
Supporting
Continuous
Testing with
Automation
DevOps won’t be
the same after you
master the art of
test automation

All Customers
Are Not Created

Equal
Learn how to
improve your

skills to improve
customer

satisfaction

SUMMER 2018

 GREAT

BIG
AGILE
An OS fOr Agile leAderS

The Agile Performance Holarchy
is a Model for Building, Evaluating,
and Sustaining Great Agile.

SOLVING

PLANNING

DELIVERING

ORGANIZING

GOVERNING

GROWING

Teaming

Crafting

Affirming

EQUIPPING

CONTRIBUTING

PARTNERING

Providing

Envisioning

Leading

ROADMAPPING

CLARIFYING

DEFINING UNDERSTANDING

CONFIRMING

VISIONING VALUING

ENABLINGENGAGING

Is Critical To Their Success.

Agile Leaders
Know that Agile
Performance

Organizations can be certified
in three levels to describe their
state of agile performance

AgileC Ox
.org

Contact us at agileleader@agilecxo.org if you are:
· Interested in benchmarking and improving organizational
 agile performance
· A company that is interested in expanding your business
 by providing APH assessments, training, and coaching solutions

Mastering

Transforming

Adopting

https://agilecxo.org

Get

Inspired
at the

premier event
for

software Testing
Professionals

Sept. 30–Oct. 5, 2018
Anaheim, CA

click to learn more

https://well.tc/wukx

SOFTWARE DEVELOPMENT IS EVOLVING...

Agile + DevOps East Conference 2018

SO ARE WE.

WE'VE COMBINED THE MOST VALUABLE LEARNING EXPERIENCES
OF AGILE AND DEVOPS INTO ONE SPECTACULAR EVENT

INTRODUCING

https://well.tc/wukf

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

Volume 20, Issue 3
SUMMER 2018

06 Mark Your Calendar

07 Editor's Note

08 Contributors

12 Interview with an Expert

33 TechWell Insights

36 Ad Index

DepartmentsColumns

Features

Using Agile and DevOps to
Achieve Quality by Design
When software nears completion, it
is the wrong time to focus on quality.
Product delivery improves if you invest
in a plan, validate in small increments,
and focus on continuous testing.
by Mike Sowers

Be Indispensable: Cross-Train
like a Testing Athlete
Stretching your skills and preparing for
organizational and work-related change
is vital for any QA tester. Your best
approach is to work on complementing
your skills and competencies.
by Bonnie Bailey

Supporting Continuous Testing
with Automation
Create tests that can be used in a
continuous testing environment, build
the right number of tests, and don’t
fall victim to the mistaken belief that
everything can be automated.
by Bas Dijkstra

All Customers Are Not Created
Equal
Software developers may not think they
have much to do with customers, but it
is wise to consider the customer in all
you do, from collecting requirements to
design and implementation.
by Regina Evans

QA Is More Than Being a Tester
QA testers often take on more of a
role than just testing software code.
When the team needs help, QA should
lend a hand in assisting with business
analysis, customer communication, user
experience, and user advocacy.
by Amanda Perkins

All Customers Are
Not Created Equal

09 TECHNICALLY SPEAKING 35 CAREER DEVELOPMENT

INSIDE

2622 30

14

Great Big Agile: An OS for
Agile Leaders
Following agile ceremonies may
make an organization feel good,
but that’s only a start. “Great
big agile” requires leadership
at all levels to focus on self-
organization and empowerment
as a universal framework.
by Jeff Dalton

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

August 20–22, 2018
Jacksonville, FL

August 21–23, 2018
Boston, MA

August 21–23, 2018
Phoenix, AZ

September 17–19, 2018
Raleigh-Durham, NC

September 18–20, 2018
Houston, TX

September 24–26, 2018
Washington, DC

September 17–21, 2018
Chicago, IL

September 17–21, 2018
Raleigh-Durham, NC

September 24–28, 2018
Washington, DC

Conferences

Software Tester Certification—Foundation Level
http://www.sqetraining.com/certification

DevOps Week
https://www.sqetraining.com/train-
ing-events/devops-week

Software Testing Training Week
https://www.sqetraining.com/training-events/training-week

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

June 2–7, 2019
Las Vegas, NV

Apr. 28–May 3, 2019
Orlando, FL

Sep. 30–Oct. 5, 2018
Anaheim, CA

LEARN MORE

Nov. 4–9, 2018
Orlando, FL

LEARN MORE

Oct. 14–19, 2018
Toronto, ON

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 6

http://www.sqetraining.com/certification
https://www.sqetraining.com/training-events/devops-week
https://www.sqetraining.com/training-events/devops-week
https://www.sqetraining.com/training-events/training-week
https://starwest.techwell.com
https://agiledevopseast.techwell.com
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT
Alison Wade

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITOR
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGER
Cristy Bird
MARKETING ASSISTANT
Allison Scholz

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

CONTACT US

E D I T O R ’ S N O T E

Stepping Back into History
Sometimes it can be fun to look back at history. Better Software magazine has provided innovative
and pragmatic information for the software development and testing community for more than
twenty years. TechWell has focused on finding the best articles that can benefit its readers over the
long term. By avoiding deep dives into specific technologies that could easily become outdated with
new innovation, we’ve concentrated on principles that will serve you well beyond the latest fad.

Better Software articles will help you create—no surprise— better software! The magazine started
out as Software QA magazine in the mid-1990s with a focus on testing. The magazine was renamed
to Testing & Quality, then to Software Test & Quality Engineering before finally evolving into Better
Software. The design of the magazine has definitely changed along the way:

Whether you are a tester, developer, project manager, or another seasoned software professional,
Better Software strives to help you improve the delivery of quality software products and services.

In this issue’s cover article, “Great Big Agile: An OS for Agile Leaders,” Jeff Dalton gives us something
to think about in terms of how an agile approach shapes a company’s culture. Regina Evans has an ur-
gent call to arms on how to engage with customers in “All Customers Are Not Created Equal.” For those
of you who test for a living, you’ll enjoy Amanda Perkins’s article, “QA Is More Than Being a Tester.”
Over the past few years, we’ve focused on automation and continuous processes. But just because
you use automated tests, it doesn’t mean that product quality improves. To round out our feature
articles, you’ll learn three ways to avoid major test failures in Bas Dijkstra’s “Supporting Continuous
Testing with Automation.”

In our regular “Technically Speaking” column, Mike Sowers offers some creative ways to bake quality
into your product in “Using Agile and DevOps to Achieve Quality by Design.” If you are looking for
some career advice, Bonnie Bailey states the importance of expanding your knowledge in “Be Indis-
pensable: Cross-Train like a Testing Athlete.”

Thanks for helping us celebrate over twenty years of Better Software magazine. Enjoy this issue, folks.

F O L L O W U S

B E T T E R S O F T W A R E T e c h W e l l . c o m 7

mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://techwell.com
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
http://techwell.com

C O N T R I B U T O R S

Bonnie Bailey Bonnie Bailey is a software developer for an emergency services information technology com-
pany. Bonnie is an avid reader of science fiction and books on investing, the future of humanity, and software
engineering. Bonnie can be reached at bonnie.bailey@motorolasolutions.com.

Jennifer Bonine is the VP of global delivery and solutions for tap|QA Inc., a global company that specializes in
strategic solutions for businesses. Jennifer began her career in consulting and implementing large ERP solu-
tions. She has held executive-level positions leading development, quality assurance and testing, organization-
al development, and process improvement for Fortune 500 organizations. Contact her at jbonine@tapqa.com.

Jeff Dalton is chief evangelist at AgileCxO, a research and development organization that studies organiza-
tional agile performance. He is an author, conference speaker, blogger, coach, and technology leader with
more than thirty years in the software development industry. Jeff is author of “A Guide to Scrum and CMMI:
Improving Agile Performance with CMMI.” In his spare time he plays jazz bass in live bands and on recordings.
Jeff can be reached at jdalton@agilecxo.org.

Bas Dijkstra is an independent professional helping teams and organizations improve their testing efforts
through smart application of tools. He is also a trainer on various subjects related to testing and automation.
Living in the Netherlands, Bas likes running, reading a good book, and listening to good (mostly classical)
music. Contact Bas at bas@ontestautomation.com.

As an engineering program manager at NetApp, Regina Evans has been working in IT for more than fifteen
years. Most of her experience has been working with customers in software development and test engineer-
ing. In addition to being a customer evangelist, Regina enjoys the beautiful state of North Carolina with her
husband and two children. You can reach her at Regina.Evans@netapp.com.

Amanda Perkins has six years of experience as a quality analyst. With experience in customer service, busi-
ness analysis, product ownership, and automated testing, she brings a unique mindset to test approaches. A
constant student, Amanda is learning all there is to know about cyber security testing approaches. Amanda
can be reached at agiese79@gmail.com.

Mike Sowers has more than twenty-five years of practical experience as a quality and test leader of internation-
ally distributed test teams across multiple industries. He is a senior consultant who works with large and small
organizations to improve their software development, testing, and delivery approaches. He has worked with
companies including Fidelity Investments, PepsiCo, FedEx, Southwest Airlines, Wells Fargo, and Lockheed to
improve software quality, reduce time to market, and decrease costs. Reach Mike at msowers@techwell.com.

