
Wednesday, November 3, 1999
1:00 PM

P R E S E N T A T I O N

FINITE STATE MODEL-BASED

TESTING ON A SHOESTRING

Harry Robinson
Microsoft Corporation

W5

INTERNATIONAL CONFERENCE ON

SOFTWARE TESTING, ANALYSIS & R EVIEW
NOVEMBER 1-5, 1999

SAN JOSE, CA

Presentation Notes
Paper
Bio
Return to Main Menu

1

Finite State Model-Based Testing
on a

Shoestring

Harry Robinson

Intelligent Search Test Group

Microsoft

2

So What’s a Model?

z A model is a description of a system’s behavior.

z Models are simpler than the systems they describe.

z Models help us understand and predict the system’s behavior.

3

We All Use Models Already

Digital

 hmm …

if I am in Analog mode

and I select Digital mode

I should end up in Digital mode

4

How to Use Models in Testing

Digital

Setup: Clock is in Analog mode

Action: Select Digital mode

Outcome: Did Clock go correctly to Digital mode?

5

How to Create Model-Based Tests

z C reate a s tate m o d e l of the appl icat ion

z G e n e rate sequences of tes t act ions

z Execute the test act ions

z D e term ine i f the appl icat ion w o rked r ight

z F ind bugs

6

Step 1 :

C reate a state m o d e l of the
app lication

7

A Simple Clock State Model

Analog

Start Stop

Analog

Digital

StartStop

Digital

CLOCK
NOT

RUNNING

CLOCK
NOT

RUNNING

8

System Mode = NOT RUNNING

AND

Action = Stop

Rule: You can’t execute the Stop action
if the Clock is not running

All Actions Aren’t Always Available

9

§ Clock is running; Available actions: Analog, Digital, Stop

§ Clock is not running; Available actions: Start

Operational Modes
Operational modes are state attributes that determine

§ the actions that are possible in a state, and

§ what outcome will result if an action is taken.

Example:

10

Using Rules to Build the Model

Stop

z If the Clock is not running, the user cannot execute the Stop action.

z If the Clock is running, the user can execute the Stop action.

z After the Stop action executes, the application is not running

11

possible = TRUE ‘ assume the action is possible

if (action = “Stop”) then ‘ want to do a Stop action?

 if (system_mode = RUNNING) then ‘ if clock is in running mode

 new_system_mode = NOT_RUNNING ‘ clock goes to not running mode

 else ‘ otherwise

 possible = FALSE ‘ Stop action is not possible

 endif
endif

if (possible = TRUE) then ‘ if action is possible

 print system_mode;”.”;setting_mode, ‘ print beginning state

 print action, ‘ print the test action

 print new_system_mode;”.”;new_setting_mode ‘ print ending state
endif

Using VT Code to Build the Model

12

The Generated Finite State Table
Beginning State Action Ending State

NOT_RUNNING.ANALOG Start RUNNING.ANALOG

NOT_RUNNING.DIGITAL Start RUNNING.DIGITAL

RUNNING.ANALOG Stop NOT_RUNNING.ANALOG

RUNNING.DIGITAL Stop NOT_RUNNING.DIGITAL

RUNNING.ANALOG Analog RUNNING.ANALOG

RUNNING.ANALOG Digital RUNNING.DIGITAL

RUNNING.DIGITAL Analog RUNNING.ANALOG

RUNNING.DIGITAL Digital RUNNING.DIGITAL

13

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

The Clock State Model (rephrased)

14

Step 2 :

Generate sequences of test
actions

16

Generating Test Sequence 2

Start
Analog
Digital
Digital
Stop
Start
Analog
Stop

Chinese Postman

Analog

NOT_RUNNING

ANALOG

RUNNING

ANALOG

Start Stop

Analog

Digital RUNNING

DIGITAL

NOT_RUNNING

DIGITAL

StartStop

Digital

17

Step 3 :

Execute the test act ions

18

Visual Test functions

Run(“C:\WINNT\System32\clock.exe”) Starts the Clock application

WMenuSelect(“Settings\Analog”) Chooses the menu item “Analog” on the “Settings” menu

WSysMenu(0) Brings up the System menu for the active window

WFndWnd("Clock") Finds an application window with the caption “Clock”

WMenuChecked("Settings\Analog") Returns TRUE if menu item “Analog” is check-marked

