Interoperability Testing for Web Services paper.doc

2

Interoperability Testing for Web Services

John Scarborough

Disha Technologies

 March 2004

Dow Jones, the publisher of The Wall Street Journal and Barron’s, uses XML and Web services to weave together the daily data-feeds from over 100 sources like Morningstar, the Associated Press, and Lipper to produce the intricate tabular formats of its newspapers’ financial reports. The 15 disparate legacy systems whose output Dow Jones used to coordinate manually are still in service, but the coordination is now handled by a “content acquisition platform” that is maintained by several Web services running on Microsoft BizTalk servers.

Such a complex system needs systematic testing. Web services’ use of standard Internet protocols makes them accessible to any computer on the Internet, but those standards are frequently updated, are open to interpretation by developers, and are deployed differently by tools that develop Web services. There is also the issue of Web service versions; the new version may no longer handle data delivered in a legacy application’s obsolete format.

A full discussion of the major topics of interoperability testing for Web services is beyond the scope of a single book, let alone a short paper. Even a glimpse however may be rewarding. After presenting a thumbnail sketch of problems in interoperability testing for Web services, in which I sketch out a guide to developing testing strategies, I have listed a few specific solutions. I encourage readers to begin exploring the subject further through the books and websites listed in the short appended bibliography.

Developing a test strategy for interoperability testing for Web services would typically occur in the context of devising a project-wide testing strategy. For the purposes of this paper we will be concerned with interoperability only.

A strategy for interoperability testing should be based on the following:

· Alignment with business objectives;

· Analysis of protocols in use;

· Analysis of interfaces with applications;

· Analysis of the Web service environment

You could test all permutations of testcases for all nodes of the dauntingly complex interoperability matrix for Web services, the result of mapping all browsers, transports, protocol versions, protocol deployments, etc. against each other. Testing however requires resources that must be approved by finance managers, who will want to know that the level of testing recommended by QA will enable them to meet their release goals and meet or beat their competition.

The required scope of the interoperability test effort can only be assessed after

1. identifying protocols in use

2. describing the function and dataflow for Web services under test

3. understanding all software and infrastructure dependencies, especially legacy applications with interfaces toWeb services

4. understanding the purpose of the testing (platform upgrade, re-architecting the whole system, major revisions to a central component, etc.)

5. using the above information to derive estimates per component or Web service of the number of existing testcases that must be executed, and the number of new testcases that must be developed, accurate to orders of magnitude (i.e. are we looking at 10, 100, 1000, or 10,000 testcases)

6. identifying areas where ROI on automation justifies the cost

Web services can be accessed using standard Internet protocols such as HTTP, XML, SOAP, WSDL, etc. Web services can be accessed directly by another application that is using those same standard Internet protocols. Web services may also act as interfaces, or adapters, for legacy applications that need to exchange data with each other, as in the Dow Jones example.

Web services may provide the simplest functionality, such as transforming a string from lower case to upper case, or they may be integral components of elaborate systems. In all cases they require the basic Web service components shown in Figure 1. Therefore the interoperability of protocols must always be addressed.

[image: image1]
 Fig. 1

Oddly, the biggest problem in Web service interoperability concerns their Internet protocols. The protocols that Web services employ are standardized but not enforced. A Web service should at least gracefully degrade if it cannot programmatically respond to erroneous deployment of a supported protocol, or to earlier or later versions of a supported protocol. Again, each Web service must be systematically checked to verify that, if code underlying a Web service interface has been changed –upgraded, for example, to a new version of .NET – its output has not been corrupted. These are the primary areas for interoperability (see Fig. 2).

[image: image2]
Fig. 2

Consider XML, the root Web service protocol. XML is deliberately abstract so that it can be deployed in as many situations as possible, a universal format for the representation and transmission of data and data structures. Web services (and the tools that are used to develop or test them) map the data and data structures from the software domain of origin, e.g. Java or C#, to the destination domain, which may be quite different from the domain of origin.

If the Web service provider developed its XML-based interface using a different tool than what the Web service consumer used, there may be a disconnect. Developer errors may also create problems, such as forgetting a quotation mark in a header. Developers as well as tools may err in declaring a data structure. For example, in UTF-16 encoding of data, the appropriate Byte Order Mark must be declared. But you don’t need it for UTF-8 encoding. So, a developer who is used to UTF-16 encoding, or a tool whose default mode is UTF-16 encoding, may when using UTF-8 encoding declare it, and if your XML parser doesn’t have a handler for it, your app may fault.