B E T T E R S O F T W A R E T e c h W e l l . c o m 8

mailto:bonnie.bailey@motorolasolutions.com
mailto:jbonine@tapqa.com
mailto:jdalton@agilecxo.org
mailto:bas@ontestautomation.com
mailto:Regina.Evans@netapp.com
mailto:agiese79@gmail.com
mailto:msowers@techwell.com
http://techwell.com

TECHNICALLY SPEAKING

Anyone who has attempted to architect, design, develop, test,

deliver, and deploy business value with software knows that there

are no silver bullets. Humans are fallible, and as hard as we try,

we make unintentional mistakes due to the fragility of our meth-

ods, tools, techniques, and skill sets. Mistakes are amplified by the

stresses of our working environment.

Whether the approach taken is traditional or agile, these fra-

gilities and stresses always exist. This

is especially true with projects that

rely on continuous integration or a

DevOps framework. However, our op-

portunity to better mitigate these risks

significantly improves as we adopt

more modern software engineering

practices. Key principles such as rap-

id design and refactoring, delivering

small increments of customer value

more frequently, engaging customers

throughout the process, failing fast and

learning, collaboration across develop-

ment and operations, simplicity, and

automation are accelerating our abili-

ty to significantly ratchet up our engi-

neering excellence.

The software development industry

now has the opportunity to realize the goal we’ve always had to

build in quality rather than attempt to test quality in after the fact.

Over the years, I have learned a number of techniques and ap-

proaches to achieve the goal of designing for quality at every step

of the software engineering value stream. This works for both agile

and DevOps project environments.

Invest in a Plan
Upfront planning approaches and whole-team engagement and

accountability help clarify the value increments to be delivered.

Collective ownership engages the entire team in quality de-

livery. The customer, product owner, analyst, architect, developer,

tester, and operations roles form a cohesive team, laser-focused on

delivering customer value.

Design planning helps teams collectively envision and design

features and functionality from the beginning of the project.

Prototyping offers the team techniques to assist with the

definition of functional and nonfunctional requirements. This in-

cludes wireframes, mockups, personas, and in-sprint experiments.

Peer reviews enlist the expertise

of others and help ensure that the

multiple perspectives are represented

throughout a project.

This includes pairing between the

developer and tester, business analysts

and product owner, and operations

team members.

Grooming is vital to keep the team

aligned on the most important value

to be delivered. This can be accom-

plished through backlog grooming,

prioritization, and story refinement

and definition.

Test-first development assists the

team in defining the required customer

value prior to implementing code.

Techniques such as specification by

example help specify the requirements and “test first” approaches

help to ensure code is right the first time.

Implement in Small Increments
Implementation approaches quickly verify small increments of

change and new functionality.

Guidelines and checklists for architecture, design, coding,

testing, and operations, as well as other team norms, promote pre-

ventive practices and help avoid mistakes and rework.

Static and dynamic analysis tools help the team understand

code structure, complexity, coverage, and security vulnerabilities,

and detect anomalies that need to be corrected quickly.

Using Agile and DevOps to
Achieve Quality by Design
INSTEAD OF TESTING FOR QUALITY ON A FINISHED PRODUCT, HERE ARE THREE
APPROACHES TO BUILD IN QUALITY AT EVERY STEP OF THE SOFTWARE LIFECYCLE.
by Mike Sowers | msowers@techwell.com

Shift from a
traditional

mental model
toward a

continuous,
iterative series
of automated

verification steps.

B E T T E R S O F T W A R E T e c h W e l l . c o m 9

mailto:msowers@techwell.com
http://techwell.com

TECHNICALLY SPEAKING

Unit testing and refactoring reduce the risk that

code changes cause additional problems, promote early

detection of defects at the structural level, and allow the

code to be refined with refactoring.

Mocking helps the team have higher confidence in

progressive integrations, abstract out dependencies,

and verify interactions between dependent classes ear-

ly. This is accomplished by faking and stubbing at the

interface level.

Continuous integration for each code commit and

performing integration testing at multiple levels effec-

tively exposes interface defects at the unit and each

succeeding level as code is further integrated into the

application or system.

Automation of the infrastructure that moves the

code and that assists with the testing of the code elim-

inates errors so that code deployment and delivery

yields consistent and repeatable results. Applying the

concept of “infrastructure as code” and then defining

and automating the value stream (the pipeline) codifies

the creation of environments and reduces the variability between

development, testing, staging, and preproduction.

Defining “done” clearly specifies the criteria necessary to

move an increment of value forward in the pipeline, eliminating

disagreements and setting expectations up front for what work

completion means.

Think Continuous
After planning and incremental implementation, continuous

processing techniques can lead to rapid product delivery.

Fast feedback informs the team immediately when something

is not performing or is drifting off course by using in-process dash-

boards or postprocess production and user experience monitoring.

Iterative risk assessments based on fast feedback enable the

team to adjust their verification focus and strategies with immediacy.

Functional and nonfunctional testing increase defect yields

earlier in the development lifecycle, as does performing story tests,

exploratory tests, and user acceptance tests. Using heuristics helps

the team design better tests.

Regression testing for each level validates changes and en-

sures that a recent change did not impact another area of the ap-

plication or system.

Combining microservices with container deployment, thus

decomposing the application into smaller services, results in im-

proved modularity, makes the application easier to test, reduces re-

source consumption, and speeds deployment. Together, these prac-

tices reduce fragility and aid continuous delivery and deployment.

Continuous delivery and deployment provide quick feed-

back, employ pipeline automation, and keep the code production

line running smoothly and efficiently with a defined set of quality

assurance steps and gates that are automated.

Operational tests that validate security, user provisioning,

backup, and failover are shifted left and incorporated into earlier

testing stages. Operational requirements should be specified and

agreed upon by the collective DevOps team early in the project.

Feature and application delivery using feature toggles helps

reduce risks when a change is deployed, as the change verification

rollout and rollback can be better controlled. Change automation

adds an additional level of production control and mitigates defect

exposure and risks.

Monitoring of both preproduction and production environ-

ments provides the team with a deeper understanding about the

quality and usage of the customer value being developed and de-

livered. In addition to standard environment monitoring, the team

also can use application monitoring and user experience monitor-

ing and analysis to understand usage patterns more quickly.

All of This Results in Higher Quality
I’ve always thought of software development, delivery, and

deployment as a series of imperfect translations. Defects are of-

ten introduced during the translation process from one handoff

to the next.

The above approaches enable the team to –– from a traditional

mental model toward a continuous, iterative series of automated

verification steps.

This investment drives software assurance left to earlier in the

lifecycle, which helps us achieve the quality-by-design goal and re-

duces translation errors.

B E T T E R S O F T W A R E T e c h W e l l . c o m 10

http://techwell.com

CONNECT. SHARE. LEAD.
Join our global community of change enablers, innovators,

and design thinkers.
Individuals, just like you, who are working together to

create better business outcomes.

IIBA.ORG/MEMBERSHIP

International Institute of Business Analysis™ (IIBA®) is the non-profit professional association serving the growing field of business
analysis and related business disciplines. IIBA connects business analysis professionals with global and local networks, professional

development opportunities, resources and knowledge. As the voice of the business analysis community, IIBA supports the recognition
of the profession, and works to maintain standards for the practice and certification.

®

https://well.tc/wuf8

Kenneth Merkel
 Years in Industry: 22

 Company: CA Technologies

 Interviewed by: Jennifer Bonine

 Email: jbonine@tapqa.com

“To have an automated test
case, I have to have the right
environments and the right
data, so that when I send
something down, my test case
knows what to evaluate against.
So I’m always evaluating
against known data.”

“To make the digital
transformation happen, the
first thing that has to happen
is you have to have a culture
change. Right? It’s getting
people bought into it. Once
people start seeing success,
then they start buying in. Then
they’re like, ‘Wow. Why didn’t
we do this earlier?’”

“Once you change the culture,
then you can start changing the
processes to make things fit in.
Once you have the processes,
then it’s about making sure you
have the right tools in place
and the right solutions to make
it happen.”

“Look at what you’re doing
today and then look at the
things that are blocking you
from where you want to go.
We call it current state versus
future state. Once I know why
I can’t get there [to future
state] and what the value is if I
remove the obstacle, then we
can talk about the solutions to
make that happen.”

“If I can make development
more efficient and ship higher
quality code to QA, QA becomes
more efficient and they can get
to 100 percent test coverage
sooner, hitting our quota in
production. The whole thing
dominos and slices down.”

“My belief is that the entire team is accountable for product quality, not
just the QA engineer, test engineer, or SDET.”

“We do a lot of value stream
analysis with our customers
to talk about “big rocks” (i.e.,
release delays). What does
it really mean from a cost
perspective? If you change it,
does the company care? Does
it move the needle?”

Use Service
Virtualization to
Increase Test
Coverage and
Improve Quality

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

B E T T E R S O F T W A R E T e c h W e l l . c o m 12

mailto:jbonine@tapqa.com
https://well.tc/IWAE20-3

Convenient, Cost Effective Training by Industry Experts

LEARN ANYWHERE!
LIVE, INSTRUCTOR-
LED PROFESSIONAL
TRAINING COURSES

Live Virtual Courses:

 » Agile Tester Certification
 » Software Tester Certification—Foundation Level
 » Fundamentals of Agile Certification—ICAgile
 » Fundamentals of DevOps Certification—ICAgile
 » Performance, Load, and Stress Testing
 » Mastering Business Analysis
 » Essential Test Management and Planning
 » Finding Ambiguities in Requirements
 » Mastering Test Automation
 » Agile Test Automation—ICAgile
 » Generating Great Testing Ideas
 » Exploratory Testing in Practice
 » Mobile Application Testing
 » and More

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/LIVE-VIRTUAL

Live Virtual Package Includes:
• Easy course access: Attend training right from your computer and easily connect your audio via computer or phone. Easy and

quick access fits today’s working style and eliminates expensive travel and long days in the classroom.

