
SPRING 2017

Do You Really Want
to Be a Manager?

TRANSFORMING TO AGILE
Real change requires your

entire organization

ESTIMATING SOFTWARE IS HARD
The human element and past
knowledge play a critical role

JUNE 4–9, 2017
LAS VEGAS, NV
CAESARS PALACE

What are Past Attendees Saying?

“I very much enjoyed being
able to cross-attend the
varying topics to gain a
large content of ideas.”

Tim Robert, Systems Analyst,
State Farm

“Excellent conference. The
tutorials were invaluable to
me and my group.”

Jennifer Winkelmann, Business
Analyst, TD Ameritrade

“The keynotes were inspiring! There
were several practical talks. Gave me
time to think and network to develop
actionable takeaways.”

Pete Lichtenwalner, Sr. Engineer Manager, Verint

“Great speakers that show they are
passionate about what they do. Plus they
are open to share ideas and experiences.”

Verita Sorsby, QA Manager, Tio Networks

about the TOPICS
about the KEYNOTES

about the SPEAKERS
about the TUTORIALS

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | B S C W E S T . T E C H W E L L . C O M

Agile Dev topic areas:

• Agile Development
• Agile Testing
• Agile Implementation
• Agile Techniques
• Scaling Agile
• Agile Metrics
• and more

Better Software topic areas:

• Leadership
• Process & Metrics
• Test & QA
• BA Requirements
• Project Management
• Design & Code
• and more

DevOps topic areas:

• Architecture & Design
• Configuration Management
• Adopting DevOps
• Continuous Delivery
• Continuous Integration
• Regulation & Risk
• and more

Register by
May 5, 2017

with code BSMCW
 to save up to
$400 off your
conference*

*Discount valid on packages over $400

https://well.tc/w3ck

https://appkitbox.com/en/testkit/?tw2017

Meet Customer Expectations.
Deliver Performance

Anywhere, on Any Device.

www.microfocus.com/performance

To performance test web and mobile apps today, real
user workloads must be accurately simulated.

Micro Focus can help you do this with sophisticated tools
that replicate wide-ranging user access patterns, to make

performance testing simpler and more effective.

https://www.microfocus.com/performance

Volume 19, Issue 2
SPRING 2017

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

06 Mark Your Calendar

07 Editor's Note

08 Contributors

12 Interview with an Expert

42 TechWell Insights

45 Ad Index

DepartmentsColumns

Features

The Reality of Test Artifacts
To perform a validation of a software
product, you need test plans. But by the
time you begin testing, are those plans
still valid? There has to be a better way
than translating requirements into a
useless test document.
by Justin Rohrman

2017 Is a Pivotal Year for
DevOps
Customers expect real-time software
updates. As DevOps becomes the
engine for delivering business value,
continuous innovation is needed. And
this has to begin at the start of every
project. by Eric Robertson

Managing Risk in an Agile
World
Most software projects take great
pains to identify and mitigate risks.
Traditional risk analysis techniques
can be subjective, time-consuming,
and complicated. All it takes is a simple
spreadsheet. by Jeremy Jarrell

Reshaping Our View of Agile
Transformation
Transforming a software development
team to agile may not go as planned.
The real change requires a phased
approach to earn agile acceptance. That
mindset must extend beyond the team
to the entire organization. by Jason Little

The Impossibility of Estimating
Software
Estimating software schedules must
be an art, not a science. With so many
techniques published on the subject,
why is it so difficult? It has to do with
the human element and past project
knowledge. by Christian Mackeprang

09 TECHNICALLY SPEAKING 44 THE LAST WORD

INSIDE

2820 36

14

Do You Really Want to Be a
Manager?
The majority of managers are
promoted due to their software
development expertise. But
becoming a successful manager
requires a drastic change of focus.
There is a set of expectations to
consider before making that leap
to the “dark side.” by Ron Lichty
and Mickey Mantle

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

April 18–20, 2017
Virtual Classroom

May 7–8, 2017
Orlando, FL

June 4–5, 2017
Las Vegas, NV

April 24-28, 2017
Virtual Classroom

May 7–9, 2017
Orlando, FL

June 4–6, 2017
Las Vegas, NV

June 19–23, 2017
Virtual Classroom

June 4–9, 2017
Las Vegas, NV

November 5–10, 2017
Orlando, FL

October 15–20, 2017
Toronto, CanadaApril 24–28, 2017

San Diego, CA

May 7–12, 2017
Orlando, FL

October 1–6, 2017
Anaheim, CA

June 12–16, 2017
Chicago, IL

Conferences

Fundamentals of Agile
Certification—ICAgile
https://www.sqetraining.com/training/course/fun-
damentals-agile-certification-icagile

Software Tester Certification—
Foundation Level
https://www.sqetraining.com/training/course/software-tes-
ter-certification-foundation-level

Software Testing Training Week
https://www.sqetraining.com/trainingweek

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

LEARN MORE LEARN MORE

LEARN MORE LEARN MORE LEARN MORE

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 6

https://www.sqetraining.com/training/course/fundamentals-agile-certification-icagile
https://www.sqetraining.com/training/course/fundamentals-agile-certification-icagile
http://www.sqetraining.com/training/course/software-tester-certification-foundation-level
http://www.sqetraining.com/training/course/software-tester-certification-foundation-level
https://www.sqetraining.com/trainingweek
https://mobiledevtest.techwell.com/
https://bscwest.techwell.com/
https://stareast.techwell.com
https://starwest.techwell.com/
https://bsceast.techwell.com/
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT/CEO
Wayne Middleton

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITORS
Josiah Renaudin
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGER
Cristy Bird
MARKETING ASSISTANT
Allison Scholz

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

F O L L O W U S

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

CONTACT US

E D I T O R ’ S N O T E

Spring-Clean Your Processes

The goal of Better Software magazine is to give you innovative ideas so you and your team can

create better software. Our spring issue has a wide range of articles to motivate you to improve

how you do the business of software development. I am proud that this issue has the largest page

count by far. With several new advertisers and close to 100,000 worldwide subscribers, Better

Software is definitely fulfilling a real need in the software development community.

The success of any organizational transformation requires the support and brilliance of manage-

ment. Many of you are questioning whether you should enter management. Our featured cover

article, “Do You Really Want to Be a Manager?” by Ron Lichty and Mickey Mantle, summarizes

the basics you should consider before stepping out of your technical contributor role.

Jason Little offers a unique view for taking a nontraditional, multiphase approach toward your

project team and your organization becoming agile in “Reshaping Our View of Agile Transfor-

mation.” Speaking of agile, Jeremy Jarrell offers a simplified approach to risk management in

“Managing Risk in an Agile World.” And this is without the need for complex analysis tools.

Christian Mackeprang, in his thought-provoking “The Impossibility of Estimating Software” arti-

cle, questions how some techniques we use to confidently predict schedules are doomed to fail.

Not all is lost, according to Christian, as long as you employ more intuitive techniques for specific

types of projects.

We truly value your feedback. Let us and our authors know what you think of the articles by

leaving your comments. I sincerely hope you enjoy reading this issue as much as we enjoy work-

ing with these wonderful authors. Don’t forget to spread the word to let people know about

TechWell and Better Software magazine.

B E T T E R S O F T W A R E T e c h W e l l . c o m 7

http://jborders.com
mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://techwell.com
http://techwell.com

Jeremy Jarrell is an agile coach and author who helps teams improve on what they love. He is heavily involved
in the technology community, both as a highly rated speaker and syndicated author whose articles and videos
have appeared in numerous publications. When he’s not running, Jeremy loves to discuss all topics related to
agile methodologies. Reach Jeremy on Twitter @jeremyjarrell or at www.jeremyjarrell.com.

Ron Lichty has been managing and consulting in software development and product organizations for more
than twenty-five years. His consulting practice primarily focuses on assisting software development teams
to deliver projects on time. Ron and Mickey Mantle coauthored Managing the Unmanageable: Rules, Tools, and
Insights for Managing Software People and Teams and created the Managing Software People and Teams video
training series. You can reach Ron at ron@ronlichty.com.

Jason Little began his career as a web developer and moved into management, agile coaching, and consult-
ing. Bumps and bruises along the way brought him to the realization that helping organizations adopt agile
practices is not so much about the practices but is all about managing change. An international speaker, Jason
is the author of Lean Change Management and the Agile Transformation: A Guide to Organizational Change video
series. Contact Jason at jason@leanintuit.com.

Christian Mackeprang is a software consultant with more than two decades of experience in software de-
velopment, web architecture, and programming languages. After leading teams through complex projects in
highly dynamic environments, Christian spends time contributing to open source projects and writing about
software craftsmanship. He likes to focus on how to organize and establish effective software teams. Contact
Christian at chris@chrismm.com.

Mickey Mantle held executive engineering management positions at Pixar, Brøderbund, and Gracenote
before partnering with Ron Lichty as the coauthor of Managing the Unmanageable: Rules, Tools, and Insights for
Managing Software People and Teams and cocreator of Managing Software People and Teams LiveLessons video
training series. Today, Mickey consults and helps start-ups become major companies and is also the founder
and CEO of Wanderful interactive storybooks. Contact Mickey at mmantle@wanderfulstorybooks.com.