GetText(0) Returns the window title of the active window

19

Executing the Test Actions

open "test_sequence.txt" for input as #infile ‘get the list of test actions

while not (EOF(infile))

 line input #infile, action ‘read in a test action

 select case action

 case “Start“ ‘ Start the Clock
 run("C:\WINNT\System32\clock.exe”) ‘ VT call to start clock

 case “Analog“ ‘ choose Analog mode
 WMenuSelect("Settings\Analog") ‘ VT call to select Analog

 case “Digital“ ‘ choose Digital mode
 WMenuSelect("Settings\Digital") ‘ VT call to select Digital

 case “Stop“ ‘ Stop the Clock
 WSysMenu (0) ‘ VT call to bring up system menu
 WMenuSelect ("Close") ‘ VT call to select Close

 end select

wend

20

Step 4 :

D e term ine i f the appl ication
w o rked r ight

21

Use Rules as Test Oracles

if ((setting_mode = ANALOG) _ ‘if we are in Analog mode

AND NOT WMenuChecked("Settings\Analog")) then ‘but Analog is not check-marked

 print "Error: Clock should be Analog mode“ ‘alert the tester
 stop
endif

22

Step 5 :

F ind bugs

23

The Incredible Shrinking Clock

Start
Maximize
Stop
Start
Minimize
Stop
Start
Restore
Stop

24

 Where Have the Years Gone?

Start
Minimize
Stop
Start
Restore
Date

25

Conclusions

Model-based testing is

z powerful

z flexible

z maintainable

z low-cost!

26

For more info …

www.model-based-test.org

Thank you!

1

Finite State Model-Based Testing on a Shoestring

Harry Robinson
Intelligent Search Test Group

Microsoft Corporation
harryr@microsoft.com

Abstract

Model-based testing is a software test technique that generates tests from an explicit model of software
behavior. Modern programmable test tools allow us to use this technique to create useful, flexible and
powerful tests at a very reasonable cost.

What Is Model-Based Testing?

Model-based testing is a technique that generates software tests from explicit descriptions of an
application’s behavior. Creating and maintaining a model of an application makes it easier to generate
and update tests for that application.

Several good model-based test tools are currently available in the market, but the techniques of model-
based testing are not tied to any tool. This paper shows how anyone willing to do some test programming
can implement model-based testing in low-cost test language tools. The test language used in this paper
is Visual Test [1] from Rational Software.

In this paper, I will discuss how to use a test programming language to

1. Create a finite state model of an application.

2. Generate sequences of test actions from the model.

3. Execute the test actions against the application.

4. Determine if the application worked right.

5. Find bugs.

What Is A Model?

A model is a description of a system’s behavior. Because models are simpler than the systems they
describe, they can help us understand and predict the system’s behavior.

State models are common in computing and have been shown to be a useful way to think about software
behavior and testing [2][3]. A finite state model consists of a set of states, a set of input events and the
relations between them. Given a current state and an input event you can determine the next current
state of the model.

2

As a running example throughout this paper, we will create a simple finite state model of the Windows NT
Clock application [4]. The Clock can be found as Programs\Accessories\Clock under the Start menu in
Windows NT.

Figure 1: A Very Simple Finite State Model of the Clock

Figure 1 shows two forms of the Clock display. The left side shows the Analog display; the right side
shows the Digital display. If the Clock application is in the Analog display mode, clicking the menu
selection “Settings\Digital” moves the application into the Digital display. Likewise, if the application is in
the Digital display mode, clicking the menu selection “Settings\Analog” moves the application into the
Analog display.

We could use this very simple state model as a basis for tests, where following a path in the model is
equivalent to running a test:

Setup: Put the Clock into its Analog display mode

Action: Click on “Settings\Digital”

Outcome: Does the Clock correctly change to the Digital display?

Create a Finite State Model of an Application

Finite state models are excellent tools for understanding and testing software applications. However, a
very large state model is needed to describe a complex system in enough detail to do a good job testing.
A finite state model used in representing the behavior of an application is likely to have many, many
states – so many that it would be tedious and unrealistic to create and maintain the model by hand.

The approach advocated in this paper allows you to generate large state models by describing the
behavior of an application in terms of a small number of state attributes called operational modes [5].
Operational modes are the attributes of a state that determine what user actions are possible in that state
and what outcomes will occur when actions are executed. For instance, whether or not the application is
currently running is a common operational mode. Typically, if the application is NOT running, the only
action the user can execute is to start the application. On the other hand, if the application IS running, the
user has a much greater choice of actions that could be performed.