• Live, expert instruction: Instructors are sought-after practitioners, highly-experienced in the industry who deliver a professional
learning experience in real-time.

• Valuable course materials: Courses cover the same professional content as our classroom training, and students have direct
access to valuable materials.

• Rich virtual learning environment: A variety of tools are built in to the learning platform to engage learners through dynamic
delivery and to facilitate a multi-directional flow of information.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide hands-on exercises, group activities, and breakout sessions.

• Real-time communication: Communicate real-time directly with the instructor. Ask questions, provide comments, and participate
in the class discussions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live Virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than four hours per day. This schedule makes it
easy to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live Virtual courses are limited in small class size to ensure an opportunity for personal interaction.

https://well.tc/wukq

 GREAT

BIG
AGILE
An OS fOr Agile leAderS

BY Jeff Dalton

B E T T E R S O F T W A R E T e c h W e l l . c o m 14

http://techwell.com

s the prolific and popular SPaMCAST podcaster Tom

Cagley proclaimed during his keynote at the 2017 Ag-

ile Leadership Camp, “Values aren’t really what mat-

ters; behavior matters.” Cagley, who has interviewed more than

five hundred technology leaders on his podcast series, hit the nail

squarely on the head. Culture is usually derived from organiza-

tional values.

The behavior of team members, business stakeholders, part-

ners, and leadership is all that matters, as it demonstrates real,

as opposed to stated, culture. Too many companies say the words

while demonstrating antipatterns that proliferate throughout the

organization. Instead, companies should project and promote be-

haviors that build scalable and sustainable self-organization at

all levels.

While many leaders are asking about scaling agility these days,

they’re asking the wrong question. They should be asking how to

scale self-organization using a healthy dose of agile values, frame-

works, and techniques.

From time to time, people have made attempts to transition

from the “rules of men” to the “rules of nature,” a system that more

closely mimics the natural world. This is where the scales are in-

verted, roles and accountabilities are dispersed throughout the or-

ganization, and people go about the sometimes messy process of

organizing themselves without having to ask permission from any

business leader.

In more than one hundred organizations we’ve assessed, tech

leaders tell us that they want to push decision-making down and

give their teams greater autonomy, but their behaviors are in con-

flict with agile values, creating an organizational type mismatch.

In other words, the API is broken, and the architecture needs to

change.

Introducing Great Big Agile
The concept of “great big agile” requires leadership at all lev-

els, just not the kind we are used to. Simply working with an agile

coach to implement well-known ceremonies is not enough. Meta-

phorically, the operating system needs an upgrade.

In today’s corporate hierarchies where command-and-control

structures, low trust, long-term planning, and risk management

reign supreme, the skills required to thrive and survive are any-

thing but agile. This leaves agile teams to push the culture uphill,

leading to unpredictable results once business operations expand

beyond the boundaries of the core agile team. This creates cha-

os because information technology, operations, marketing, infra-

structure, business development, sales, and end-users are not on

the same page.

Agile without self-organization isn’t agile at all. There is noth-

ing wrong with adopting ceremonies and techniques that are most

commonly identified as being agile, and many companies have

found some success with that, but the power of agile values and

their associated frameworks grows exponentially once self-orga-

nization is perfected.

How Agile Is Your Organization?
I have witnessed only a few examples of large organizations

that have been successful with true agility. Far more insist that

they are agile by merely adopting a couple of techniques or cere-

monies within an otherwise command-and-control, low-trust, and

traditional operating model.

Even with impediments to self-organization and agility, com-

panies and government agencies are increasingly turning to ag-

ile frameworks because they sense, correctly, that by improving

their methods and tools, they may increase customer satisfaction,

speed delivery of value, and raise the quality of software, systems

and services. The problem is, they often think that it’s only about

changing their methods and tools, and they give short shrift to the

power of culture.

Once the domain of mid-size software companies, “agile-like,”

a term that describes an organization that adopts some agile cere-

monies without the accompanying organizational change, has be-

come mainstream in the IT shops of Fortune 100 companies and

government agencies.

Why Agile Matters
Without exception, all of the organizations I work with have

expressed an interest in “going agile,” if they have not already

done so. This is a strategic decision that has deep-rooted cultural

implications and should not be taken lightly. Many leaders do not

realize the extent to which they have to change the way they be-

have.

There are several reasons why an organization should transi-

tion to a model that is agile and self-organizing:

Agile frameworks reduce the cost of failure. It is conven-

tional wisdom in the technology industry that failure is inevitable,

with many companies seeing failure rates as high as 70 percent. [1]

Research conducted by organizations such as the Project Manage-

ment Institute and the Software Engineering Institute has consis-

tently confirmed high failure rates, so it makes sense to seek solu-

tions that assume failure, not success, and to simply reduce its cost.

Failure is not just an option; it should be expected. A foun-

dational premise of agile is to acknowledge that failure is normal,

and we should plan to fail fast and learn as much as we can.

The concept of “great big
agile” requires leadership
at all levels, just not the
kind we are used to.

B E T T E R S O F T W A R E T e c h W e l l . c o m 15

http://techwell.com

the very agile ceremonies they use and leaves the organization

without the benefits they were hoping to achieve. Out of more than

two hundred companies assessed by AgileCxO and its partners:

• More than 90 percent assigned project managers for task

management, oversight, and control of agile teams

• More than half did not conduct regular retrospectives

• Almost half conflated story points with hours yet still consid-

ered velocity to be a reliable metric

• Most made no changes to governance, infrastructure, or train-

ing to support agile adoption

These obvious conflicts with agile values result in a scenario

where leaders may desire agility but continue to apply low-trust

defined process control models to run the business, when a high-

trust, empirical process control model is required for successful

agility. This friction, often manifesting itself as “Scrummerfall” or

“ScrumBut” (“we’re agile, but…”), corrupts and degrades the very

performance that agile leaders are seeking to achieve.

Jim Bouchard, author of The Sensei Leader, sums it up: “Don’t

even attempt to transform your organization until you can trans-

form yourself.” [4]

The Missing Layer in the Operating
System

While the Agile Manifesto excels in describing why we do what

we do, and industry frameworks and models describe what we

need to accomplish, there is little guidance for leaders or teams

on how to experience consistent success with self-organization and

agility.

This layer isn’t a process, but a set of guide rails that help lead-

ers and team members recognize what large-scale agile looks like

and provide the ability to recognize, evaluate, and improve agile

performance. As I often tell conference audiences during my talks,

“It’s not magic. You just need to be able to recognize it.”

To succeed with “great big agile,” technology leaders and teams

can start by categorizing capability into three interdependent lay-

ers: why, what, and how.

“Why” models: The set of values and guiding principles that

are traced directly to the goals and methods of the organization.

With its guiding principles, the Agile Manifesto is perhaps the best

example.

“What” models: The set of frameworks, methods, roles, and

artifacts derived from industry-standard models or internal meth-

odologies. These models define what needs to be done and often

provide examples that help us understand what we need to do

while executing the software product development process.

“How” models: A set of behaviors, actions, and outcomes that

helps define and evaluate organizational success and supports the

culture, goals, and objectives of the organization. “How” models

trace directly to established values, guiding principles, and frame-

works to ensure that the behaviors exhibited by teams reflect the

values of the organization.

This reduces a project’s cost while allowing teams to redirect

efforts toward a more successful approach through the use of ex-

perimentation, retrospectives, and short, timeboxed iterations.

Quality professionals will recognize this as an application of

W. Edwards Deming’s “plan-do-check-act” framework of continu-

ous improvement applied in short iterations. [2]

Agile methods deliver business value to end-users more
quickly. Value is delivered more quickly with an iterative and

incremental delivery approach due to low-value features being

de-prioritized or discarded, freeing up valuable resources to focus

on the high-priority needs of the customer.

Self-organization pushes decision-making downward,
freeing leaders to focus on strategy. For decades, the technolo-

gy industry has explored ways to push decisions downward. Agile

frameworks finally provide a model that can make that a reality, if

only leaders are willing to accept their role as enablers rather than

task managers. A successful agile team requires minimal over-

sight, makes day-to-day operational decisions, collaborates with

business customers, and delivers business value without the need

for continuous management intervention.

Agile complements important IT industry models. If CMMI,

ISO 9001, and the PMBOK® Guide are models we use, agile is some-

thing we are. For example, CMMI has a perspective of defining

what needs to occur for a product or service to be successfully de-

livered, while agile values describe why we take those actions. If

adopted in this way, CMMI makes agile stronger. [3]

All Is Not Well with Agile
While the popularity of agile frameworks like Scrum, Extreme

Programming, and Scaled Agile Framework cannot be understat-

ed, in some ways, they have been a victim of their own success.

Large companies eager to replicate small company successes;

satisfy younger, more self-organizing employees; and to just sim-

ply “go agile” have jumped on the agile bandwagon. Unfortunately,

they often give inadequate attention to the changes in governance,

infrastructure, measurement, and training required to succeed.

The results have been chaotic, with large organizations adopting

some elements of Scrum (e.g., daily standups and sprints) and

force-fitting them with more traditional roles and techniques that

are in conflict with agile values. This conflict dilutes the value of

Many leaders do not
realize the extent to which
they have to change the
way they behave.

B E T T E R S O F T W A R E T e c h W e l l . c o m 16

http://techwell.com

An Operating System for Scalable Agility
AgileCxO’s Agile Performance Holarchy (APH) is an organi-

zational operating system that encapsulates all three layers, pro-

viding leaders with an integrated view of organizational agile

performance.