Josiah Renaudin is a longtime freelancer in the tech industry and is now a web-content producer and writer
for TechWell, StickyMinds.com, and Better Software magazine. He wrote for popular video game journalism
websites like GameSpot, IGN, and Paste Magazine, and now acts as an editor for an indie project published
by Sony Santa Monica. Josiah has been immersed in games since he was young, but more than anything, he
enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

Eric Robertson is responsible for the DevOps product line at CollabNet. Previously, he served as director
of services and portfolio management for enterprise solutions at Unisys and Cisco, where he led product
management for Cisco’s cloud automation and SAP ALM extension offerings. Eric has held product develop-
ment, services, and management roles with enterprises and start-ups. He has extensive experience providing
consulting services to Fortune 500 companies. Reach Eric at erobertson@collab.net.

Justin Rohrman has been a professional software tester since 2005. He is technical editor of StickyMinds.com
and a consulting software tester and writer working with Excelon Development. As president of the Associa-
tion for Software Testing, Justin helps facilitate and develop programs like BBST, WHOSE, and the CAST confer-
ence. Contact Justin at rohrmanj@gmail.com.

C O N T R I B U T O R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 8

https://twitter.com/jeremyjarrell
http://www.jeremyjarrell.com
mailto:ron@ronlichty.com
mailto:jason@leanintuit.com
mailto:chris@chrismm.com
mailto:mmantle@wanderfulstorybooks.com
mailto:jrenaudin@techwell.com
mailto:erobertson@collab.net
https://www.sqetraining.com/training-events/requirements-week
mailto:rohrmanj@gmail.com
http://techwell.com

TECHNICALLY SPEAKING

The phrase “can create and execute test cases” appears in

many testing job descriptions and help-wanted postings. The soft-

ware development community accepts the idea that testers plan
the work and work the plan by creating detailed documentation of

what they intend to test and following it to the letter. At many com-

panies I work with, testers accept test cases and documentation as

a fact of their work lives.

I am no longer a fan. I think test cases are worthless and, in

some cases, produce negative value.

The Fantasy
Sit down next to a tester and watch her work. You will see her

typing, clicking buttons, and pausing to think. Then she will make

a few mouse clicks and think for a few

more minutes. Eventually, she will get a

surprised or confused look on her face,

start taking notes, and talk with program-

mers. But is any testing taking place?

The first myth is that test cases are

tools testers must have to guide their

work. They are something managers use

to make sense of a job that lives nearly

entirely in a person’s brain. Unlike brick-

laying or programming, the results of

testing are often invisible. I could spend

an hour testing and not have any code

or report to show what I did. I regularly

hear from friends that they write test cas-

es as part of their role on a team. A tester is usually consumed by

converting part of a specification or user story into test cases at the

beginning of a sprint.

Test cases give exact instructions on how something should be

tested: “Navigate to this page, enter -2 into the number field, click

submit, and verify that you get the expected result.” One script is

typically created for each data value and outcome that the tester

thinks is important to validate.

That isn’t test planning. Rather, this is simply translating.

It isn’t difficult, either—just laborious. I believe that most pro-

fessional testers can be trained to do that work in real time as they

test. The idea that a tester can’t test software and discover infor-

mation about product quality without detailed instructions doesn’t

make much sense. The customer certainly doesn’t need them.

The second and more dangerous myth is that test cases give

insight into what testers are doing.

In my experience, bugs found during regression testing are dis-

covered most often when testers go “off the map.” A tester might

start with a test case, notice something interesting, and jump off

the plan to investigate. At the end of a test cycle, managers only see

a list of passed tests.

Managers miss out on the skilled exploration that happened, as

well as the bugs discovered when testers

left test cases behind.

The Reality
Think about the last time you did re-

gression testing—or any sort of testing.

What was the flow like? Let’s say you

started with a test case covering an an-

alytics report. You might have begun by

entering the values as instructed to create

some data, saved the page, and then gone

to check the report. And what if nothing

happened? The software seemed to work,

as the test showed the expected result.

But, you might have arrived at a few

ideas to investigate further. Rather than moving on to the next test

case in the stack, you produced an export of a customer database

to be used with your build. You tried navigating to the report once

more and encountered problems. There was too much data in the

report to make any sense, and the new report was not designed to

handle the type or amount of data that real customers use.

It is impossible to capture a test idea exactly on paper. I might

write, “Navigate to amazon.com, search for the book Constructing
the Subject, select it, and verify that book details are displayed.”

The Reality of Test
Artifacts
CONSIDERING THE EFFORT SPENT ON DOCUMENTING TEST PLANS, THERE HAS TO
BE A BETTER WAY TO IMPROVE QUALITY WHILE RESPONDING TO CHANGE.
by Justin Rohrman | rohrmanj@gmail.com

“The idea that a tester
can’t test software and
discover information
about product quality
without detailed
instructions doesn’t
make much sense. The
customer certainly
doesn’t need them.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 9

mailto:rohrmanj@gmail.com
http://techwell.com

TECHNICALLY SPEAKING

But in practice what will happen is that I’ll navigate to amazon.

com, filter by books, search for a book, notice something I wasn’t

looking for and check that out, then maybe, after a long delay, end

up back with my original book.

We rarely do things the same way every time we test soft-

ware—and that is a good thing. Even if we could capture every con-

ceivable user interaction in testing documentation, would that be

a good idea? No matter how detailed, testing documentation only

captures vague ideas a user might want to interact with a product.

The Big Problem
The biggest sin in test documentation is forgetting that test

cases are based in abstraction and standardization. The process

of documenting test ideas is also a process of washing away the

in-the-moment magic of testing. The results can be disastrous, with

a misunderstanding of coverage, metrics consisting of test case

counts, and a lot of wasted time.

Looking at test artifacts in this way is easy. It is seductive. And

it can lull you into a false sense of security that testing is simply an

activity with a definite start and end. The impression is that testing

is something that can be written down in steps and performed by

anyone capable of typing and moving a mouse.

Look at the work you do. Is all that test documentation helping

you and others? Does it describe the work you do? If you stopped

doing it, would anyone notice?

Techwell is always looking for authors interested in
getting their thoughts published in Better Software,
a leading online magazine focused on the software
development/IT industry. If you are interested in writ-
ing articles on one of the following topics, please con-
tact me directly:

• Testing
• Agile methodology
• Project and people management
• DevOps
• Configuration management

I’m looking forward to hearing from you!

Ken Whitaker
Editor, Better Software magazine
kwhitaker@techwell.com

N E W S L E T T E R S F O R E V E R Y N E E D !

B E T T E R S O F T W A R E T e c h W e l l . c o m 10

mailto:kwhitaker@techwell.com
http://techwell.com

Professional Scrum Teams
Get It DONE.

GLOBAL TRAINING & CERTIFICATION

Scrum.org provides comprehensive
training, assessments and certifications to
improve the profession of software
delivery. Throughout the world, our
solutions and community of Professional
Scrum Trainers empower people and
organizations to achieve agility through

Scrum. Ken Schwaber, the co-creator of
Scrum, founded Scrum.org in 2009 as a
global organization, dedicating himself to
improving the profession of software
delivery by reducing the gaps so the work
and work products are dependable.
© 2017 Scrum.org All Rights Reserved.

LEARN MORE

https://www.scrum.org

Randy Rice
 Years in Industry: 39

 Email: webrequest@riceconsulting.com

 Interviewed by: Josiah Renaudin

 Email: jrenaudin@techwell.com

“Unfortunately, when most
people learn test design,
they don’t learn it in a way to
make it adaptable to change.
They also don’t learn it in a
way that can be scalable.”

“If we have test designs
that are not flexible,
they’re going to be hard to
automate. They’re going to
be hard to maintain. They
have to be designed with
change in mind.”

“If we allow ourselves the
ability to fail and not see it as a
totally destructive thing … then
it really makes it a planned part
of your strategy. I know that
sounds weird to say, but part of
our strategy is to fail.”

“Yeah, automation is good. It’s
a fundamentally different way
of thinking about and doing
testing, so we have to figure out
what can be automated. What
should be automated? What
shouldn’t be automated? And
how do we carry that forth?”

“One of my great fears is that
testing will be relegated to
this idea of regression testing.
That’s just a small subset of all
the testing we do.”

“No matter what you’re doing, you’re going to have to be paying
attention to make these test designs, these concepts, to make them an
actual reality and make them workable.”

“Experiment. Pilot things.
Then always be willing to
come back and do a restart if
you need to. Give yourself that
permission to fail until you
finally have it right.”

A lot of people don’t

understand the

difference between

the strategy of

something and the

tactics of something—

of how to do it.