3

For the purposes of this paper, we will only be concerned with the following actions in the Clock:

• Start the Clock application

• Stop the Clock application

• Select Analog setting

• Select Digital setting.

The rules for these actions in the Clock application are as follows:

• Start
o If the application is NOT running, the user can execute the Start command.
o If the application is running, the user cannot execute the Start command.
o After the Start command executes, the application is running.

• Stop
o If the application is NOT running, the user cannot execute the Stop command.
o If the application is running, the user can execute the Stop command.
o After the Stop command executes, the application is not running.

• Analog
o If the application is NOT running, the user cannot execute the Analog command.
o If the application is running, the user can execute the Analog command.
o After the Analog command executes, the application is in Analog display mode.

• Digital
o If the application is NOT running, the user cannot execute the Digital command.
o If the application is running, the user can execute the Digital command.
o After the Digital command executes, the application is in Digital display mode.

Our model in this example will have two operational modes, system mode and setting mode, which can
have the following values:

• System mode: NOT_RUNNING means Clock is not running
RUNNING means Clock is running

• Setting mode: ANALOG means Analog display is set
DIGITAL means Digital display is set

We now have the actions, rules and operational modes for our model. We can use our test programming
language to create a list of the state transitions in the finite state model. We will simply run through all
possible combinations of operational mode values and print out any possible transitions.

The names of the states will appear as a list of operational mode values separated by periods. For
instance, the state “RUNNING.DIGITAL” means the application is running and the display is in Digital
mode.

4

Here is the Visual Test code you would write to generate the model’s states and transitions:

for system_mode = NOT_RUNNING to RUNNING ‘ for all system modes

for setting_mode = ANALOG to DIGITAL ‘ for all setting modes

for action = Start to Digital ‘ actions: Start,Stop,Analog,Digital

possible = TRUE ‘ assume action is possible
new_system_mode = system_mode ‘ assume mode values do not change
new_setting_mode = setting_mode

select case action

case “Start” ‘start the clock
if (system_mode = NOT_RUNNING) then ‘clock must be NOT running

new_system_mode = RUNNING ‘clock goes to running
else

possible = FALSE
endif

case “Stop” ‘stop the clock
if (system_mode = RUNNING) then ‘clock must be running

new_system_mode = NOT_RUNNING ‘clock goes to NOT running
else

possible = FALSE
endif

case “Analog” ‘choose analog mode
if (system_mode = RUNNING) then ‘clock must be running

new_setting_mode = ANALOG ‘clock goes to analog mode
else

possible = FALSE
endif

case “Digital” ‘choose digital mode
if (system_mode = RUNNING) then ‘clock must be running

new_setting_mode = DIGITAL ‘clock goes to digital mode
else

possible = FALSE
endif

end select

if (possible = TRUE) then ‘ if action possible
print system_mode;”.”;setting_mode, ‘ print begin state
print action, ‘ print action
print new_system_mode;”.”;new_setting_mode ‘ print end state

endif

next action

next setting_mode

next system_mode

The state table printed by the code above after running through the values of the operational modes looks
as follows:

Beginning State Action Ending State

NOT_RUNNING.ANALOG Start RUNNING.ANALOG
NOT_RUNNING.DIGITAL Start RUNNING.DIGITAL
RUNNING.ANALOG Stop NOT_RUNNING.ANALOG
RUNNING.DIGITAL Stop NOT_RUNNING.DIGITAL
RUNNING.ANALOG Analog RUNNING.ANALOG
RUNNING.ANALOG Digital RUNNING.DIGITAL
RUNNING.DIGITAL Analog RUNNING.ANALOG
RUNNING.DIGITAL Digital RUNNING.DIGITAL

5

Figure 2: State Transition Diagram for the Clock Model

Figure 2 shows a graphic representation of the finite state model. The circles represent states and the
arcs represent actions. We can see how running the Start command from the “NOT_RUNNING.ANALOG”
state brings the application into the “RUNNING.ANALOG” state. We also note with interest that it is
possible to run the Analog command while in the “RUNNING.ANALOG” state; the arc loops back to
“RUNNING.ANALOG”, meaning that the application ends up in the same state it started from.

Generate Sequences of Test Actions from the Model

As we pointed out with Figure 1, testing an application is like following a path through a finite state model.
Now that we have our state model constructed, we can use various techniques to choose what paths we
want our tests to take through it.