APH provides agile leaders and teams with a model to build,

evaluate, and sustain great agile behaviors and habits. It is not

an agile maturity model or a process, but an operating system for

sustainable agility. Figure 1 shows how APH defines performance

circles and holons.

Introduced in the 1967 book The Ghost in the Machine by Arthur

Koestler, holons are described as self-reliant entities that “possess

a degree of independence and can handle contingencies without

asking higher authorities for instructions.” [5]

Koestler defines a holarchy as a “hierarchy of self-regulating

holons that function first as autonomous wholes in supraordina-

tion to their parts, secondly as dependent parts in a sub-ordination

to controls on higher levels, and thirdly in coordination with their

local environment.”

A holarchy works well for describing and evaluating agile per-

formance, where behaviors are self-organizing and empirical and

the sequence of actions and outcomes is unpredictable, iterative,

and recursive, rather than procedural.

The APH is composed of interdependent actions and outcomes

that provide guidance for the behaviors, ceremonies, and tech-

niques that might be performed to meet the outcomes by team

members, functional groups, and leaders throughout the organiza-

tion. Sequence, rigor, and intensity are determined by functional

and project teams, not by management. There are several key APH

components.

Figure 1: The agile performance holarchy

B E T T E R S O F T W A R E T e c h W e l l . c o m 17

http://techwell.com

PERFORMANCE CIRCLES
Performance circles encapsulate a discrete set of behaviors

with a set of actions and outcomes that are essential to successfully

step through the process of adopting, transforming, and mastering

large-scale agility.

Organizations wishing to benchmark performance against the

APH may evaluate performance circles to determine how they are

adopting, transforming, or mastering the behaviors of that circle.

There are six performance circles, each with a specific objec-

tive for leadership, depicted in the classic user story format of

role, mission, and business value. These are described in table 1 in

terms of goals and benefit.

Performance Circle Objective User Story

As an agile leader,

I want to project agile values, provide the environment, and establish a vision

so that my teams can be agile and successful in everything they do.

As an agile leader,

I want agile team members engaged in the planning and building of high
quality products

so that we deliver the solution as expected.

As a product owner,

I want to establish a roadmap, release plan, and backlog

so that the overall vision of the product or service can be realized.

As an agile leader,

I want teams and functional areas to learn and master self-organization and
agile ceremonies and techniques

so that the entire organization can benefit fully from agile adoption.

As an agile leader,

I want to confirm that teams are demonstrating agile values, methods, and
techniques as expected

so that I can understand what is working well and what needs improvement.

As an agile leader,

I want to foster a continuous improvement environment and engage with
agile partners

so that agile teams can grow their capabilities.

Table 1: Performance circles and objectives

B E T T E R S O F T W A R E T e c h W e l l . c o m 18

http://techwell.com

HOLONS
Several holons are encapsulated within each performance cir-

cle, and they represent a set of actions and outcomes that can effec-

tively stand alone but are also an integral part of a greater whole.

All the actions and outcomes should be implemented in order to

realize the value of each holon.

There are eighteen independent holons within the APH, as

shown in table 2.

As an example, the engaging holon encourages the use of gem-
ba walks, a process where leaders walk around to observe their

teams and “understand by seeing” in order to improve engage-

ment and enable quality.

OBJECTIVES AND OUTCOMES
Each holon describes objectives in a user story format that

should be met in order to instantiate the value of the holon. An

objective can be met by taking the defined actions in a manner and

behavior that is consistent with agile values.

Holons contain a set of outcomes, like the performance circle

they are surrounded by, that can be used to evaluate, improve,

and sustain organizational agile performance within that context.

The outcomes at the holon level are categorized into three levels,

adopting, transforming, and mastering, and are used to help lead-

ers evaluate and improve their organization’s agile maturity.

For example, the objective and outcomes of the delivering

holon, part of the crafting performance circle, are depicted in

table 3.

ACTIONS
An action is the specific behavior that is applied to meet a ho-

lon’s objective. All behaviors in the holon should be demonstrated

in order to meet the intent of the objective, and each must always

be aligned with agile values. The APH recommends agile ceremo-

nies and techniques that, when executed successfully, will meet the

intent of the actions. Not being a process, the APH does not require

any ceremony or technique, although it does provide a list of po-

tential options for those who wish to benefit from their guidance.

CEREMONIES AND TECHNIQUES
Each action provides a recommended set of ceremonies and

techniques derived from agile and lean frameworks that can be

adopted to demonstrate the desired behavior and meet the intent

of the action.

The sixty-eight ceremonies and techniques described in the

APH include all the typical visual information indicators, roles,

expected behaviors, and actions, allowing leaders and all levels to

effectively play their roles as servant leaders and recognize, eval-

uate, and enable improved organizational performance where

needed.

Large-scale agility requires large-scale self-organization, but it

isn’t magic. Contrary to the claims of many agile-like practitioners

that “agile doesn’t use process,” agile uses a lot of process; howev-

er, it may not be the kind you’re used to. The freedom to successful-

ly self-organize results in freedom through mastery.

Table 2: Holons within each performance circle define expected behaviors

Table 3: Leaders can assess each holon’s objectives and determine which outcomes have been met

B E T T E R S O F T W A R E T e c h W e l l . c o m 19

http://techwell.com

Self-organizing teams must also learn their craft, practice their

forms, and progress through the stages of adopting, transforming,

and mastering agility in order to be self-reliant.

Put In the Work and Reap the Rewards
According to VersionOne’s “11th Annual State of Agile Report,”

98 percent of respondents who believed they were agile reported

success with agile projects. [6] That’s a stunning statistic, but it isn’t

a coincidence. When agile works, the results are spectacular.

However, the same survey said that many organizations report

a conflict between corporate policies and agile vales, that leader-

ship lacked the skills to enable agile teams, and that more than half

were still maturing years after adoption.

Successful agile organizations are not successful because they

adopt popular ceremonies or frameworks. They are successful be-

cause they are committed to open, collaborative, and transparent

servant leadership at all levels, and they have cultures where fail-

ure and risk are not punished, but celebrated as a way to learn and

improve. Strong agile organizations are learning organizations

that can demonstrate a mastery of self-organization.

For those companies, the behaviors they exhibit are the natu-

ral outcome of organizational culture change, and they produce

better results when they align with the rules of nature, which con-

sist of, among other things, iteration, continuous learning, incre-

mental wins (and failures), transparency, and team collaboration.

They succeed because they rely on trust, collaboration, and deep

respect for team members, and they recognize that while teaming

is highly valued, personal commitment to behavioral excellence is

the prime directive. In other words, an agile culture aligns with

the rules of nature, and successful agile teams are those that have

mastered both self-organization and personal self-reliance.

Conversely, if an organization is autocratic, with a high degree

of secrecy, distrust, and negativity; blames people for failures; and

is generally low in trust, then they will struggle with agile adop-

tion. Without an “operating system” upgrade, they can never re-

alize the benefits of organizational agility. For those companies,

adopting Scrum or Extreme Programming, both excellent frame-

works, can be misleading. They feel agile, but, in practice, they

are anything but. This will come back to bite them in the form of

missed deadlines, high turnover, unhappy customers, low quality,

and high cost. This eventually leads management to declare, “We

tried agile, and it didn’t work for us.”

To summarize, the agile performance holarchy provides lead-

ers and teams with objectives, outcomes, and behavioral guide

rails to succeed. Along with an assessment method, training, and

certifications you can chart a course to a high-performing agile fu-

ture. jdalton@agilecxo.org

REFERENCESCLICK FOR THIS STORY'S

N E W S L E T T E R S
F O R E V E R Y N E E D !

Want the latest and greatest content
delivered to your inbox? We have a

newsletter for you!

A T E C H W E L L C O M M U N I T Y

AgileConnection To Go has everything you
need to know about all things agile.

DEV PS
B R O U G H T T O Y O U B Y C M C R O S S R O A D S

DevOps To Go delivers new and relevant
DevOps content from CMCrossroads

every month.

StickyMinds To Go sends you a weekly
listing of all the new testing articles

added to StickyMinds.

TechWell Insights features the latest stories
from conference speakers, SQE Training

partners, and other industry voices.

Visit AgileConnection.com, CMCrossroads.com,
StickyMinds.com, or TechWell.com to sign up

for our newsletters.

B E T T E R S O F T W A R E T e c h W e l l . c o m 20

mailto:jdalton@agilecxo.org
www.stickyminds.com/sticky-note/references-238
http://AgileConnection.com
http://CMCrossroads.com
http://StickyMinds.com
https://www.techwell.com/techwell-insights
http://www.agileconnection.com
http://www.CMCrossroads.com
http://www.stickyminds.com
https://www.techwell.com/techwell-insights
http://techwell.com

https://www.qmetry.com/qmetry_test_management_professional

All Customers Are
Not Created Equal

By
Regina
Evans

B E T T E R S O F T W A R E T e c h W e l l . c o m 22

http://techwell.com

f you have ever worked with a customer, it shouldn’t be news

to you that all customers are not created equal. It is even

more difficult to know customer needs on software develop-

ment projects, because end-users have different requirements, or

sometimes no idea what they want at all.

I have had the privilege of working as a customer relationship

manager in various industries, and it is vital to learn how to suc-

cessfully develop software that meets end-user needs.