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

B E T T E R S O F T W A R E T e c h W e l l . c o m 12

mailto:webrequest@riceconsulting.com
mailto:jrenaudin@techwell.com
https://well.tc/IWAE19-2

Read the full
“The 2017 State of Test Data Management Report”

at delphix.com/state-of-tdm-report

Businesses with advanced TDM teams
are innovating faster

By investing in tools to remove data-related friction,
advanced TDM teams are outperforming their peers.

vs.

10 minutes
via self-service

4
THU

3.5 days
to refresh an
environment

MON 2
TUE

3
WED

Faster release cycles
and time-to-market

Data-related defects

vs.

Higher quality releases
and reduced costs

Data secured in
non-production

vs.

Ensured data privacy
and regulatory compliance

https://delphix.com/state-of-tdm-report

Do You Really
Want to Be a
Manager?

Ron Lichty
AND

Mickey Mantle

B E T T E R S O F T W A R E T e c h W e l l . c o m 14

http://techwell.com

serves all of us well as programmers.

Unlike programming, managing requires a focus on others. We

not only need to place a welcome mat at our office door but also

must proactively invite and welcome interruptions from our staff.

Each programmer’s concerns and challenges become ours. Coun-

seling and coaching them through their issues are paramount to

their success, the team’s success, and our own success.

The transition from follower to leader is not as profound as the

transition from technical contributor to manager, but it is certainly

a change. We’ve probably shown leadership skills already. It’s why

we’re selected to take ownership of our teams. But managing is a

different kind of leading. Now we’re setting the expectations for

our teams, and we’re responsible for establishing the environment

in which they can be happy, fulfilled, and successful.

Because of who we are as programmers, we tend to gravitate

to detail and to solving problems ourselves. We often hold our own

problem-solving skills in higher regard than those of our staff.

However, managing is about dele-

gating and growing our people to do

what we once did.

Our hope must be to grow each

programmer in our organization to

surpass our own abilities.

But I Still Want to Code
There are many managers who

want to continue to program. That’s

admirable, but in our workshops we

frequently ask programmers and

managers to think about the best

manager they ever had and to list their qualities. Not once has “the

ability to write code” been on the list of responses.

Programming managers do need to garner respect, and respect

usually proceeds from their having been decent, if not stellar, pro-

grammers. But when managers also code, they rarely do both well.

Because of the continual pressure to deliver code, it is usually the

managing and leading that go by the wayside. When managers

take on even the tiniest slice of their teams’ critical work, they risk

failing their staff.

The Importance of Training
New managers typically neglect to seek out training because

we’re busy taking on the new responsibilities. But we also tend to

enter management with supreme confidence that we can conquer

management as easily as we did coding. Think about how many

languages, how many algorithms, and how many pesky bugs we

conquered.

Unfortunately, we don’t know what we don’t know.

Treat people-management training as a project. Prioritize it. It’s

a growth opportunity. Identify books and classes that might make

a difference. Network with peers to learn what they have found

valuable. You should have a list long enough that you have to order

anaging programmers is hard! As we point out in our

book, Managing the Unmanageable, [1] programmers

are an interesting management challenge to begin with.

They tend to be free spirits, playful, curious, and very independent.

The transition from programmer to manager is made addition-

ally treacherous by the dramatic difference between what made

us successful as programmers and what it takes to successfully

manage others. The fact that few programming managers receive

management training before they start managing further compli-

cates the transition. Not to mention that the approaches to man-

agement—managing people in every role and domain—continue

to dramatically evolve. This rapid evolution leaves us bewildered

and stranded without an adequate supply of role models to follow.

With the software industry continuing its high growth path

and with software development boot camps churning program-

mers into the workforce, more managers are needed more urgent-

ly than ever before.

Most of us who manage programmers were promoted because

we were great programmers and showed some people skills. We

demonstrated a capacity—and perhaps even an inclination—to di-

rect the activity of other programmers. But in our informal polls to

more than a thousand managers, we found fewer than 5 percent

had even a day of training before becoming managers.

Here are a few things you can do to ease the transition into

management.

The Path to Management
Let’s start with how success drivers change when we become

managers. The very skills that make a great programmer or tech-

nologist often get in the way of being a good manager.

The ability to focus helps make us great at programming. We

have learned to shut out the world and climb into the micropro-

cessor to listen to the gates open and close. We become one with

the computer, one with our code, and one with the machine exe-

cuting it.

Focus comes, in part, from personality. Many of you have prob-

ably taken the Myers–Briggs personality assessment to determine

cognitive style. Did you know that the majority of programmers

share the same “I” introverted personality type? Introversion

“Programming managers do need to
garner respect, and respect usually
proceeds from their having been decent,
if not stellar, programmers. But
managers who code rarely do both well.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 15

http://techwell.com

it like a Scrum backlog. Then, for the books at the top of the back-

log, order them. For the training classes at the top of the backlog,

sign up for them in advance, blocking time on your calendar so you

can’t use the excuse of conflicts to bow out.

Your Role as an Enabler
It’s really important to find the intrinsic motivations in being

a manager. When we were programmers, solving challenging

programming problems resulted in ecstatic joy. There were times

when I literally jumped out of my chair and yelled “I did it!”

It isn’t easy to find a single moment in management to match

coding’s moments of overpowering accom-

plishment. But we have experienced pride

in creating environments and cultures that

enabled entire teams of programmers to ex-

perience the joy of solving hard problems.

Managing is fundamentally about enabling

and supporting your people.

Take the Opportunity to
Ask for Help

Talking to other managers can ease the

transition. Who better to learn from than

those who have gone before us? Ask your

boss, peers, and mentors to share the most

important lessons they learned as they be-

came managers. What mistakes did they

stumble into, and how did they successful-

ly exit them? What surprised them—both

good and bad? What gave them strength?

Where did they find support?

Then ask your new reports what they want in a manager. This

is a good time to practice reflective listening. Play back, frequently,

what you’re hearing; make every attempt to paraphrase in your

own words what you just heard; ask for confirmation that what

you’ve heard is what they meant. This is the opportunity to ask the

people you’ll manage what, to them, makes a good manager good.

You might also ask, “If you had a magic wand, what would you

change about the team? How would you have it be managed differ-

ently? How would you have your teammates interact differently

with each other and with those outside the team? What would in-

crease productivity? What would make your job more fun?”

Let your team know that, like becoming a programmer, you

don’t expect to become a great manager on day one. But with their

help, support, suggestions, and feedback, you intend to support

them and to keep learning how to do that better.

Becoming a Servant Leader
In the 1950s, Douglas McGregor developed two theories for mo-

tivation and people management, which he called Theory X and

Theory Y. [2] Some managers tend toward Theory X (authoritarian)

and generally get poor results. Enlightened managers, McGregor

said, use Theory Y (empowering), which produces better perfor-

mance and results, and allows people to grow and develop (see

figure 1).

The term servant leadership, coined a quarter century later,

was described in terms almost identical to Theory Y management.

But neither was widely practiced in software circles until agile em-

braced the foundations underlying both.

One way to help embrace servant leadership is to change your

concept of what being a manager means. Figure 2 on the next page

shows how most people view management as a top-down, author-

itative position on top of the pyramid.

Consider, instead, yourself to be at the bottom of a pyramid

with your staff on top. This view, showing staff doing the actual

work on top, is what we call the inverted pyramid. The managers

on the bottom are delegated problems to resolve that have sty-

mied the staff on the top. Use this simple image to visualize your

role as a manager, and share it with your programmers if you

think it helps convey the way you want to work and be perceived.

Figure 1: Theory X management versus Theory Y management

B E T T E R S O F T W A R E T e c h W e l l . c o m 16

http://techwell.com

The Makings of a Great Manager
There are so many things that go into being a great manager

that we can’t begin to touch on them all here. But whether you are

still coding or shifting your time to focus on managing, two things

are vitally important—being fair and being ethical.

One of the hardest lessons we learned on our journey to be-

coming managers is that you cannot always be fair. A manager

must strive to be as fair as possible. This is most important when

it comes to compensation. Early in our managing careers we

found that salary inequities are inevitable. There are those who,

by virtue of experience or happenstance, are paid more than oth-

ers who perform equally. New hires straight out of school usually

earn less than equally competent, but not top-performing, pro-

grammers on the same team. It is difficult to double someone’s

salary, let alone to halve someone else’s salary, even when it

would be the fair thing to do.

Still, managers always need to deal with this. Being fair comes

down to correcting salary inequities over time by giving greater

pay increases to top performers and smaller increases to poorer

performers. It’s only fair.

Being ethical means that you are forthright and honest in deal-

ing with your staff and others. You can build trust with your team

by accepting blame and responsibility when there are problems,

and saying thank you and praising performance when there are

successes.

Any manager who does this will be on his way to becoming a

great manager—someone his team and others want to work for.