One of the most popular choices is to allow the tests to move randomly through the state model, taking
any available action out of a state. Given enough time, these random walks can cover a good part of the
application. The random nature of their choices means that they tend to produce unusual combinations of
actions that human testers wouldn’t bother to try, such as

Start

Analog

Analog

Analog

Analog

Analog

Stop

6

A more advanced path generation technique, called a “Chinese Postman tour”, touches every action in
the state model as efficiently as possible. (For more information on generating paths through a finite state
model, see [6].) A Chinese Postman tour on our simple state model might look as follows:

Start

Analog

Digital

Digital

Stop

Start

Analog

Stop

These sequences of actions can be stored in an external file (such as “test_sequence.txt” in this case).
This action sequence file then serves as the instructions to the test execution phase.

Execute the Test Actions Against the Application

Visual Test has a rich set of functions for interacting with the application you are testing. The table below
lists some examples of these functions and a description of what they do.

Run(“C:\WINNT\System32\clock.exe”) Starts the Clock application

WMenuSelect(“Settings\Analog”) Chooses the menu item “Analog” on the “Settings” menu

WSysMenu(0) Brings up the System menu for the active window

WFndWnd("Clock") Finds an application window with the caption “Clock”

WMenuChecked("Settings\Analog") Returns TRUE if menu item “Analog” is checkmarked

GetText(0) Returns the window title of the active window

The test execution phase is kept deliberately simple. The program listed below reads in a list of actions
from a file, executes the function associated with that action, and then reads the next action from the file.

As an example, suppose the first two actions in “test_sequence.txt” are “Start” and “Analog”. Our test
execution program would read “Start” from the file and execute the Visual Test function
run("C:\WINNT\System32\clock.exe”) associated with “Start” action. Our program would then read
“Analog” from the file and execute the WMenuSelect("Settings\Analog") function associated with the
“Analog” action.

open "test_sequence.txt" for input as #infile ‘get the list of actions

while not (EOF(infile))

line input #infile, action ‘read in an action

select case action

case "Start" ‘start the Clock
run("C:\WINNT\System32\clock.exe”) ‘VT call to start Clock program

7

case "Analog" ‘choose analog mode
WMenuSelect("Settings\Analog") ‘VT call to select menu item Analog

case "Digital" ‘choose digital mode
WMenuSelect("Settings\Digital") ‘VT call to select menu item Digital

case "Stop" ‘stop the Clock
WSysMenu (0) ‘VT call to bring up system menu
WMenuSelect ("Close") ‘VT call to select menu item Close

End select

Test_oracle() ‘determine if Clock behaved correctly

wend

After each action is executed, a test oracle function, described in the next section, is called to determine if
the application behaved as the model expected.

Determine if the Application Worked Right

A test oracle is a mechanism that verifies if the application has behaved correctly. One of the great
benefits of model-based testing is the ability to create a test oracle from the state model.

In the case of our simple Clock model, we would like to verify whether the Clock is running or not, and we
would like to verify whether we are in Analog or Digital display mode.

To determine if Clock is running, we can use the WFndWnd(“Clock”) function call in Visual Test to look for
the application window captioned “Clock”.

Finding out whether the Analog or Digital display is showing is slightly trickier. Since both the Analog and
Digital clock faces are images that cannot easily be interpreted by the test program, we will resort to some
secondary characteristics of the application.

If you look carefully at the two “Settings” menus displayed in Figure 3, you will see that the menu item for
the current display mode has a checkmark next to it. We can use this information for our oracle. If we are
in Analog display mode and we bring up the “Settings” menu, we will expect to see a checkmark next to
the word “Analog”; otherwise, we must be in Digital display mode and we will expect to see a checkmark
next to the word “Digital”. This method is not as direct as looking at the display (as a person could) but it
allows us to compensate for what the test program cannot see.

Figure 3: The menu checkmarks indicate whether the Clock is in Analog or Digital display mode

8

Here is Visual Test code that implements the test oracle for the Analog/Digital display mode:

if (system_mode = RUNNING) then

if (WFndWnd("Clock") = 0) then ‘if no “Clock” running
print "Error: Clock should be Running" ‘print the error
stop

endif

if ((setting_mode = ANALOG) _ ‘if analog mode
AND NOT WMenuChecked("Settings\Analog")) then ‘but no check next to Analog

print "Error: Clock should be Analog mode" ‘print the error
stop

elseif ((setting_mode = DIGITAL) _ ‘if digital mode
AND NOT WMenuChecked("Settings\Digital")) then ‘but no check next to Digital

print "Error: Clock should be Digital mode" ‘print the error
stop

endif

endif

Find Bugs
Testing is about finding bugs. Model-based testing finds it bugs by executing the application and verifying
the results against the state model. When discrepancies between the application and the model are
detected, the test program alerts the tester.