The Necessary Skills to Work with
Customers

Whether your customer sits on the other side of the computer

or in some other city or country, there are four basic skills that any-

one working with customers must understand and master:

• Understand the customer’s situation

• Put yourself in the customer’s shoes

• Remember that we are all human

• Do not take negative communication personally

One of the first things that we must do is be willing to hear

another person’s point of view. In fact, hearing is probably not

strong enough while truly listening is more important. Often, we

have so many conversations going on in our own head that we are

not paying attention to the conversation that is taking place with

customers. When dealing with customers, you must give them the

full attention that you would want someone to give you. In doing

so, we can minimize frustration and any misunderstanding.

Understanding a Customer’s Needs When
Gathering Requirements

Before development, it is important to understand what the

end-user needs and how they will use the software. One way to

ensure clarity about customer needs is to confirm accuracy of the

requirements and prioritize them so that most, if not all, of the

critical functionality is built into the finished product. Take time to

create an outline of what the finished product should look like and

perform some level of peer review or user testing to avoid develop-

ing something that easily breaks or is difficult to use.

When developing software, it is important to understand that

the end-user wants to be able to access an application easily, se-

curely, and with a full understanding of user requirements. When

an application is difficult to install, it frustrates the end-user and

can result in their not wanting to use the app.

Any fear of internet safety or lack of privacy protection will

also keep them from wanting to access your application. Applica-

tion speed is important to end-users, so make sure that the applica-

tion does not have built-in flaws that cause long lag times or create

a situation where it is difficult for the user to stop the application.

To avoid these possible situations, it is helpful to make your

application easily accessible, secure, and transparent regarding,

any licensing requirements. Gaining an end-user’s trust is critical.

It is always best to create a long-lasting customer relationship that

can lead to positive referrals based on great end-user experiences.

You’re a Customer, Too!
Developers need customers to understand what is needed for

the creation of a good software application. Sometimes, it is diffi-

cult for customers to understand the software development pro-

cess, so it is important to help them understand the development

side of things. One way to do that is to have an open dialogue about

what is being developed and educate the customer up front about

what to expect, from initiation through product delivery.

When end-users have some idea about what it takes to develop

an application, they are less likely to get frustrated and impatient

when they have questions or when timelines require adjustment.

Developers must be able to put themselves in the shoes of the

customer.

I have witnessed several situations where customers were com-

pletely mishandled in customer support organizations. One event

that stands out is a customer calling in claiming that their phone

would not forward calls. They were frustrated and yelling because

they viewed it as a defect. After walking the customer through the

steps to forward a call, the anger dissipated.

Try to handle these types of situations with empathy, because

when something is important to a customer, it must also be im-

portant to us. As people, we should care about each other, and if it

is urgent to the end-users, we should not disregard their feelings,

but try to understand the situation and see what we can do to help.

Support staff must be prepared to be assertive when representing

customer needs, and software developers must be open to per-

forming fixes and improvements in a timely manner.

How a product or service provider attends to their customers

becomes a true competitive advantage. As technology advances at

a fast rate, customers have plenty of choices based on intense com-

petition. To ensure customer loyalty, be empathetic to the end-user

and provide a level of customer service that treats everyone as if

they are important. A good example of attention to the customer

is how quickly a software development organization responds to

software issues.

Even if you are not able to fix the issue right away, it is good

customer service to state a realistic timeframe for when you will

have an issue addressed and to keep the customer updated on

progress. And, if a prioritized fix will be delayed, inform the cus-

tomer. Always treat others as you’d like to be treated.

Developers must
be able to put
themselves in
the shoes of the
customer.

B E T T E R S O F T W A R E T e c h W e l l . c o m 23

http://techwell.com

We’re All in This Together
A developer who exhibits integrity can go a long way in build-

ing your organization’s relationship with your customer. It is im-

portant to remember that we are all human. All people—especially

your customers—expect a level of respect. If someone is experienc-

ing negative emotions, it does not hurt to respond with empathy

and courtesy. The use of words like “please,” “thanks,” and “you’re

welcome” should be a common part of our vocabulary. People ap-

preciate the use of positive words, and it usually causes people to

reciprocate.

Let’s switch hats for a moment. Some of my own customer ser-

vice experiences have been in situations where I was upset and an-

gry and the customer service representative helping me was able

to sincerely express concern and courtesy.

In these types of scenarios, it is best to calm the person down,

get to the root of the problem, and to-

gether come up with a solution. This

is not something that just happens—

it has to be practiced. Don’t get me

wrong, the solution may not always

be exactly what the customer wants,

but everyone benefits if the situation

can be diffused and both parties can

work through the problem together.

In the world of software develop-

ment, where technology can be pret-

ty dry, the end-user will appreciate a

personal touch.

For software products where

quality means everything, develop-

ers should invest time and effort to

take an active role in quality validation as well as end-user accep-

tance testing. When code updates are needed, be sure to test your

changes before implementation, communicate the changes to the

end-user, and welcome feedback so that you can make continuous

improvements. If someone suggests a noteworthy idea, take the

time to say thank you.

Develop a Thick Skin
Last, but not least, you cannot take anything negative that the

customer says personally. Most of us have experienced these kinds

of situations:

• You say hello, and you cannot get another word in. The per-

son wants to speak to a manager before you even have a

chance to find out the details of the problem, and you are left

not understanding what just happened.

• A customer types a negative comment regarding your work,

and before you think it through, you have responded, and a

shouting match ensues. The conversation is out there for the

world to see.

In our lives, we will encounter all kinds of customers: business

partners, buyers, parents, kids, spouses, colleagues, managers, ven-

dors, purchasers, strangers, and so on. Regardless of what product

or service you are selling or who your customer is, we must all be

willing to develop the skills and desire to successfully help others.

Be intentional about showing respect toward customers and you

will become successful at customer relationship management.

Negative responses never solve customer problems. This goes

for those in customer support roles as well as software develop-

ment roles. Both career paths thrive on your ability to solve prob-

lems, so look beyond the surface of the reactions to determine

what problems you can solve.

Negative feedback can be difficult to take, but don’t take it per-

sonally. Instead, take it as an opportunity to improve your work.

When developing, think about what an end-user may see as neg-

ative when using the application. For example, if you build in an

animation or advertisement, you want to make sure it provides the

needed content but does not run too long and frustrate the user.

Forward thinking provides a way to address these types of chal-

lenges and minimize negative feedback.

Developing the skill to consider these types of reactions up

front will assist you in creating great work. Having peer reviews

are a great way to get feedback that will help enhance your work,

too. In addition, you should consider having someone who knows

nothing about software development be a part of your user test-

ing. These individuals will give you insights that you may not have

considered.

There’s More to Customer Service Than
Lip Service

Successfully supporting customers is a tough job. All customers

are not created equal, but they all expect to be treated with respect.

If you foster an atmosphere of open communication, ensure secu-

rity they can trust, and provide a quality product or service that

meets their needs, you can earn their respect and loyalty in return.

As you build customer loyalty, you will also build a reputation

that stretches far beyond one customer.
Regina.Evans@netapp.com

Regardless of what product
or service you are selling
or who your customer is,
we must all be willing
to develop the skills and
desire to successfully
help others.

B E T T E R S O F T W A R E T e c h W e l l . c o m 24

mailto:Regina.Evans@netapp.com
http://techwell.com

FULL PROGRAM
AVAILABLE

S T A R C A N A D A 2 0 1 8

h t t p s : / / w e l l . t c / s c 1 8

Plus you can enjoy a multi-day training class to advance

your career, experience the Test Lab, network with other

software testing professionals, meet with the speakers,

enjoy a bonus day with Women Who Test, and more.

4 KEYNOTES 13 TUTORIALS 28 SESSIONS

https://well.tc/wukp

SUPPORTING
CONTINUOUS
TESTING WITH
AUTOMATION

e’re living in a world that requires software development organizations to con-

tinuously deliver value to their customers. As a result, software development

teams need rapid feedback on software quality and its business value. In order

to keep up with this demand, many organizations have abandoned their traditional testing

efforts in favor of a more flexible, risk-reducing approach, including adopting test automation.

However, teams currently implementing test automation fail to support the constant as-

sessment of quality and business value—a process known as continuous testing.

Let’s take a closer look at why automation efforts fall short and what can be done to im-

prove the situation and make test automation the key ingredient for continuous testing.

BY BAS DIJKSTRA

B E T T E R S O F T W A R E T e c h W e l l . c o m 26

http://techwell.com

A Primer on Continuous Testing
Continuous testing can be defined as subjecting every build of

an application to a specific set of tests that assess and report on the

quality and the business risks for that build, in every environment

that build passes through, often including production (figure 1).

Putting the term continuous aside for the moment, these tests

should contribute to rapid feedback about the value that the prod-

uct provides to someone who matters. This is consistent to the defi-

nition of quality coined by Jerry Weinberg and adapted by James

Bach and Michael Bolton. [1]

Introducing test automation as part of the overall testing ap-

proach seems like a straightforward choice, and, indeed, automa-

tion can potentially provide considerable value to teams implement-

ing continuous testing. Too often, though, it falls short of promises

made and expectations set. Test automation takes too long to run,

is hard to maintain, and fails to provide the required insight into

application quality. It can mislead its users and stakeholders if the

technology results in time and money wasted, applications being re-

leased into production without confidence, or bugs going undetect-

ed. This can cause automation efforts to be shelved.

In my opinion, there are three reasons test automation fails to

deliver in support of continuous testing. Let’s look at each of them

in detail.

Reason 1: Tests Are Unfit for Continuous
Testing

If your automated tests are meant to support continuous testing,

they should be able to run continuously or on demand. Whether

you’re running them once a day or once a minute, your tests should

be ready to go and provide the required feedback whenever you

need it. Unfortunately, this is not always the case.