To Be a Manager or Not
Managing programmers is certainly not the piece of cake we

thought it would be when we were programmers. In retrospect,

avoiding management pitfalls should be obvious, yet anticipating

many situations is not possible. You’ll definitely learn by doing—al-

most like on-the-job training. Becoming a manager isn’t a suitable

career path for every programmer, even those who show evidence

of people management skills. By treating the transition to manage-

ment as a learning challenge and committing to the joy of enabling

others to succeed, you have a chance to become the manager and

the leader you always wanted to work for.

ron@ronlichty.com
mmantle@wanderfulstorybooks.com

REFERENCESCLICK FOR THIS STORY'S

“You can build trust
with your team by
accepting blame and
responsibility when
there are problems,
and saying thank
you and praising
performance when
there are successes.”

Figure 2: The common view of management and the rise of
servant leadership

B E T T E R S O F T W A R E T e c h W e l l . c o m 17

mailto:ron@ronlichty.com
mailto:mmantle@wanderfulstorybooks.com
http://www.stickyminds.com/sticky-note/references-218
http://techwell.com

䔀瘀攀爀礀漀渀攀 栀愀猀 瀀攀爀昀漀爀洀愀渀挀攀 椀猀猀甀攀猀⸀
䄀瀀椀挀愀 挀愀渀 ǻ渀搀 礀漀甀爀猀 戀攀昀漀爀攀 礀漀甀爀 挀甀猀琀漀洀攀爀猀 搀漀⸀

笀 紀䰀漀愀搀 琀攀猀琀 愀渀礀 眀攀戀猀椀琀攀 ☀ 愀瀀瀀氀椀挀愀琀椀漀渀 愀琀 猀挀愀氀攀⸀

笀 紀嘀椀猀甀愀氀椀稀攀 眀攀戀Ⰰ 洀漀戀椀氀攀Ⰰ 愀渀搀 䄀倀䤀 瀀攀爀昀漀爀洀愀渀挀攀⸀

䄀瀀椀挀愀 匀礀渀琀栀攀琀椀挀

吀栀攀 漀渀氀礀 猀琀愀挀欀 礀漀甀 渀攀攀搀Ⰰ
琀漀 琀攀猀琀 礀漀甀爀 漀琀栀攀爀 猀琀愀挀欀猀⸀

https://apicasystem.com/start-trial

https://hiptest.net

J A S O N L I T T L E

A N A R T I C L E

B Y

B E T T E R S O F T W A R E T e c h W e l l . c o m 20

http://techwell.com

en years ago, I sent an email to my certified ScrumMaster

training instructor and asked if we were supposed to es-

timate product defects. I learned that Scrum emphasizes

that quality isn’t negotiable and defects go to the top of the backlog.

But what if there are too many defects found and no features

could get done? Scrum says we use a team’s velocity as a guide

for how much work we can pull into a sprint. But how can a team

estimate the number of defects they could finish in a sprint if they

don’t estimate each one first? A few months later I concluded that

perhaps we should just estimate the bugs but not include them in

velocity calculations. [1]

I mistakenly thought we should deal with the problem by creat-

ing more process. I realized there were more important questions

to ask:

Why do we have so many defects?

Would it be better if we estimated correcting defects?

Do customers care what our backlog looks like?

Should this be called a feature or bug? And does the definition

really matter?

Over the past years, I found myself becoming uninterested

in exploring specific quality and defect identification techniques

in my Scrum practice. Rather than continue my focus on helping

teams with quality and agile concepts, I decided there was a bigger

opportunity: transforming entire organizations to agile.

From Agile Community to Agile
Organizational Change

Over the years, I’ve drifted away from the agile community and

moved toward the organizational change community out of neces-

sity. Most of my work early on

was in enterprise organiza-

tions, where models designed

for single agile teams break

down. I realized early on in my

career that agile was a trigger

for organizational change, and

many more parts of the orga-

nization outside of IT were im-

pacted by it.

An agile transformation is

mistakenly viewed as a project:

Create a plan, execute the plan,

and close the project. This view

is typical because someone

needs to pay for the change

program, someone needs to report project status, and someone

needs to justify why money is being spent on agile coaches and not

features. And, of course, someone needs to be held accountable for

the transformation.

Our brains love the idea of the transition from current state

to future state, even though that’s a false sense of certainty. There

is no current state nowadays, and by the time we think we have

reached the future state, that reality has already changed. Deep

organizational change doesn’t take place according to a project

budget or schedule, no matter how much we want it to.

Much like I reshaped my view of handling defects in software,

our community would benefit from reshaping our view of agile

transformation by looking at how change actually happens.

Change, whether in our organization or society, happens in

precisely the same way. Someone is dissatisfied with the status quo

and takes action. After that, the movement takes shape, and either

change occurs or it dies. As your organization moves toward being

more agile, the people who stand to lose something create a count-

er-movement to put a stop to it. Whoever has the most influence

usually wins.

The Phases of Agile Organizational
Transformation

Sociologist Herbert Blumer identified four lifecycle stages that

social movements typically go through. They describe how social

change begins, how it organizes, and how work gets done based

on agreements and negotiations. [2] Other academics have since

renamed these stages, but the underlying themes have remained

constant. Figure 1 shows how an agile transformation can mimic

this theory.

Here’s a description of the modern phases:

Emergence: Something triggers the change, and we start to see

change emerge. At this stage, there is little to no organization—

even if the organization has hired an agile coach or created a new

vice president of agile role. We have such a strong desire for cer-

tainty that starting off with official titles and accountability for

agile sounds reasonable and comforting. The challenge is that we

can’t know how agile will affect our organization until we live with

it through our regular organizational ceremonies, such as annual

project planning and budgeting, performance reviews, and more.

Many organizations start with pilot projects. As pilot teams ex-

periment with agile, the impact of agile on the organization be-

comes clearer. There may be a perception that some people are

Figure 1: The phases for how social change happens

B E T T E R S O F T W A R E T e c h W e l l . c o m 21

http://techwell.com

resisting the change, but that’s a natural response and much better

than apathy. Once agile is brought into an organization, political

posturing may start from those who think they stand to lose some-

thing, namely control or status.

Consider avoiding defining a solid plan, identifying success

metrics and measurements, or assigning solitary accountability.

The goal of this early phase is to learn how agile affects your or-

ganization. The emergence phase might take well over a year, and

it could be painful. Rely on short feedback loops, reuse existing

rituals (such as existing department meetings or town halls) for a

while to build momentum, and then sunset those rituals for new

ones that align with an agile way of working.

Coalescence: Here, things start to become more formal. You’re

at this phase when you hear questions like, “So, you’re

the agile guru?”

The first time agile disturbs the orga-

nizational norms, the organization

will tend to react negatively. Agile

exposes risk sooner than tradi-

tional approaches, so a project

status report may go red ear-

lier in the project. Agile will

be blamed by the detractors,

and agile will be praised by

the promoters. During co-

alescence, the pressure to

define agile processes will

increase. People may start

running regular lunch and

learns or informal meetings,

requesting agile training, joining

book clubs, or attending clubs and

meetups.

If you’re in a leadership position, pro-

vide air cover for the agile folks who are run-

ning amok. If the organization is serious about agile,

then red tape and roadblocks that are preventing teams from de-

livering must be exposed.

Again, be prepared for the detractors to be vocal that agile

doesn’t work and causes all these problems. Be on the lookout for

breaks appearing in the organization. This can be anything related

to project management, release process, technical debt, or teams

fighting for space to collaborate. Explore your ecosystem using Jay

Galbraith’s star model as a diagnostic tool. [3] This model describes

how all five points of the star need to be aligned for change to

work. Anytime you change a process, the structure, rewards sys-

tem, HR processes, and budget processes must also be changed.

I worked in an organization where ninety teams went agile

within a year. The centralized operations team was consumed

with work because so many teams moved to an iterative model,

driving up demand for more frequent integrations. The individual

project teams had no control over the demand overload yet still

relied on this centralized team. This Ops team decided to make it

harder for teams to release instead of listening to what the organi-

zation needed.

The reaction is a symptom that the centralized operations team

should be merged with the delivery team. In effect, the bloated or-

ganizational hierarchy needed to go.

Bureaucratization: The pain exposed through emergence and

coalescence leads to this stage, where the desire to standardize and

formalize agile processes reaches its peak. Even though teams and

business folks love it, agile can look like chaos from the outside.

Other affected departments—legal, marketing, auditing, customer

support, operations, and any other centralized function—often feel

the pain of keeping up with the delivery teams.

The Turning Point
Although the term decline sounds

negative, it is not necessarily bad. It

simply means that the period of

social movement is over and has

reached stabilization. An or-

ganization can react in a few

ways that align with the five

possible paths for the decline

of the movement, as shown

in figure 1. Entering this

phase is the turning point in

an agile organization’s trans-

formation.

Success: Even though the

change worked, we often fail

to recognize it. Indicators of a

successful agile transformation in-

clude the completion of a reorganiza-

tion, departure of staff, presence of new

agile-thinking staff, a move to team-based per-

formance reviews instead of individual-based ones,

and a better cadence of solution delivery that customers love.

This may feel like a win for some, but for others it feels like a

failure. It could be that some agile proponents have lost interest

and are bored now that it’s working. Those people may leave for

another organization.

Failure: For whatever reason, the change didn’t work at all.

