for global
software development teams split across the U.S., Germany, and Switzerland.  The suggestions and lessons
learned are probably most applicable to medium sized software development projects.  We do not claim that
very small or very large projects should be done this way.

• Develop a project culture: In order to reduce cultural variables, explicitly build a unique project
culture.  This project culture can select norms from a single culture or mix the "best" characteristics
of multiple cultures.  This project culture is established from the very beginning of the project.  For
example, from the beginning will team members address each other by their family names or given
names?  By explicitly developing this project culture, the comfort level of individual team members
should increase.  A skilled project manager can recognize the cultural differences while setting the
norms for the project.  For example, a project manager can state, "we realize that you normally don't
spend so much time in design meetings, but for this project we will meet for another couple days
before we break off to write specifications".

• Set project goals: Within a multicultural environment it is important to set clear project goals and
define the criteria that must be satisfied for project success.  This means putting relative priorities on
project characteristics that must be traded off such as quality, schedule, and functionality.  For
Athena, we decided during global analysis that project schedule would take priority over
functionality.  Such goals definition at the beginning of the project helps the team recognize when it
has achieved success.

• Overcommunicate: For global development, it is necessary to overcommunicate.  This is necessary to
overcome communications problems associated with language understanding.  Abbreviations and
slang should be avoided.  Decisions made during verbal communications must be followed up in
writing.

• Put as much as possible in writing: As related to overcommunicating, it is important to put as much
project information in written form as possible.  This includes both technical information such as
specifications as well as project information such as the software development plan.  For project team
members who are working in non-native languages, put as much technical information as possible in
diagrams that are easier to read than words.  For software architecture descriptions, the UML notation
has been helpful [1].

• Patience: Issues will not be resolved as quickly for a global development team as compared to a team
located at a single site.  In our case, with a six-hour time difference between the European and U.S.
sites, the common workday was limited to a couple hours.  Many issues were not resolved until the
next day.  Thus, all team members must practice patience.



11

• Identify team roles: Attempt to identify each development team member's role in the project.  For
Athena, we defined roles and named the roles with titles that we thought would provide some
understanding of the role.  In some cases, we needed to communicate and describe the roles a few
times before team members understood them.

• Build consensus: Different cultures have different ways to indicate agreement and resolve conflicts.
Within global development teams, consensus should be built at every opportunity.  The European
colleagues often were more comfortable with hierarchical decision making, but the power of a diverse
multinational team with differing viewpoints can only be tapped when team members are actively
solicited for their opinions.

• Invest in team building and multicultural training: This training helped us to formulate our project
culture.  Particularly important were the meeting management skills that we learned during the team
building training.  The training also gave us an opportunity to learn more about the various team
members and some of their cultural biases and stereotypes.  The group exercises done during the
training can address real project issues such as defining the software development process.

• Get to know each other outside the work environment: Common meals and outings after working
hours helped form personal as well as professional relationships among the team members.  The
personal relationships often helped bridge the gap when communications broke down during the
workday.  The personal relationships were also helpful for handling logistics and information issues
that resulted from traveling: where to stay, shop, eat, relax, etc. when away from home.

• Travel: It is extremely important for key players to work together in person. We have consistently
found that a day of face-to-face communication is more effective than a couple weeks of
communication by telephone and email.  This is especially true with team members from different
countries, where non-verbal communication plays a much larger role in the exchange of information.

• Management support: Project management for global development must be both centralized and
localized.  Overall project leadership must be centralized, but every development team member needs
a local manager for day-to-day support.  Thus, multi-site collaboration and cooperation is necessary
for the management team.  Nevertheless, team members who are highly self-directed seem to perform
better on global teams.