SOAP (Simple Object Access Protocol), a specific format of XML that has itself become a separately defined and administered protocol, is used to transport XML documents across the Internet. It is not really a protocol for accessing objects, but for messaging.

Because there is a published specification for SOAP, developers (and testers) may assume that SOAP is SOAP. But there are several providers of SOAP tools. Using SOAP-aware tools, or knowing that a certain Web service you required has been developed using a SOAP-aware tool, does not guarantee consistency in formatting or syntax. The SOAP specification, for example, while it requires envelopes, does not specify their formation. Two tools may make different assumptions about how to build envelopes, and similarly different assumptions about parsing them.

In fact, users of SOAP development environments need to be conscious of another kind of version variation as well – the tools themselves! Microsoft’s SOAP Toolkit 1.0 for Visual Studio 6.0, for example, supports SDL, but not WSDL; while SOAP Toolkit 2.0 supports WSDL, but not SDL. The good news is that there is a SOAPBuilders Interoperability Lab
 dedicated to identifying and expunging incompatibilities between versions and implementations.

Receivers of SOAP messages (sometimes called SOAP-listeners) should at least provide error handlers so that if expected elements are not found, or if those elements are not formatted correctly (according to the specification version that it considers correct), the system does not fault or go into a confused infinite loop. An informative message should be returned or, if the irregularity is considered inconsequential, the rest of the document should be processed.

Test managers and software test engineers should not make the mistake of thinking that since XML and SOAP are “only documents”, testing them is somehow of a lower priority, requiring less rigor than testing compiled code in C++ or C#. You may have a massive data-mining application that delivers its results via Web services. If that data is delivered by means of a Web service that supports 29 significant digits of precision (as does Microsoft .NET),
 but is consumed by a Web service whose SOAP implementation only supports 19, SOAP will decide for the consumer what to do with the extra 10 digits. Unfortunately the customer has no idea how they were resolved, or what effect that resolution has on calculations made based upon that data. Again, there is always the possibility, already mentioned, that an unanticipated data format will result in an infinite loop as the XML or SOAP parser repeatedly attempts to evaluate what it cannot evaluate.

This should instill in QA professionals a healthy state of apprehension and skepticism about XML and SOAP. And these are but two of the 66 standards currently recommended for deployment on the Internet by the advisory board and chairman of the World Wide Web Consortium.
 Some of them are familiar– such as WSDL (Web Services Description Language), CSS (Cascading Style Sheets), and XML Schemas for Datatypes and for Structures; others are not – the several Document Object Models, for example, or MathML. VoiceIP is nearing its final stage of review as well. Each newly approved specification adds a bank of cells to the amorphous interoperability test matrix.

Another important area of interoperability is the interface between Web services and applications. In the .NET, J2EE, IBM WebSphere, and BEA WebLogic build environments, applications are integrated with Web services. There is an interface, but because it is built into the application, it will be revised and tested when the application is revised and tested. In environments where Web services are plugged into or bolted onto existing applications, the interface is a separate test area. Where those applications are legacy applications, using formats that are obsolete and requiring filters for inter-application exchange, the interface is a high-risk area for any system or platform updates. When Web services are upgraded or revised, end-to-end usecase scenarios should be constructed and tested very carefully.

Interoperability requirements are not the same in all environments. One categorization of Web service environments uses security demands as criteria:

· a single desktop machine;

· between trusted domains inside a firewall;

· between a corporate LAN and a trusted domain outside a firewall;

· the entire Internet

Each environment carries its own mandates for testing interoperability. The least complex will be the standalone environment (e.g. a Web service acting as an adapter for legacy software that wants to talk to .NET-aware software). The most complex is the Internet.

Unless you specify routing, your transmissions will have to survive several hops. Just as multi-hop messaging increases security risk, it also introduces increases the possibility of incompatibilities of versions or deployments of protocols.

	
	World Wide Web
	Simple Web Services
	Complex Web Services

	Space
	Transit
	Transit &

Multi-Hop
	Transit, Multi-Hop & In-Storage

	Time
	Seconds or Minutes
	Seconds or Minutes
	Days, Weeks, Years

Fig. 3

Doug Kaye has pointed out
 (see Fig. 3) another area of differentiation -- time. Some complex web services may store information over time, requiring that Web services retain interoperability with data delivered months or years prior to the last re-design and acceptance testing of the system. This introduces a complete layer of interoperability that won’t be addressed in this article: SAN (Storage Area Networks) and HSM (hierarchical storage management).