Move on and don’t beat yourself up about it. Sometimes we can’t

explain why it didn’t work, and that may be okay. It is important

to emphasize learning over failure. Although everyone knows

change is hard, the first time through an agile transformation is

always the toughest.

Agile retrospectives, a cornerstone of many agile methods, play

a key role. By embracing a large-scale retrospective with teams,

managers, and executives, everyone can learn why the transition

didn’t work out the way you wanted it to. The team wipes the slate

clean, adjusts, and moves on.

B E T T E R S O F T W A R E T e c h W e l l . c o m 22

http://techwell.com

Co-optation: Some believe agile is a mindset; you’ve proba-

bly heard that you can’t do agile, you have to be agile. Co-optation

means that instead of living by the new set of values that agile

brings, you install agile into your old existing cultural values like a

piece of software. An organization that values hierarchy, structure,

and control will introduce agile practices in an overly structured,

control-driven way, instead of using an agile values-based ap-

proach. Agile becomes a process choice, yet no meaningful change

occurs.

If this happens, the early adopters will

likely leave the organization. I’ve seen two

instances of full agile change teams walk-

ing out within eighteen months.

Regression: This means the change

was too difficult and everyone gave up.

It could also be that whoever was leading

the charge for agile gave up and either re-

signed or was pushed out. Either way, the

pain of the change was more than the pain

of working the old way, so the organiza-

tion regressed.

Go mainstream: This phase of decline

wasn’t documented in Blumer’s original

work, but it was added later to specifically

show that the movement declined because

the goals and values of the movement

spread throughout the social system and

simply weren’t needed anymore. To me,

that’s the same as success, but you can

choose to keep that subtle difference.

Our organizations evolve the same way our societies do.

At some point, someone is upset by the status quo and injects a

change into the organization. That starts the movement, but where

it ends up is based on many other people’s actions.

I believe we need a different frame for helping our organiza-

tions change. Change management studies have concluded that 70

percent of changes fail. [4] When you examine the data, it shows

that change programs work about 30 percent of the time, are chal-

lenged 56 percent of the time (meaning they were late, over bud-

get, or delivered less than expected), and outright fail 18 percent

of the time. The data also fails to differentiate between changes,

so a large transformation change project is lumped into typical IT

system changes. [5]

The results arrive at two conclusions: We lack a standard

change method, and people are unpredictable.

Where Are Organizations Getting Stuck?
Figure 2, a summary of the last six Version One “State of Agile”

reports, shows the reasons survey respondents’ software develop-

ment organizations struggle in transitioning to agile. [6]

There is no doubt that transitioning an organization to agile

is difficult. If we stick to linear, project-based thinking, aren’t we

going to keep repeating the same mistakes over and over again?

Our organizational behavior mimics our social behavior, so it

seems it would be a good idea to use a different frame for trans-

forming our organizations.

There Is Hope
Even if your declining movement ended in failure, it may

not be worth worrying about why it didn’t work. Organizational

transformations can fail due to perceived lack of leadership buy-

in, poor communication, and staff resistance. Adopting a better

change process may not have made a difference.

Knowing that people are social in nature, there are five tech-

niques I recommend for success.

1. Honor the past: Our brains are like Velcro when it comes

to bad things and Teflon when it comes to good things—

Figure 2: Six-year trend showing the top reasons organizations struggle with agile

B E T T E R S O F T W A R E T e c h W e l l . c o m 23

http://techwell.com

that is, we remember the bad and tend to forget the good.

Before embarking on your transformation journey, cap-

ture the good things by sharing stories about past success-

es and good things that you don’t want to change. Honor

the things you already do well.

2. Establish new rituals: Accept that you can’t predict how

complex change will work out. Instead, focus on establish-

ing new rituals. For example, you can conduct monthly,

executive-sponsored lean coffee sessions [7] that put the

focus on dialogue. Leaders should have the courage to

walk into any group session and take unfiltered questions

from the staff. For example, at a change intervention for

a large organization, I used a tool called Slido to harvest

anonymous questions from the audience. Attendees vot-

ed on the questions management would be asked. In one

case, the top-voted question directed at the CTO was, “You

keep saying that we need to change. What are you pre-

pared to change?”

3. Make space: We live in an age when Google knows every-

thing. Just search “how to transform your organization”

and you’ll find millions of results. Knowledge isn’t the

problem anymore; time is. People need time to learn about

agile, and the best way you can make space for the agile

movement is to stop a percentage of your in-process proj-

ects. Time is your only enemy.

4. Find your metaphor: I worked for an organization that

used the Rockefeller habits [8] to align our departments.

Our metaphor was moving boulders. We identified four

big boulders to move for the year, and every quarter we

broke those boulders into rocks that were easier to move.

The key was adding celebrations to the mix. We used dec-

orative pebbles as thank-you notes. If someone from any

department helped out, we recorded a sixty-second video

clip in a room containing thank you bowls for all employ-

ees. We’d drop a decorative pebble in the bowl and at the

end of the month, everyone watched the videos, and who-

ever had the most pebbles received vouchers for dinner

and a movie.

5. Use storytelling: Ever since humans learned to draw on

cave walls, we have made progress by sharing stories. Tech-

nology has pushed us toward tools and processes, but peo-

ple still remember and are inspired by stories. Make sure

your stories are honest and share the good, bad, and ugly.

Change works when enough people embrace it. Start with the

heart, and the mind will follow.

jason@leanintuit.com

REFERENCESCLICK FOR THIS STORY'S

N E W S L E T T E R S
F O R E V E R Y N E E D !

Want the latest and greatest content
delivered to your inbox every week?

We have a newsletter for you!

A T E C H W E L L C O M M U N I T Y

AgileConnection To Go covers all things agile.

DEV PS
B R O U G H T T O Y O U B Y C M C R O S S R O A D S

DevOps To Go delivers new and relevent
DevOps content from CMCrossroads.

StickyMinds To Go sends you a weekly
listing of all the new testing articles

added to StickyMinds.

And, last but not least, TechWell Insights
features the latest stories from conference

speakers, SQE Training partners, and
other industry voices.

Visit AgileConnection.com, CMCrossroads.com,
StickyMinds.com, or TechWell.com to sign up

for our weekly newsletters.

B E T T E R S O F T W A R E T e c h W e l l . c o m 24

mailto:jason@leanintuit.com
http://www.stickyminds.com/sticky-note/references-219
http://AgileConnection.com
http://CMCrossroads.com
http://StickyMinds.com
https://www.techwell.com/techwell-insights
http://www.agileconnection.com
http://www.CMCrossroads.com
http://www.stickyminds.com
https://www.techwell.com/techwell-insights
http://techwell.com

PARASOFT AD

COMPLETE
IoT SOFTWARE
TESTING
SOLUTION

LEARN MORE

STATIC &
DYNAMIC
ANALYSIS

UNIT
TESTING

API, LOAD,
PERFORMANCE,
& SECURITY
TESTING

SERVICE
VIRTUALIZATION

Learn more at parasoft.com/iot

https://parasoft.com/iot

http://turnkeysolutions.com/free-assessment

OCT. 1–6, 2017
ANAHEIM, CA
CL ICK HERE FOR DETA ILS

https://well.tc/w3qt

MANAGING RISK

 IN AN AGILE WORLD
BY JEREMY JARRELL

B E T T E R S O F T W A R E T e c h W e l l . c o m 28

http://techwell.com

spending, create and track simple budgets, and report changes in

net worth over time. To bring this product to market, the team will

need to develop many different items. Some items may be new fea-

tures, others may be defects that need to be corrected, and others

are simply tasks that are necessary to keep development moving

forward. Each item comes with its own risk potential that will need

to be identified and assessed.

To understand how risks can be managed, there are a few ap-

proaches the team can use to identify risks that may be present.

Avoid a Single Point of Failure
Considering we’ll be creating an app for personal finance, our

first feature should be an easy way for a user to set up a budget for

monthly expenses. Then our users will need to easily see how they

are pacing against that budget throughout the month or how much

of their budget they’ve already spent compared to the remaining

days in the month. Figure 1 presents a great way to convey how a

user is pacing to their budget. A stacked bar chart showing how

much of their budget users have consumed is an effective feature

that should set your product apart from your competitors.

But, uh oh, there’s only one developer on your team who’s ca-

pable of creating these types of visualizations. This shouldn’t be a

problem as long as nothing unexpected happens to that develop-

er during the course of your project. Otherwise, your entire team

could be stuck until that developer is available.

You’ve just discovered your first possible risk.

A developer may find herself unavailable for any number of

reasons. Maybe she was pulled off to a more critical product else-

where in the organization, or maybe she came down with a partic-

ularly nasty flu and will be out of commission for an entire week,

oftware projects are no stranger to risk. There’s the risk

that the team will build the wrong thing for the custom-

er. There’s the risk that the team will build the right thing

for the customer but build it wrong, usually resulting in cost and

schedule overruns.

Or there’s the risk that the team will deliver an over budget, late

project that customers reject.