Conclusions

The high-level design and estimation process for Athena has been very useful for estimating the effort, dividing
the work, and building buy-in and a common project culture for a team geographically distributed across three
different countries.  Six incremental releases were defined with an average interval time of 8 weeks.  All
planned release dates have been met so far.  The biggest complication in developing the schedules has been to
coordinate holiday and vacation times for development team members across the three countries.  For example,
development progress came to almost a complete stop at the end of 1999 when all countries were celebrating the
new millennium.  This pushed back an intermediate release milestone, which reduced the amount of time
available for the development of the next release.  We have learned that the greatest enemy of the global
development manager is the varying holiday and vacation schedules of the team members within the different
countries.

Team members of multi-site projects must, because of geography, be highly self-directed. Assigned tasks
must be flexible enough to address the tradeoffs that come up that must be resolved without waiting for the next
business day.  Team members must collaborate with their technical interface counterparts frequently, especially
when stuck on design issues.  Face-to-face meetings still work best.

We have concluded from our experience on Athena that global development is not as fast or efficient as a



12

team located in one place.  Often, questions must wait a day to be answered since they usually do not arise
during the limited common working times of team members in different time zones.  However, the overall
strength of global development is the flexibility and modifiability of the resulting design.  Different views of the
product colored by cultural biases, knowledge of local market conditions, experience with differing
technologies, etc. result in a design that is more adaptable to changing markets than when the design is done by
a single location team with less cultural and technical diversity.

Acknowledgements

We wish to acknowledge the contribution of the other members of the Athena high-level design team, namely
Bill Sherman, Paul Bruschi, Henk LaRoi, and Sascha Lukic and the support of our management team, namely
Uli Syre, Michael Sommer, Tom Murphy, and Ali Inan.

References

1. C. Hofmeister, R. Nord, and D. Soni, Applied Software Architecture, 2000, Addison-Wesley,
Reading, MA.

2. R. Kazman, M. Barbacci, M. Klein, S. Carriere, and S. Woods, "Experience with Performing
Architecture Tradeoff Analysis", Proceedings of the 21st International Conference on Software
Engineering, New York, ACM Press, 1999, 54-63.

3. D. Paulish, R. Nord, and D. Soni, "Experience with Architecture-Centered Software Project
Planning", Proceedings of the Second International Software Architecture Workshop (ISAW-2), New
York, ACM Press, 1996, 126-129.

4. E. Kopper, "Swiss and Germans: Similarities and Differences in Work-related Values, Attitudes, and
Behavior", International Journal of Intercultural Relations, Pergamon Press, 1993, 167-184.

5. C. Jones, Applied Software Measurement, 1991, McGraw-Hill, New York.

6. L. Putnam and W. Myers, Measures for Excellence, 1992, Yourdan Press, New York.

7. R. Austin and D. Paulish, "A Survey of Commonly Applied Methods for Software Process
Improvement," Tech. Report CMU/SEI-93-TR-27, ESC-TR-93-201, Software Engineering Institute,
Carnegie Mellon Univ., Pittsburgh, PA, 1993.

8. K. Moeller and D. Paulish, Software Metrics: A Practitioner's Guide to Improved Product
Development, 1993, IEEE Press, London.

ATAM is a service mark of Carnegie Mellon University.



Dan Paulish
Dr. Paulish is currently a software project manager at Siemens Corporate
Research in Princeton, NJ, responsible for Siemens' software architecture
research and development program. He has over twenty years’ experience in
software engineering management. He has been an international lecturer on
software process improvement methods, project management, and
measurement.

He is a co-author of Software Metrics: A Practitioner’s Guide to Improved Product
Development, published by IEEE Press and the author of a forthcoming book,
Architecture-Centric Software Project Management: A Practical Guide to be
published by Addison Wesley. He is formerly an industrial resident affiliate at the
Software Engineering Institute (SEI), and he has done research on software
measurement in Europe.  He holds a Ph.D. in Electrical Engineering from the
Polytechnic Institute of New York.

Siemens Corporate Research
755 College Road East
Princeton, NJ 08540 USA
+ 1 609 734-6579 (phone)
+1 609 734-6565 (fax)
dpaulish@scr.siemens.com


	Paper
	Bio