Here are two interesting bugs that surfaced in the model-based testing of Clock. The first bug (Figure 4)
was detected when the tests were no longer able to find the clock face. Some investigative work turned
up that the problem occurred when the sequence to the left of the figure was executed. Every time this
sequence was executed, the Clock window would reappear a few pixels smaller.

Start

Maximize

Stop

Start

Minimize

Stop

Start

Restore

Stop

Figure 4: The Incredible Shrinking Clock Bug

9

A second Clock bug showed up when the sequence in the center of Figure 5 was run. The images at the
top of Figure 5 show how the date is supposed to be displayed in MM/DD/YY format. The images at the
bottom show how the two-digit year is left off after the center sequence is executed. The bug was
originally detected in Analog mode (since the test program cannot read the date in Digital display mode),
but the bug was easy to reproduce manually in Digital mode.

Start

Minimize

Stop

Start

Restore

Date

Figure 5: Where Have the Years Gone?

This anomaly in the date was detected by an test oracle routine that looked something like this:

title = GetText(0) ‘get window title

if (setting_mode = ANALOG) _ ‘ if we are in Analog mode
AND WMenuChecked("Settings\Date") then ‘ AND the date is turned on

if ("Clock - " + date$ <> title) then ‘ window title should include date
print "window title is wrong:", title

endif

else

if ("Clock" <> title) then ‘ window title should read “Clock”
print "window title is wrong:", title

endif

endif

10

Conclusions

Model-based testing is a new and evolving technique that allows us to automatically generate software
tests from explicit descriptions of an application’s behavior. Because the tests are generated from a
model of the application, we need only update the model to generate new tests when the application
changes. This makes model-based tests far easier to maintain, review and update than traditional
automated tests.

Low-cost general-purpose test programming languages such as Visual Test’s BASIC have sufficient
power to allow us to create a finite state model and to generate test paths through that model. Application
interface functions (such as WMenuSelect and WMenuChecked) enable the test program to manipulate
application controls and to verify the state of those controls.

Testers who are willing and able to create model-based test programs can create flexible, useful tests for
the cost of a general-purpose test language tool.

For More Information

For more information on model-based testing, including a fuller discussion of the Clock model and a
bibliography of model-based testing papers, please go to the www.model-based-test.org website.

References

[1] Visual Test is a trademark of Rational Software Corporation.

[2] Apfelbaum, Larry. “Model-Based Testing”, Proceedings of Software Quality Week 1997

[3] Beizer, Boris. Black Box Testing: Techniques for Functional Testing of Software and Systems,
New York, John Wiley & Sons, 1995

[4] The Clock application used in this paper is found in Windows NT 4.0 (Build 1381 Service Pack 4).

[5] Whittaker, James A. and El-Far, Ibrahim K. “Automated Construction of Behavior Models for
Software Testing”, IEEE Transactions on Software Engineering, (submitted)

[6] Robinson, Harry. “Graph Theory Techniques in Model-Based Testing”, Proceedings of the
International Conference on Testing Computer Software 1999

Biography

Harry Robinson is a software test engineer with the Intelligent Search Test Group
at Microsoft. He has a BA degree in Religion from Dartmouth College and a BS
and MS degree in Electrical Engineering from the Cooper Union for the
Advancement of Science and Art.

He was a software developer for six years before coming to his senses and
switching to testing. Prior to joining Microsoft in 1998, he spent ten years with
AT&T Bell Laboratories and then three years with Hewlett-Packard. He is a long-
time advocate and practitioner of model-based testing.

HARRY ROBINSON

Harry Robinson is a software test engineer with the Intelligent Search
Test Group at Microsoft. He has a B.A. degree in Religion from
Dartmouth College and a B.S. and M.S. degree in electrical
engineering from the Cooper Union for the Advancement of Science
and Art.

He was a software developer for six years before coming to his
senses and switching to testing. Prior to joining Microsoft in 1998, he
spent 10 years with AT&T Bell Laboratories and then three years with
Hewlett-Packard. He is a long-time advocate and practitioner of
model-based testing.

	Title Page
	Presentation Notes
	Paper
	Bio
	Return to Main Menu