So, how do you manage risk on your project? If your team is fol-

lowing an agile methodology, focusing on small units of work and

validating progress frequently with stakeholders, then you may

already be closer than you think. Let’s first examine how work is

defined on agile projects.

On agile projects, small units of work are called user stories,

product backlog items, or simply cards. The term will vary with

the specific agile methodology your team uses, but for simplicity,

we’ll refer to them as items. Each

item is self-contained, adds some

measurable piece of value, and

has the potential to carry some

amount of risk to the final project.

But to address the risk that may be

present in each item, you must first

identify it.

Risk analysis is a huge subject

filled with complicated algorithms,

statistical and stochastic modeling,

and complicated mathematics. But

it doesn’t have to be.

Historically, risk analysis has

been complex because the results

of a failure could be devastating.

And if an error is made while

building a bridge or performing a

medical procedure, then the result

can be catastrophic.

These errors are significant be-

cause they occur on such a large

scale. But, if items are broken down into multiple, smaller chunks,

then you reduce the risk associated with each item. This results in

a less-severe impact if those risks actually come to pass.

Once you’ve broken your work down into smaller items, it’s

simply a matter of evaluating the risk of each item. And often ana-

lyzing risk can be very complicated.

Risk Analysis That’s Easy to Implement
At its core, risk analysis comes down to two simple questions:

“How likely is it to happen?” and “What would happen if it did?”

But to get started, you’ll first need to brainstorm anything that

could possibly go wrong with each of the items your team is work-

ing on. Let’s look at an example.

Imagine your team is building an app to help users track their

personal finances. This app does things like categorize a user’s

Figure 1: A stacked bar chart is a great way to convey how a user is progressing toward
budget goals

B E T T E R S O F T W A R E T e c h W e l l . c o m 29

http://techwell.com

pelling visualizations of the user’s financial health throughout the

entire product. Everything is looking great—until your test team

starts to put the product through its paces on all the different

browser platforms that must be supported.

Suddenly you discover that, while the library is fully functional

on the latest, most popular browsers on the market, it seems to

have only limited functionality on some less popular browsers or

doesn’t function at all on some the oldest browsers your customers

are using. If a third of your users can’t see them, they’re not going

to add the value to your product that you expected.

or maybe she has a two-week vacation coming up right in the proj-

ect’s crunch time that she simply forgot to mention. Whatever the

reason, having a critical skill set concentrated in a single team mem-

ber can easily lead to problems you’ll have to solve down the road.

Support for Legacy Platforms
And speaking of fancy visualizations, they can pose their own

problems. Maybe your UI developer stumbles upon a snazzy new

charting library and uses it to create a show-stopping budget visu-

alization. Perhaps he uses that same library to create other com-

Score Your Risks

As risks are identified, use a spreadsheet to keep track of them, as shown in figure 2.

Now that we have a list of the possible things that may go wrong with each of our features, quantify how exposed your team is to each.

Work through each risk on the list and assign each a score of one to three based on the probability of its occurring—with one being some-

what unlikely and three being very likely (see figure 3).

Next, assign a second score of one to three to each risk based on the impact if the risk occurs. This score, shown in figure 4, captures

how damaging the risk would be to your project if it comes to pass. An impact score of one correspond to risks that may slow the team

down initially but can be easily overcome. An impact score of three is reserved for risks that could stop a project dead in its tracks.

Figure 2: Track risks in a spreadsheet

Figure 3: Assign the probability that a risk will take place

Figure 4: Assign the impact that a risk would have on the project

B E T T E R S O F T W A R E T e c h W e l l . c o m 30

http://techwell.com

Once probability (P) and impact (I) scores are assigned to each risk, calculate the exposure (E) to that risk by multiplying its probability

by its impact using P × I = E, as shown in figure 5. It’s as easy as PIE!

Understand Risk Exposure

Because exposure is a function of probability and impact, exposure scores fall into a range between one and nine. A good rule of thumb

is to consider any risk with an exposure score of six or higher as warranting the creation of a mitigation strategy. Any risk with an exposure

score of less than six is either not likely to occur or isn’t serious enough to warrant the upfront planning.

To focus on the most important risks, sort the rows by their exposure score in descending order. Figure 6 shows this order, along with

color-coding, with red being the most critical.

Figure 5: Calculate the exposure of the risk

Figure 6: Sort by exposure to prioritize risks

“YOU’RE LIKELY TO FIND THAT
MANY RISKS YOU ONCE THOUGHT
WERE NEAR CERTAINTIES WILL
SEEM LESS AND LESS LIKELY
AND EVENTUALLY DISAPPEAR
AS NEW AND UNEXPECTED
RISKS EMERGE TO TAKE
THEIR PLACE.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 31

http://techwell.com

Risk Analysis Is an Ongoing Process
You now have a head start on identifying and assessing the

risks that may be present throughout your product, but you’re far

from done. Your list of risks and the associated PIE score for each

is a living document that should be revisited regularly throughout

the life of your product.

You’re likely to find that many risks you once thought were

near certainties will seem less and less likely and eventually disap-

pear as new and unexpected risks emerge to take their place. And,

of course, the probability, impact, and exposure scores are likely

to change as more is learned about each item. The key is to fre-

quently review this list to ensure it’s always fresh and represents

the most up-to-date understanding of the risks that can threaten

your project.

An underlying tenet of all agile methodologies is that teams

forgo extensive upfront planning when beginning their projects

in exchange for planning in smaller, more frequent increments

throughout the entire lifecycle of the project. This is because teams

learn more about their project the longer it runs, and they can use

this additional information to make better and more informed de-

cisions along the way.

Agile risk analysis works the same way. Instead of perform-

ing an extensive risk analysis at the outset of the project and then

trying to manage a risk profile that becomes irrelevant shortly

thereafter, agile risk analysis encourages teams to build their risk

profile from the risks that are most likely to occur as a result of

the activity actually taking place throughout the project. Teams

are then encouraged to discard risks that are no longer relevant

to their project, making room for new risks that no one could have

predicted at the beginning.

Risk is a normal part of software development, and no team

will completely eliminate all the risks that lurk in the shadows.

But by regularly considering mitigations for risks that could befall

your project, you’ll significantly improve the odds of success and

be ready for whatever your project throws at you.

jeremy@jeremyjarrell.com

How to Approach Risk Mitigation

Once high-risk items have been identified, the next step is working with your team to brainstorm a few possible mitigation strategies

for each one. You don’t need to create the perfect solution for each; only a few starting points for discussion are necessary. You won’t know

exactly what the resulting effects of each risk will be until it occurs, so you won’t be able to define the perfect mitigation strategy until the

time comes. Consequently, you should treat these strategies simply as options to have on the table if the risk occurs.

Some of these options may be ruled out immediately, while others may serve as the basis for better ideas later. Regardless of the out-

come, the goal is to have at least a few options already in mind so you’re in a better position to respond quickly and appropriately. Think

of this stage of risk analysis as a fire drill. No one knows exactly what will happen if a fire occurs, but we do know that it’s much easier to

find the exits before the building is filled with smoke.

Figure 7 shows risk mitigation strategies associated with UI work. To mitigate this risk, you can pair your UI developer with other

members of the development team for knowledge sharing. Perhaps she can even host a few brown bag sessions on the charting library

she is working with.

The fact that the library doesn’t support older browsers is a major area of risk. The team needs to decide how to handle support in

legacy browsers. One option is to drop support entirely for browsers that are no longer supported.

Figure 7: Identify risk mitigation strategies with the UI on a project

B E T T E R S O F T W A R E T e c h W e l l . c o m 32

mailto:jeremy@jeremyjarrell.com
http://techwell.com

Convenient, Cost Effective Training by Industry Experts
Live Virtual Package Includes:
• Easy course access: Attend training right from your computer and easily connect your audio via computer or phone. You can

access your training course quickly and easily and can participate freely.

• Live, expert instruction: See and hear your instructor presenting the course materials and answering your questions in real-time.

• Valuable course materials: Our live virtual training uses the same valuable course materials as our classroom training.
Students will have direct access to the course materials.

• Hands-on exercises: An essential component to any learning experience is applying what you have learned. Using the latest
technology, your instructor can provide students with hands-on exercises, group activities, and breakout sessions.

• Peer interaction: Networking with peers has always been a valuable part of any classroom training. Live virtual training gives
you the opportunity to interact with and learn from the other attendees during breakout sessions, course lecture, and Q&A.

• Convenient schedule: Course instruction is divided into modules no longer than four hours per day. This schedule makes it
easy for you to get the training you need without taking days out of the office and setting aside projects.

• Small class size: Live virtual courses are limited to the same small class sizes as our instructor-led training. This provides you
with the opportunity for personal interaction with the instructor.

ATTEND LIVE,
INSTRUCTOR-LED
CLASSES VIA
YOUR COMPUTER.