To help you make sure that your automated tests are better fit

for continuous testing, I use the acronym FITR as a reminder of

the qualities to look for when assessing automated tests: Your tests

should be focused, informative, trustworthy, and repeatable.

Focused: Having focused tests means that your tests should be

tied as closely as possible to the piece of business logic or function-

ality being tested.

One prime example where tests fail to meet this requirement

is when teams write user inter-

face tests. Using a tool like Sele-

nium WebDriver can verify the

workings of business logic that’s

exposed to the user interface

through an API, but this can lead

to unnecessarily long feedback

loops, as UI-driven tests tend to

be comparatively slow in execu-

tion and can give “shallow” feed-

back. The further away a test is

from the logic it is verifying, the

harder it is to pinpoint what, ex-

actly, is wrong when a failure is

encountered. The same principle

applies to using checks to verify

logic that operates at the API level

that can be more effectively test-

ed with unit tests.

In short, always make sure

that your tests operate at the

right level and with the right

scope. You should dive deeper

into your application under test to find the most efficient way to test

anything and everything.

Informative: In order to quickly gauge the effect that a change

has on the business value your application provides, your tests

should communicate its intent and its result in a clear and unambig-

uous manner. This minimizes the time needed to investigate failures

or to update tests that reflect changes in the application under test.

To improve the way your tests communicate their intent, prac-

tice good programming principles like DRY (“don’t repeat your-

self”) and YAGNI (“you ain’t gonna need it”), as well as useful nam-

ing conventions to make your code readable. Keep your code as

close to self-documenting as possible. If it makes sense, consider

adding a behavior-driven development library, such as Cucumber

or SpecFlow, to document the expected behavior that your tests

are verifying.

To improve the way your tests communicate their result, make

sure that the target audience is correctly identified for the reports

and logging created by your tests. You must also ensure that infor-

mation requirements are fulfilled and that the audience can make

Figure 1: Depiction of continuous testing

B E T T E R S O F T W A R E T e c h W e l l . c o m 27

http://techwell.com

the appropriate decisions based on these reports. Remember that

your target audience can be a person (yourself, another tester, or a

product owner) and a machine (such as a build server or deployment

pipeline).

Trustworthy: Especially for teams that are practicing continu-

ous delivery or even continuous deployment, automated tests are

often the only means used to gauge software quality before it is put

into production. This means software development teams need to

be able to rely on the outcome of these tests in order to be confident

that their product retains a certain degree of quality at all times.

Therefore, a word of caution is in place. Automated tests can

trick you with false positives when tests fail but there’s no actual

defect in the application. Automated tests can also incorrectly report

false negatives when tests pass and allow a defect that should have

been caught before deployment into production.

To help prevent deceptive automation, review your tests peri-

odically. Fix tests that cause problems, and don’t hesitate to delete

tests. Experiment with techniques such as mutation testing to help

assess the quality of unit tests.

Repeatable: Continuous testing requires that you’re able to run

your tests on demand. However, there are a number of factors that

can prevent you from running your tests over and over again with

the click of a button. The two main culprits are test data and depen-

dencies in test environments.

When you’re running integration or end-to-end tests, it’s highly

likely that your test triggers an interaction between different com-

ponents of your system or between your system and third-party

dependencies. This often requires test data to be synchronized be-

tween these components. For example, if you’re trying to create an

insurance policy for a car and part of the application process is a

license plate validity check, you’ll need to make sure that a license

plate number exists in the service each time it is entered. When

you’re running tests frequently, tests like this can require a lot of

test data, and your test data strategy should be able to support that.

A lack of synchronized test data is just one of the ways in which

test environments can be a bottleneck when it comes to implement-

ing continuous testing. Critical dependencies required for integra-

tion and end-to-end testing can be difficult to access for other rea-

sons, too. Real-world dependencies must be considered, including

requiring access fees for third-party services and shared access to

mainframes or web services.

One possible approach to dealing with these test environment

issues is the implementation of stubbing, mocking, or service vir-

tualization. These are techniques that can be used to simulate the

behavior of these critical yet hard-to-access dependencies, thereby

removing bottlenecks that are in the way of creating repeatable,

on-demand test automation.

Reason 2: Too Many or Too Few Tests
Continuous testing is about continuously gaining insight into the

quality and business value of an application using the shortest pos-

sible feedback loop. This means there is a trade-off between adding

more tests, test cycles, and test types. Increasing test coverage can

conflict with the need to get the information required to make deci-

sions (to deploy or not to deploy) as fast as possible.

For every test they are about to include in their continuous test-

ing efforts, software development teams should ask themselves, “Do

we really need the information that this test provides every time we

build our software?” From a software testing perspective, it is easy

to “add another test, just to be sure,” but teams should remember

that every test added has a negative impact on the length of the feed-

back loop. From a business value perspective, it might be tempting

to cut testing efforts relentlessly in order to minimize the time to

production, but this comes with a cost of its own in terms of lower

test coverage. It’s imperative that for every test that’s not added to

the continuous testing cycle, teams ask themselves, “Are we OK with

not having the information provided by this test for every build?”

Performing certain types of tests periodically may be a useful strat-

egy to reach a good trade-off between risk, quality, and speed, but

perhaps not on every build.

Too much testing results in unnecessarily long feedback loops

and a loss in time to market. Too little testing results in poor insight

into application quality before it is put into production, as well as a

higher risk of defects finding their way to the customer. As with so

many things in life, there is no one right answer or approach that

works in all cases. Using the above considerations, find the trade-

off that works best for your situation, learn from the outcomes, and

continuously monitor and improve your testing efforts.

Reason 3: Not Everything Can Be Automated
Contrary to popular belief, not all testing activities can be auto-

mated. I’d like more people to view automation as something that

supports testing, rather than something that replaces the things tes-

ters do when they test. [2]

Even though automation is likely to be an essential part of most

continuous testing efforts for its ability to give rapid feedback, it

should be considered a bad idea to rely solely on automation. It

cannot paint a complete picture about product quality. On the other

hand, there are likely more opportunities for automation to support

your continuous testing efforts than you might think. Consider us-

ing continuous testing in test data generation, monitoring, log anal-

ysis, continuous performance testing, or service virtualization—all

forms of automation that use tools for testing. Adopting more inno-

vative test automation coverage can help you achieve your contin-

uous testing goals.

Automation can be an invaluable asset toward a successful

adoption of continuous testing, but we should definitely see it in a

more realistic light. By adopting the advice in this article, you should

be able to get the most out of your automation and your continuous

testing efforts. bas@ontestautomation.com

REFERENCESCLICK FOR THIS STORY'S

B E T T E R S O F T W A R E T e c h W e l l . c o m 28

mailto:bas@ontestautomation.com
www.stickyminds.com/sticky-note/references-239
http://techwell.com

For more than twenty-five years, TechWell

has helped thousands of organizations

reach their goal of producing high-value

and high-quality software. As part of

TechWell’s top-ranked lineup of expert

resources for software professionals, SQE

Training’s On-Site training offers your team

the kind of change that can only come

from working one-on-one with a seasoned

expert. We are the industry’s best resource

to help organizations meet their software

testing, development, management, and

requirements training needs.

With On-Site training, we handle it all—

bringing the instructor and the course to

you. Delivering one of our 80+ courses

at your location allows you to tailor the

experience to the specific needs of your

organization and expand the number of

people that can be trained. You and your

team can focus on the most relevant

material, discuss proprietary issues with

complete confidentiality, and ensure

everyone is on the same page when

implementing new practices and processes.

8
REQUIREMENTS
& BUSINESS
ANALYSIS
COURSES

40+
TESTING
COURSES

8
PROJECT
MANAGEMENT
COURSES

8
DEV & TESTING
TOOLS COURSES

7
TEST
AUTOMATION
COURSES

25+
AGILE & DEVOPS
COURSES

BRING THE TRAINING TO YOU
Agile Test Automation

Fundamentals of Agile

Foundations of DevOps

DevOps Leadership Workshop

Software Tester Certification

and More!

SQETRAINING.COM/ON-SITE

TRAIN YOUR
TEAM ON

YOUR TURF

8 0 + O N - S I T E C O U R S E S

IF YOU HAVE 6 OR MORE TO TRAIN , CONSIDER ON-S ITE TRAINING

https://well.tc/wukc

QA
Is More
Than
Being a
Tester

by Amanda Perkins
B E T T E R S O F T W A R E T e c h W e l l . c o m 30

http://techwell.com

ome say quality assurance (QA) work in an information

technology environment is easy. All you have to do is make

sure code works. For those not in the computer field, the

perception of what QA is centers around pushing buttons. But

that’s not even close to being true in the life of a QA professional.

QA is so much more than just being a tester.

Examining the QA Role
I believe there are three fundamentals to how we verify and

how we test.

1. We test limits: A key part of QA involves stressing limits,

and that includes load testing in a system, testing endurance when

new testing methods are introduced, and testing ourselves when

we become key contributors in a development or project team.

2. We test patience: QA work provides an objective yardstick

for the quality of code produced by developers by breaking their

hard work and then telling them all about it. We test our own pa-

tience when test environments do not work or when the code re-

leased to us is pronounced “done” but it isn’t even close.

3. We test software: Finally, this brings us to testing software.

We test what the requirements tell us needs to work a certain way,

and we test what is not in the requirements. We test the system

in ways the end-user understands, and we test things we thought

about while testing something else. Software testing is only the start.