Tactical Solutions for Interoperability Testing for Web Services

As far as interoperability testing goes, there are advantages to restricting development to one development environment, such as Cape Clear’s Data Interchange, IONA’s Orbix 6.1, or IBM’s WebSphere Studio Application Developer. Someone’s put a lot of work into generating robust WSDL, XML, and SOAP documents, so you’re not likely to get careless errors that a tired developer might make. On the other hand, once a Web service starts to exchange data with Web services outside the firewall, it faces the same complexity (if not more) that everyone else does. One drawback to confining Web service development to a single platform is the unavoidable introduction of platform-centric assumptions into Web services. The best remedy is to understand as many of those assumptions as possible and take deliberate steps to neutralize their negative effects on interoperability.

An all-in-one Web services testing tool is not yet available, so you won’t find one with special application to interoperability testing. Your best bet is to apply the experience and knowledge you have acquired in testing systems and application software.

Static analysis. There are some good tools out there.

Mercury Interactive’s LoadRunner and Compuware’s QARun have added SOAP and XML parsing functions.

In March, 2004, Microsoft, IBM, SAP, and BEA Systems completed the WS-MetadataExchange, which provides information about XML Schemas, WSDL message operations, and Web Services Policy Frameworks deployed by communicating Web services.
 This isn’t a tool, but could provide the technology required for building something like a Business Process Analyzer for .NET, WebSphere, etc.

The Windows Services Interoperability Organization (WS-I)
 has developed and is still in the process of field-testing two tools, the Web Services Communication Monitor and the Web Service Profile Analyzer, each available in both Java and C# versions. The Communication Monitor is a sort of logger that captures and stores all messages between two Web services. The Profile Analyzer compares those stored messages against specifications for SOAP, WSDL, and UDDI.

Mindreef
 has released version 3 of its SOAPScope, leverages the work done by WS-I for the two tools just mentioned. It monitors and logs SOAP traffic, and analyzes external WSDL documents.

Tools are not perfect, though, so testers will still need to walk through Web service documents, comparing implementations against relevant specifications in headers, tags, element definitions, datatypes, structures, attributes, etc. Check URI and URL links. Step through error handlers. Don’t forget to check the spelling of product-specific terminology.

End-to-end testing. In addition to testing whatever function your Web service is designed to perform, you also need to test:

Data flow. Follow data internally from the moment it is requested to the moment it is delivered. Map out for your Web service interoperability risk areas. Use the map when troubleshooting as well as when testing. Externally, track data flow using tools like pingroute and pathchar to help you track hops and bottlenecks in the Internet or Extranet.
QOS (Quality of Service). Your Web service may require very high bandwidth. What does it do if it doesn’t get it? Interoperability with the supporting infrastructure can’t be ignored. Find out what the optimum levels are and tests for them. VoIP, for example, needs more bandwidth than animated MPEG and GIF files, while medical imaging requires even more. Test for dirty connections by using simulation equipment, such as Spirent’s Avalanche 2500 Internet capacity assessment tool.

Underlying transport issues. The boundary separating HTTP and SOAP is broad and grey. Find out how your implementation of SOAP has wrapped HTTP functions and test them. If your Web service is using “raw” HTTP in addition to SOAP or XML-RPC (a variety of Web service messaging not addressed in this paper), be sure that your Web service understands and responds to all HTTP messages and error codes it might receive, esp. the 400 and 500 series. HTTP client APIs, for example, are not consistent in setting headers, so if your SOAP request disagrees with the HTTP server in whether headers should or should accept null-value, you’ll be glad you tested for the invalid testcase of setting the header to null-value.

Error-handling and degradation. What happens if the network goes down in the middle of a transaction? What if there is an enormous amount of network noise? Don’t be so preoccupied with making the Web service work that you omit destructive testing.

Invalid requests. All requests that have been defined as invalid should be tested by automation. Expand the list through ad hoc testing.

Load and stress testing require a controlled environment and automation. The exact requirements vary with the Web service, but the general idea is to test the application’s ability to remain functional when hit by 10n+1 requests in x seconds or minutes.

Scalability testing measures time to connect, time to receive first the byte in a download or upload, time to receive or send the final byte, and finds the load level x at which these rates begin to decline. When m increments of n are graphed, what is the rate of decline, and are there abrupt changes in system metrics (e.g. CPU usage, page swapping, memory usage) that correspond to abrupt declines? What causes th/e change? Is it H/W related? Are there bottlenecks up or down the dataflow that indirectly cause the problem?