Live Virtual Courses:

 » Agile Tester Certification

 » Software Tester Certification—Foundation Level

 » Fundamentals of Agile Certification—ICAgile

 » Testing Under Pressure

 » Performance, Load, and Stress Testing

 » Get Requirements Right the First Time

 » Essential Test Management and Planning

 » Finding Ambiguities in Requirements

 » Mastering Test Automation

 » Agile Test Automation—ICAgile

 » Generating Great Testing Ideas

 » Configuration Management Best Practices

 » Mobile Application Testing

 » and More

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/LIVE-VIRTUAL

https://well.tc/w3qy

PERFECTO AD
bit.ly/2nwZPgtbit.ly/2nwZPgt

Advanced Automation Secrets
for Selenium & Open Source

perfectomobile.com

http://info.perfectomobile.com/selenium-automation-essential-guide.html?utm_source=egs-bsm

STARCANADA AD

Oct. 15–20, 2017
Toronto, ON

Hyatt Regency Toronto

Learn More: https://wel l .tc/sc17bsm

RESERVE YOUR SPOT NOW FOR THE BEST PRICING
Better Software subscribers can receive up to

an additional $200 off with code BSM

Agile Testing

Mobile Testing

Continuous Integration

Cloud Testing

Performance Testing

DevOps

Test Design

Test Automation

Test Management

C O N F E R E N C E T O P I C S I N C L U D E :

WE’VE RESERVED
YOUR SEAT

https://well.tc/w3c4

THE
IMPOSSIBILITY
OF
ESTIMATING
SOFTWAREBY

CHRISTIAN
MACKEPRANG

B E T T E R S O F T W A R E T e c h W e l l . c o m 36

http://techwell.com

remember the first time I was asked to estimate a software

project. My boss came over to my desk, where I was intensely

focused on solving programming problems. He asked me to

create a list of work items, each with an estimate of hours for com-

pletion. It seemed like a simple enough request. I did not know what

I was getting into.

Estimating task durations is a broad problem with many special

cases. It reminds me of Terry Bollinger’s quote:

“The creation of genuinely new software has far more in com-

mon with developing a new theory of physics than it does with

producing cars or watches on an assembly line.” [1]

Depending on the situation, schedule estimating can be unreal-

istic. Articles and books have been written about the art of estimat-

ing, and they are filled with inscrutable equations—only to arrive

at inaccurate schedules. Not even the most powerful computers can

project how long it will take to run an algorithm to arrive at a rea-

sonable schedule.

Estimating, like an algorithm, is performing a sequence of steps.

However, this specific algorithm represents a halting problem. This

occurs when a computer gets stuck on a problem, and there’s no

way to tell when it will get unstuck—just like we experience on our

projects.

Having some perspective on the subject of estimation can be re-

vealing. Let’s look at some of the issues you may encounter so we

can identify situations when making an estimate is possible—and

when all hope might as well be lost.

Dealing with Project Complexity
The first roadblock you’ll run into when estimating a new task is

unexpected complexity. Your understanding of a problem is seldom

clear from the start. You’re almost certain to find situations become

more complex as you make progress. The waterfall methodology, for

example, can be used to solve the problem of estimation, but even if

you try to outline every single detail, you’ll only discover implemen-

tation issues during development.

Complexity can escalate in many ways during development.

Good candidates for unexpected complexity are tasks with a cre-

ative component, such as building a user interface; businesses that

are implicitly hard to understand, such as finance and artificial in-

telligence; problems that require solving, as in math and physics;

and any area in which you are not a subject matter expert.

Experienced developers have a better chance of making accu-

rate estimates simply because they’ve been exposed to more situa-

tions and aren’t as easy to surprise. Still, everyone is vulnerable to

unexpected complexity.

Software variety and trends also bring complexity with them.

It takes time to become proficient with a new software library, and

each has its own corner cases. So even if you’re an expert with one

library, learning a new one will expose you to new tradeoffs and

edge cases made during its development.

It may even be that a specific problem you’re tackling requires

a new type of software architecture or arrangement of components

that you are unfamiliar with. This has happened multiple times

during the evolution of game development. Drawing pixels initially

required a few geometrical calculations, so procedural program-

ming was enough. Then, 3D came along, and with it matrix algebra

and more complex games. This led developers to favor object-orient-

ed programming. Eventually, performance had to be squeezed from

any possible place, and some people tried data-oriented program-

ming as an alternative.

Game development is also a good example of unexpected esca-

lation of complexity on seemingly simple applications. Seasoned

game developers often own quite a few books on math, software

architecture, and programming languages.

The Importance of Previous Knowledge
I recognized the importance of experience and familiarity with

a task many years ago while playing around with a Rubik’s Cube on

a long bus trip.

The distance from Rio de Janeiro to Buenos Aires runs a cool

1,200 miles, and I had about forty-two hours to kill. I decided it was a

good time to play with an old Rubik’s Cube I had lying around. After

spending many hours on it, I never finished the last side. It didn’t

help my mood when I later watched a YouTube video showing a kid

solving one in just a couple of minutes.

However, I did see the similarity between Rubik’s Cube algo-

rithms and software development. This got me thinking about esti-

mates for software projects.

Expert-level cube solvers can complete them very quickly. If you

ask one of them how long he would take, you might get an estimate

in the three to four minute range. If you asked me how long I would

take, it would be hard to come up with a reasonably accurate range.

“NOT EVEN THE
MOST POWERFUL
COMPUTERS CAN
PROJECT HOW
LONG IT WILL TAKE
TO RUN AN
ALGORITHM TO
ARRIVE AT A
REASONABLE
SCHEDULE.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 37

http://techwell.com

Familiarity with a task is a main component of accurate esti-

mates, yet many software development methodologies seem un-

concerned with it. We routinely see teams meeting to discuss how

long a task will take. However, in many cases, there is no discussion

about who the expert is on the subject matter at hand and what his

estimate might be.

An example is the use of planning poker in estimating agile soft-

ware development projects. Each team member comes up with a

number representing the days he thinks a task will take to complete.

Unfortunately, this approach disregards the possibility that only a

few people on the team are experts on a specific task and, thus, able

to estimate it accurately. The solution is to have the experts try to

convince everyone else that their estimate is the right one. But be-

cause estimating often requires applying intuition and gut feeling,

it’s hard to convince the rest of the team that you’re right.

Scheduling using a traditional waterfall process isn’t much bet-

ter. The waterfall approach relies on having a few people come up

with a detailed specification and a list of tasks. The approach fol-

lows these steps: estimate the effort, select a team, and distribute

the tasks among the team. The problem here is that the person doing

the estimating is rarely directly responsible for the implementation.

Consequently, there is a high degree of uncertainty in the estimate

for each task and for the overall project.

The Impact of Human and Cognitive
Factors

The human element is a critical side of software engineering

that affects estimates. We are all familiar with the many interactions

that take place on a project. We have to deal with coworkers inter-

rupting us, a manager assigning too many tasks, key staff getting

switched to a different project, and poor documentation resulting in

time wasted asking for clarification.

Because it’s so hard to quantify the cognitive elements, there is

no way to accurately measure worker productivity, so we rely on

metrics to give us a hint of the true schedule status. Classic examples

are the number of tickets solved, the time spent on an issue, and the

code commit rate. Unfortunately, the metrics are often inaccurate

and, in my experience, scarcely useful, considering they attempt to

conflate all cognitive factors into a single number.

Agile processes combat this problem in an interesting way. In-

stead of basing estimates on an average of how much work the team

completed during a given time period, agile teams measure how

much things improve or degenerate. With this information, called

velocity in Scrum, it’s possible to apply direct measures to improve

the workplace and track how they perform over time.

For example, a team with a high incidence of interruptions, mul-

titasking, and project switching will spend more time on each task.

But there are many factors that could adversely impact estimates.

We can apply reasonable measures to improve productivity and

keep measuring the velocity to see if it improves. This approach is

based on an iterative learning process, so it can’t be used for up-

front project estimates.

Is It Possible to Estimate with Confidence?
Approaches that take statistical or historical data as a ground

truth are doomed to fail. The problem is that new software almost

invariably brings new situations into play. Even small details have

a chance of greatly affecting the complexity of the software you’ve

developed. Experienced developers

will be familiar with the situation of in-

troducing a small change that ends up

completely blowing apart the scope of a

project.

A paper by J.P. Lewis on software

estimating [2] stresses the importance

of valuing intuition, wisdom, and expe-

rience while being cautious about using

objective processes. Lewis states that

it’s possible to define a framework for

estimates based on a particular mea-

sure, such as an agile team’s velocity. In that case, the burden should

prove that the measure you’re using correlates with productivity

and development time. However, this approach is relevant only for

teams repeatedly implementing similar software.

Most of the time, software development is more comparable to

problem-solving and developing new theories of science than to a

path that can be walked in a set amount of time.

Your success in estimation is a matter of reflecting on what your

project is about and how predictable your particular case is. Are you

working on simple, sure-fire projects that come with little creative

freedom? If so, it might be time to automate. On the other hand, if

your project requires creative thinking, you can’t expect to provide

accurate estimates up front.