QA Takes On the Role of Business Analyst
QA individuals often act as business analysts. Sometimes user

stories are laid out neatly for testing, and while we are reviewing

the story, we realize there is something else to test.

We ask questions. We use our knowledge to dispute some of

the requirements set in front of us. We think like the user, the busi-

ness, and a tester, then we make suggestions based on what we

find. We seek answers from any source and debate the way the

task or ticket was written. QA practitioners think outside the box

and imagine that some future user is going to push that silly button

and find something no one expected. Based on my experience, the

best folks in QA are always curious and question everything.

Roles often change hands, and that is part of belonging to a

team. For example, sometimes we must write the tickets, create

user stories, write reproduction steps, and make ourselves avail-

able when our teammates have questions. We answer questions

but consult with our project manager or business analyst to verify

what they want the system to do. We work the system and write

out tests on what requirements we understand.

This isn’t all we do.

QA Must Be an Effective Communicator
Besides being curious, a truly great QA professional is an ef-

fective communicator. We talk to developers to find out what they

did (or didn’t do). And when developers are anxious to start coding

and avoid further detailed discussions, QA must talk to the busi-

ness analyst (BA) to find out what requirements actually mean.

We occasionally get the chance to talk to end-users. And not all

discussions are about product quality. There are times when QA

gets the opportunity to ask an end-user about how they use the

system and what works best for them. Sometimes QA gets to in-

troduce the end-user to an improvement to their current workflow

and discuss how best to implement the changes. At other times, we

get to talk to them and learn what the business analyst and devel-

opers think what would be great improvements but instead could

actually slow them down.

It’s these interactions where we gain the knowledge QA needs

to become advocates for the end-user.

Talking to our teams, we get to know each other and learn how

we work best together. We geek out about movies, board games,

video games, kids, hobbies, and pets. We question things we see

and things we know. We are not afraid to raise questions. We read

articles on testing and tell our teams the things we’ve learned. We

want everyone to get excited about testing topics. We talk to man-

agers to find out what the plan is, what their expectations are, and

where QA can best be of service. We talk to ourselves, especially

when we hit a snag and just can’t figure out where we went wrong.

Sometimes We Develop, Too!
So, you don’t know how to program? Learn a programming

language. If you know the basics of how your development team

writes code, you should have a good idea of how things should

(and should not) work. Automated testers know they have to

develop code or scripts, so they have at least some idea of how

programming works. QA personnel look at the user interface and

data tables and employ manual test cases to help automated tes-

ter counterparts write tests in any number of frameworks and any

number of programming languages. The best way to help the auto-

mated tester is to assist them in writing some tests.

Not only do we speak about what we are testing, we also talk

through the issues with developers: QA is often used as a sounding

board. There will be times where you find yourself on a team and

suddenly you and a developer will start talking through an issue

If you know the basics of
how your development team
writes code, you should have
a good idea of how things
should (and should not) work.

B E T T E R S O F T W A R E T e c h W e l l . c o m 31

http://techwell.com

they are having. Having general knowledge of the programming

language they are using gives QA a working idea of what the de-

veloper is saying, or maybe you have just enough knowledge that

the SQL query the developer asked you about makes sense. Taking

a testing point of view, you can help solve the problem by offering

a better query.

But this is still not all we do.

QA Has User Experience Opinions
The end-user can take many forms, including client, customer,

student, or the beta tester who is using the software that the team

has been working on for the past sprint. QA needs to put themselves

in the shoes of those who are going to use the system in unexpected

and complicated ways. Surprisingly, testing for a wide variety of

end-user personas often validates how many of the requirements

are correct. Pretending to test the software as the end-user brings

out the extra paths that need to be tested, because the “happy path”

should not be the only way to achieve a quality result.

Great QA will drive the user experience (UX) team, BAs, and

developers crazy, because we’re the ones who point out that that

image is three pixels too far to the left and that button is the wrong

color blue. It is what gives you permission to tell the team that red

is probably not a good color because there are color combinations

to avoid for those with color blindness, like red next to green.

This is your chance to use the system and bang on the software

in ways the actual end-user will. You get to make up stories in your

head about the user and what they are doing, and go about invent-

ing new ways of interacting with the product that no one else con-

sidered when they wrote the stories.

QA gets to play in the UX space, too. QA typically reacts to tick-

ets specifying what needs to be tested. You get a ticket about a but-

ton in a certain shade of blue, asking you to right-click and inspect

that button. You’ll examine the CSS to

make sure that blue is exactly what

the BA put on the ticket. You click

through the workflow and make

suggestions about why it takes nine

clicks to perform something that

should take no more than four clicks.

While you’re at it, you suggest

that the header text is not bold

enough for the user to understand

what is being called out. Do you stop

there? Of course not. This workflow

is attached closely to another one

that you know is a little less heavy,

so you make another suggestion that,

because they are so similar, maybe

they should match. You even find

yourself defending your suggestion

and advocating for the user.

Although subjective, QA can offer

a different perspective about the experience of using the applica-

tion. Does it look good? Does it feel good? Does it do what I need

it to do without having to wait forever for it to respond? These

are all valid questions we ask ourselves almost every time we test

something.

We learn that our users aren’t actually using the system in the

way we thought. We study the tickets as we would exams. We take

online courses about UX and sit down in classrooms to learn about

a new programming language. We discover that we aren’t the only

ones out there with this situation; our internet searches come up

with the same questions we have.

And—no surprise—there is more we do.

QA Can Be a User Advocate
This list can go on and on; it really all depends on what we can

do in a day. We test and we always will. But we have to be much

more than just testers.

We have to gather requirements and question what we see.

QA has to effectively communicate with our team, our businesses,

our users, our bosses, and each other. We have to learn about the

code so we can be better teammates and perform better quality

assurance. We come up with new and exciting ways to test like

an end-user and make suggestions for improving the application.

We are creative when we look at what we are testing, and we pick

out colors, images, and buttons to determine which workflows are

most beneficial for the end-users. We are students with never-end-

ing curiosity. We are sponges soaking up any information we can

get on what will make us better at what we do.

Whenever somebody says, “Well, you’re just a tester” or “So,

that is all you do?” tell them that being in QA is so much more

than being a tester. We’re advocates for the end-user just like them.

 agiese79@gmail.com

B E T T E R S O F T W A R E T e c h W e l l . c o m 32

mailto:agiese79@gmail.com
http://techwell.com

Artificial Intelligence and Health Care:
Predicting Patient Deterioration
By Pamela Rentz

As part of a medical research partnership with the US Department of
Veterans Affairs, the team of scientists and engineers at DeepMind, the
artificial intelligence group at Alphabet (Google’s parent company), will
work on the global issue of patient deterioration during hospital care.

Read More

What’s Our Job When the Machines Do
Testing?
By Geoff Meyer

It’s a safe bet that testing jobs won’t be taken over by machines
anytime soon. However, those of us in the test industry would be wise
to heed cross-industry applications of analytics and machine learning
and begin staking out the proper role of the machine in our testing
domain. What could AI mean for testing?

Read More

Is There a Bias against Manual Testers?
By Josiah Renaudin

Manual testing might not be as all-important as it once was, but it’s
still needed if you have any hope of delivering software at a quality you
can be proud of. How we create software is going to continue to change,
but the burden of that change needs to be handled by more than one
group within the industry.

Read More

Unit Testing? Consider Taking a Rain
Check
By Hans Buwalda

Unit testing is a great way to verify software at an early stage and to
ensure that modified functions are still working as specified. However,
unit tests are not a magic wand. Rather than making such a big testing
effort, consider taking “rain checks” for certain tests.

Read More

Featuring fresh news and insightful stories about topics important to you, TechWell Insights is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

Does Testing Truly Improve Software?
By Ingo Philipp

Without revealing problems, there is no problem-solving, since we
can’t solve something we aren’t aware of. Each solved problem is one
fewer problem in the software—and the software is improved each
time a problem is removed. But it’s not testing alone that improves soft-
ware. So when does that happen?

Read More

The Future of Testing: VR and AR in
Mobile Apps
By BJ Aberle

With the ability to experience virtual and augmented reality using
mobile devices on the horizon, the potential for these new technologies
to go mainstream is huge. New test environments, configurations, and
interfaces will require testers to change their methods, so get out of
your comfort zone—and your office chairs!

Read More

Dealing with a Change-Resistant Manager
By Naomi Karten

With almost any change, whether a trivial adjustment in proce-
dures or a large-scale organizational change, people will vary in their
receptiveness to it. But if you and your teammates have some good
ideas to improve processes and your manager keeps shutting them
down, you may be dealing with a change-resistant manager.

Read More

How Mobile Developers Can Take
Advantage of Android Instant Apps
By Nicholas Roberts

Google’s Instant Apps offer users a way to easily engage with soft-
ware without having to download the app. Any Android developer can
now develop Instant Apps—or adapt their existing apps to support this
feature—streamlining the way users interact with their content, store,
or game. Will you modify your native app?

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 33

https://well.tc/wnzv
https://well.tc/3wV
https://well.tc/w6c7
https://well.tc/w6dg
http://techwell.com
http://techwell.com
https://well.tc/w6da
https://well.tc/w68d
https://well.tc/w66w
https://well.tc/w6as
http://techwell.com

T E C H W E L L I N S I G H T S

Accelerate Your DevOps Transformation
by Focusing on Culture
By Adam Auerbach

The toughest part of a DevOps transformation is the cultural chang-
es required to make it successful, so to accelerate your transformation,
figure out what they are as soon as possible. Explore your company’s
attitude toward innovation and the tools you have and how you use
them, and it will make the change easier.