Automation. Automation can be extremely useful for Web services testing. Many commercial automation tools for Web services are available. They do not provide the same functionality, so know what you want before you sign up. Before your QA group brings vendors in for demonstrations, I strongly suggest at least reading Frank Cohen’s book, Automating Web Tests with TestMaker,
 if for no other reason than to become an intelligent consumer. He shows you how to develop useful test agents, for example to request information from a Web service’s WSDL document, which the test agent plugs into a template that you can use to communicate with that Web service’s SOAP node. “Communicate” can include launching all invalid SOAP calls – which would provide you with a fairly inexpensive and useful tool (TestMaker is free.)

A small sampling of commercial packages:

· Empirix’s e-Test Suite

· Parasoft’s SOAPTest

· Compuware’s QACenter

· Segue’s SilkPerformer

· IBM’s Rational Robot

Security testing in interoperability testing of Web services. Web services are used to exchange confidential and often extremely valuable information via standard Internet protocols. Every failure of a Web service is a door left ajar. The same tools and strategies that are used for testing Web services can be used to expose, trap, and analyze weak links in data transmission. Testing for security breaches opened by interoperability problems is far too complicated to cover in a paper of this scope; I hope to address the subject separately in a future publication.

Conclusion

We have reviewed some of the general problems in interoperability for Web services, and sketched out a strategy for systematic testing that takes advantage of platform-agnostic methodologies. I hope that these approaches are also useful for those who are testing platform-specific Web services.

Please send criticisms and comments to me at johnscar@dishatech.com.

Bibliography

General Note: There is an enormous amount of material on Web services available on the Web. The websites maintained by Sun, IBM, Microsoft, the Worldwide Web Consortium, and Web Services Interoperability Group are the best I found while researching this paper. Rather than point to specific articles, I simply point the reader to these sites:

http://msdn.microsoft.com
http://www.ibm.com
http://wwws.sun.com
http://www.w3c.org
http://www.ws-i.com
Web Services in General

· Newcomer, Eric. Understanding Web Services: XML, WSDL, SOAP, and UDDI. Addison-Wesley, 2002.

· Kaye, Doug. Loosely Coupled: The Missing Pieces of Web Services. RDS Press, 2003.

Web Services Testing (of particular use in writing this paper)

· Cohen, Frank. Automating Web Tests with TestMaker. PushToTest, 2003.

· Myerson, Judith. Testing for SOAP Interoperability. TECT, 2003.

· SOAPBuilders Interoperability Lab: http://www.xmethods.net/ilab/
· Ruby, Sam. To Infinity and Beyond: The Quest for SOAP Interoperability. http://www.intertwingly.net/stories/ /2002/02/01/toInfinityAnd BeyondTheQuestForSoapInteroperability.html.

[image: image3.png]

Interoperability

Functn An

Functn A3

Functn A2

Functn A1

Functn n

Functn 3

Functn 2

Functn 1

Web Service

Web Service

Negotiate

Query

Publish

Service Provider

Service

Consumer

Service directory/broker

� Source: � HYPERLINK "http://www.xmethods.net/ilab" ��http://www.xmethods.net/ilab�, March 8, 2004.

� Thanks to Sam Ruby for the example of significant digits of precision on .NET. See his To Infinity and Beyond – the Quest for SOAP Interoperability. February 1, 2002. � HYPERLINK "http://www.intertwingly.net/stories/ /2002/02/01/" ��http://www.intertwingly.net/stories/ /2002/02/01/�toInfinityAndBeyondTheQuestForSoapInteroperability.html.

� Source: � HYPERLINK "http://www.w3.org/QA/TheMatrix" ��http://www.w3.org/QA/TheMatrix�, March 8, 2004.

� Doug Kaye, Loosel Coupled: The Missing Pieces of Web Services. (RDS Press, 2003) pp 172

� Clint Boulton, Microsoft, IBM Top Off Web Services Metadata Spec. www.internetnews.com/dev-news/article.php/3322441

� Source: � HYPERLINK "http://www.ws-i.org/Testing/Tools" ��http://www.ws-i.org/Testing/Tools� March 8, 2004.

� Source: � HYPERLINK "http://www.mindreef.com" ��http://www.mindreef.com�, March 8, 2004.

� Source: � HYPERLINK "http://www.spirentcom.com/analysis/product.cfm?WS=65&PR=95&wt=1" ��http://www.spirentcom.com/analysis/product.cfm?WS=65&PR=95&wt=1�

� Frank Cohen. Automating Web Tests with TestMaker. PushToTest, 2003.

© John Scarborough, Disha Technologies
© John Scarborough, Disha Technologies