Read More

The Role of the Test Manager in Agile
By Jeffery Payne

In traditional software processes, test managers are responsible for
all management aspects of their team. Agile, however, is self-directed,
so teams handle all the usual duties. Still, there is a role for test manag-
ers in agile, and it’s much more strategic than it was before. Here are
the opportunities for the role.

Read More

What the Future Holds for Cloud
Computing
By Anabel Cooper

Thanks to the development of cloud architecture away from a serv-
er-client pattern, those in the software industry will be able to embrace
heterogenous cloud services that can only run when needed. Conse-
quently, we are due for a cloud renaissance. Here are some predictions
for what the future holds for cloud computing.

Read More

Stress and Project Management: 5 Ways
to Relieve Project Pressure
By Krystle Dickerson

Project managers have many sources of stress. They are responsi-
ble for the performance of their team members, and often for whether
a project is successful or fails. Keep the pressure off with these five tips
for reducing your stress and ensure a smoothly functioning team.

Read More

6 Ways to Protect Your Organization from
DDoS Attacks
By Pradeep Parthiban

During a DDoS attack, no one can use your application, which will
result in loss of business. Brand reputation also tumbles if customers
can’t access your site or become casualties of the data breaches. How-
ever, there are some proven practices for preventing DDoS attacks—
and for what to do if you fall victim to one.

Read More

A Definition of Done for DevSecOps
By Gene Gotimer

In DevOps, we have a software delivery pipeline that checks, de-
ploys, and tests every build. The goal is to produce a viable candidate
for production, so we have to look at many different aspects of quality,
including security. To be sure we hit all the crucial marks, we should
have a definition of done for DevSecOps.

Read More

A Primer for IT Project Sponsors: 10 Steps
for Success
By Payson Hall

Much time has been spent examining the project manager’s role
in IT project success, but the role and duties of project sponsors are
often overlooked—even though sponsors are an essential element of
success (and failure). Here are ten rights and obligations a project spon-
sor should perform to improve project success.

Read More

Testing Your DevOps Is Just as Important
as Testing Your Software
By Alan Crouch

Many DevOps engineers fail to test their automation code in the
same way they test the software they deploy. It’s crucial for software
to have tests, and this should apply to infrastructure-as-code software
too, if we plan to change and improve this code with no worries about
breaking automation in our DevOps pipeline.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 34

https://well.tc/w6zi
https://well.tc/w6zq
https://well.tc/w6js
https://well.tc/w69s
https://well.tc/w69z
https://well.tc/w6ye
https://well.tc/w6y9
https://well.tc/w6tn
http://techwell.com

CAREER DEVELOPMENT

In 2016, with his seventh win, Jimmie Johnson tied Richard Pet-

ty and Dale Earnhardt for the most NASCAR Cup Series champion-

ships of all time. How has Johnson stayed on top in a physically and

mentally draining sport for so long?

These days, winning in racing at the highest level requires

more than skilled driving, a fast car, and interminable patience—

all the top drivers have those things in mostly equal measure. Also,

cars don’t break down like they used to,

which means far less is left to luck and

chance. Adding one or two more hours

driving the car isn’t likely to give John-

son that much of a boost. Similarly, if an

elite marathoner added five more miles

to his already arduous daily run, any ben-

efit would be negligible. The marathoner

must look outside his training runs to be-

come a better runner.

To wit, Johnson employs a tactic com-

monly used by athletes to get better at

their particular sports: cross-training.

Johnson is famous for his triathlete-style workout routines,

which he believes confer enormous benefits for both the mental

and physical requirements of racing. When other drivers are sleep-

ing or watching TV, Johnson is doing long-distance runs, bikes, and

swims. The combination of these activities—the driving-specific

training and the triathlon training—produce a synergistic interac-

tion. His cross-training is like a superhero’s sidekick, helping the

main strength to show up more often, better, and stronger.

The path to improving a weakness is theoretically simple:

Learn and practice basic fundamentals and you will become better

at anything, whether that’s sports, leadership, communication, or

technical skills. But weakness isn’t what Jimmie Johnson needs to

improve. Like all top athletes, Johnson wants to get better at one

thing that earns him income, fame, and success.

It’s not much different for those of us in software development.

Companies don’t want software people—whether that’s engineers,

testers, project managers, or engineering managers—who are

merely good at what they do. They want tech folks with distinctive

strengths. Weaknesses, as long as they aren’t fatal flaws, don’t have

to be deal-breakers.

Becoming indispensable to a software organization doesn’t re-

quire a software technologist to become

a jack of all trades. In fact, trying to be-

come a jack of all trades is a great way to

stay stagnant as other technologists wield

one brilliantly valuable and unique skill

to climb right on past you. The trick of

success is not to go from terrible to pass-

able at something, but to go from good to

great. That results in a competency that

matters both to organizations who offer

to pay for it and to you, the practitioner.

As easy as it is to improve on a weak-

ness, improving on a strength is much

more difficult. Like Johnson would attest, doing more of what you

already do well will only yield small improvements. To enhance

what is already a strength, one must work on complementary com-

petencies.

Take a mid-level software tester who genuinely enjoys the art

of testing and knows she does well because she stays employed,

she finds bugs, and she is told by others that her bug reports are

well-written. But this tester is not satisfied with being good enough

and wants to step up her game. She has a nagging feeling that she

isn’t as good as she could be, but she’s not sure how to get stronger

at what she does every day. Doing the same thing day in and day

out isn’t increasing her skills that much. One possibility she might

consider is to learn test automation, even though her passion is

really investigative testing.

Be Indispensable:
Cross-Train like a
Testing Athlete
TESTERS ARE INCREASINGLY LOOKING FOR WAYS TO TAKE THEIR SKILLS FROM HELPFUL TO
INDISPENSABLE. PRO ATHLETES’ APPROACH TO CROSS-TRAINING MAY BE THE “SECRET SAUCE.”
by Bonnie Bailey | bonnie.bailey@motorolasolutions.com

As easy as it is
to improve on
a weakness,

improving on a
strength is much

more difficult.

B E T T E R S O F T W A R E T e c h W e l l . c o m 35

mailto:bonnie.bailey@motorolasolutions.com
http://techwell.com

The application of complementary competencies would pre-

scribe that this tester not try to learn test automation because she

isn’t really interested in it and she would be starting from scratch.

Because her work experience lies in testing, her focus needs to be

on test cross-training.

I have found some unconventional yet effective ways to cross-

train yourself to advance in your profession. Making a list of these

core skills and fundamentals can serve as a starting point. Let’s

pick one and develop it as an example.

According to James Bach, a core skill of software testing is the

ability to “reflect upon, describe, explain, and defend your work.”

[1] This makes sense because a tester’s job requires thoughtfulness

and effective communication. Sloppy skills in either area can doom

a tester to the hall of mediocre. This tester is highly regarded for

writing good bug reports, but what will make her excellent in this

area is her ability to think, reason, and communicate clearly about

her test strategy.

If strategy means the overall plan that leads to tactical execu-

tion, what can the tester do to cross-train to become a better test

strategist? An approach I’d recommend is to develop the ability to

discover information and make connections. Another competency

to develop would focus on learning how to represent test strategy

to others.

Cross-training in information discovery and connection mak-

ing could include studying systems thinking, modeling, and logical

reasoning (or fallacies). Study in these areas will help the tester

learn to test her own assumptions about what she knows.

Some suggestions for cross-training include playing strategy

games like Risk, Axis and Allies, or chess. Listen to the popular

“You Are Not So Smart” podcast, and read and digest “Harry Potter

and the Methods of Rationality” at hpmor.com. All these sources

can help develop critical thinking that will benefit your work.

Cross-training in representing the strategy means intentional-

ly practicing verbal and written communication skills. An obvious

choice here would be for the tester to join Toastmasters Interna-

tional, where she will learn from safe outsiders where she is com-

municating well and where she needs to improve. The tester could

find someone to mentor them at work, as teaching others is a great

way to learn how to distill information for particular audiences.

Spending more time writing generates critical feedback, whether

that is on a blog or participating in a fiction-writing club.

Developing written skills can help the tester learn to eliminate

unnecessary words and phrases in her communication and focus

on the important stuff.

This concept of building a strength by engaging in comple-

mentary behaviors can be applied to any software discipline. In

a world where so many feel compelled to jump on board the next

big thing, thus inhibiting mastery of any one, a focus on becoming

an expert in what one is already good at is the best way to become

indispensable.

REFERENCESCLICK FOR THIS STORY'S

 L I N K T O O U R A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is published four

times per year: January, April, July, and October.

Entire contents © 2018 by TechWell Corporation, 350

Corporate Way, Suite 400, Orange Park, FL 32073

USA unless otherwise noted on specific articles. The

opinions expressed within the articles and contents

herein do not necessarily express those of the publisher

(TechWell Corporation). All rights reserved. No material

in this publication may be reproduced in any form

without permission. Reprints of individual articles

available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile + DevOps East 4

AgileCxO 2

IIBA 11

QMetry 21

SQE Training—Live Virtual 13

SQE Training—On-Site 29

STARCANADA 25

STARWEST 3

CAREER DEVELOPMENT

B E T T E R S O F T W A R E T e c h W e l l . c o m 36

www.stickyminds.com/sticky-note/references-240
mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://well.tc/wukf
https://agilecxo.org
https://well.tc/wuf8
https://www.qmetry.com/qmetry_test_management_professional
https://well.tc/wukq
https://well.tc/wukc
https://well.tc/wukp
https://well.tc/wukx
http://techwell.com