Be sure you have the right people on your team, because it’s time

to trust your developers to make the best estimation effort they can.

chris@chrismm.com

REFERENCESCLICK FOR THIS STORY'S

“YOUR SUCCESS IN ESTIMATION
IS A MATTER OF REFLECTING ON
WHAT YOUR PROJECT IS ABOUT

AND HOW PREDICTABLE YOUR
PARTICULAR CASE IS.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 38

mailto:chris@chrismm.com
http://www.stickyminds.com/sticky-note/references-220
http://techwell.com

Find out how Sauce Labs
can accelerate your testing
to the speed of awesome.

For a demo, please visit saucelabs.com/demo
Email sales@saucelabs.com or call (855) 677-0011 to learn more.

B E F O R E S A U C E L A B S
Devices. Delays. Despair.

A F T E R S A U C E L A B S
Automated. Accelerated. Awesome.

A brief history of web and mobile app testing.

https://saucelabs.com

TCS AD

https://goo.gl/ohPnda

The International Software Testing Qualifications

Board (ISTQB) is a non-proprietary organization that

has granted more than 450,000 certifications in more

than 100 countries around the globe. Certification

is designed for software professionals who need to

demonstrate practical knowledge of software testing—

test designers, test analysts, test engineers, test consultants, test

managers, user acceptance testers, developers, and more.

Each of our accredited training courses go above and beyond the

ISTQB syllabus, giving you practical knowledge you can apply now. All

of our courses are led by instructors with an average of 15–30 years of

real-world experience, meaning you can be confident that your learning

experience will be second to none.

Advance your career by adding an internationally-recognized

certification to your resume. Learn more about certification at

sqetraining.com/certification or request a personal consultation with

one of our dedicated Training Advocates by calling 888.268.8770.

Professional certifications are a tangible way to

set yourself apart. SQE Training offers accredited

training courses for the most recognized software

testing certification in the industry—ISTQB®

International Software Testing Qualifications Board.

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/CERTIFICATION

SOFTWARE
TESTER

CERTIFICATION

CERTIFICATION OFFERINGS

LEARNING OPTIONS

Foundation Level
Certification (CTFL)

Foundation Level Agile
Extension (CTFL-AT)

ASTQB Mobile Testing
Certification (CMT)

Advanced Level Test
Manager (CTAL-TM)

Advanced Level Test Analyst
(CTAL-TA)

Advanced Level Technical
Test Analyst (CTAL-TTA)

eLearning

Public

https://well.tc/w3q9

The Value of Falling into Software Testing
By Justin Rohrman

To become a software tester, there are generally no required de-
grees or certifications. Consequently, many testers sort of “fall into” the
job. But that doesn’t mean they won’t do outstanding work. Coming
from all walks of life and having varied work experiences can help tes-
ters find problems no one else can.

Read More

Managing the Risks of Cloud Storage
By Dale Perry

When managing and storing information, the cloud is a reasonable
place to do that, but you need to realize that, as with a personal comput-
er or any other device, it needs to have a backup (or more than one, for
important things). Luckily, there are several ways to make local backup
copies of critical data.

Read More

5 Questions to Ask in a Project Review
By Payson Hall

Project managers often dread doing reviews, but they’re necessary
to make sure the project is on the right track. Progress can be affect-
ed by unclear definitions, risk, schedules, and cost, so it’s important to
evaluate whether the project manager, sponsors, and team members
are all on the same page.

Read More

Testing in Agile and DevOps: Where Are
We Going?
By Hans Buwalda

When looking at what the software market is currently talking
about, the top item is DevOps and Continuous Integration/Deployment,
which seems to be taking over some of the spotlight from agile and is
now a widely accepted new normal. Hans Buwalda looks at where the
future of software testing is going.

Read More

Featuring fresh news and insightful stories about topics important to you, TechWell.com is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

Testing the Security of the Internet of
Things
By Rajini Padmanaban

The Internet of Things (IoT) has made it on many of the trends lists
for the year. Given that security issues can make or break market ac-
ceptance for IoT solutions, security testing as a quality attribute is ex-
pected to gain a lot of prominence in app development again this year.

Read More

Delivering Successful Software Requires
You to Fail Faster
By Josiah Renaudin

The concept of failing has changed from something people dread
to a necessary part of creating secure, functioning applications. That
means that you don’t want to have one major failure at the very end of
the development lifecycle—you need to continue to fail before release
to find real success.

Read More

IBM’s Watson Will Help You File Your
Taxes at H&R Block
By Beth Romanik

Customers at H&R Block will be able to get tax advice from IBM’s
famous supercomputer, Watson. Watson has been fed all 74,000 pages
of the US tax code and will use its natural language processing to inter-
act with clients in order to answer questions, uncover deductions and
credits, and help calculate refunds.

Read More

What Not to Do If You Want Satisfied
Customers
By Naomi Karten

You may think that overperforming would ingratiate you to your
customers. But customers don’t always want you to go above and be-
yond—often, they just want what they asked for. Don’t fall for this com-
mon misconception. The trick to customer satisfaction is delivering just
what they want—and good communication.

Read More

B E T T E R S O F T W A R E T e c h W e l l . c o m 42

https://well.tc/wwyh
https://well.tc/wwy7
https://well.tc/wwy8
https://well.tc/wwy2
http://techwell.com
http://techwell.com
https://well.tc/wwy6
https://well.tc/wwyu
https://well.tc/wwyb
https://well.tc/wwya
http://techwell.com

NASA Code Available for Down-to-Earth
Apps
By Pamela Rentz

The 2017–2018 NASA catalog has hundreds of free, downloadable
software codes in categories ranging from aeronautics and autono-
mous systems to environmental science and vehicle management.

Read More

Creating Your Organization’s Agile
Culture
By Johanna Rothman

Some organizations decide they can just “install” agile by simply
telling the technical team members what to do. It never occurred to the
managers that much of what makes agile successful is the organization-
al culture. It’s important to recognize that agile is something you work
toward—with the whole team.

Read More

Do Your Part—Engage in Cyber Hygiene
By Mukesh Sharma

Cyber crimes can be more alarming and can have a more devas-
tating impact than even some physical crimes. Consulting firms have
stated that cyber crimes are the fastest growing economic crimes today,
with a 20 percent increase since 2014.

Read More

The Problem with Software Measurement
and Metrics
By Lee Copeland

Many software practices rely on setting target numbers for the
team to hit. But when a measure becomes a target, it ceases to be a good
measure. People start gaming the system by changing their behavior
in such a way to favorably adjust the measure in order to achieve the
target. Don’t get hung up on metrics.

Read More

Mobile and IoT Challenges: What Testers
Need to Know to Improve Their Careers
By Jon Hagar

Many of the skills and knowledge areas that testers have in the
IT, web, PC, and even mobile world will have application in the IoT.
However, there are some knowledge domains that may be new or have
some twists, and if testers understand them, they will be able to sepa-
rate themselves from other job seekers.

Read More

3 Fundamentals of a Successful Testing
Team
By Greg Paskal

When it comes to equipping a QA team to reduce risk, test quality,
and deliver world-class products, there are more important things than
tools. Fundamentals such as a common language, core testing concepts,
and a smart automation strategy are essential to setting up testing
teams for success.

Read More

DevOps Helps Enterprises Deliver Better,
Faster Software for the IoT
By Anders Wallgren

As the world becomes more connected, it’s changing the way we do
things, especially in relation to software delivery. For starters, software
development for IoT applications presents obstacles concerning secu-
rity, privacy, and unified standards. But we need look no further than
DevOps to find the answers.

Read More

Why You Need to Unify Agile
Methodologies among Teams
By Sanjay Zalavadia

Agile software development is a complex initiative to undertake,
especially when a dispersed team is involved. Organizations must es-
tablish a unified agile methodology to ensure that everyone is on the
same page and understands what is expected of them in these efforts.

Read More

T E C H W E L L I N S I G H T S

B E T T E R S O F T W A R E T e c h W e l l . c o m 43

https://well.tc/wi3v
https://well.tc/wiwk
https://well.tc/wiw4
https://well.tc/wwyz
https://well.tc/wwyr
https://well.tc/wwyj
https://well.tc/wwy9
https://well.tc/wwyy
http://techwell.com

THE LAST WORD

The complex nature of software development and delivery, es-

pecially at an enterprise scale, has resulted in DevOps gaining im-

portance in recent years. How many of us have been frustrated by

online banking or some other vendor interaction? How many of us

have left a vendor for another that offers a better customer expe-

rience? Today’s digital world shows us how the speed and quality

of software delivery can either help or harm customer satisfaction

and affect business outcomes.

Better customer experiences are driven by better software,

and Microsoft CEO Satya Nadella saw it coming at the company’s

annual Convergence conference in 2015 when he stated, “Every

business will become a software business, build applications, use

advanced analytics, and provide SaaS services.” [1]

All organizations are impacted by software, and all businesses

are in the software business.

The quality and functionality of a company’s software affects

everything from competitive differentiation to customer support

and, ultimately, employee satisfaction. So why aren’t all private

and government organizations delivering better offerings and bet-

ter service at greater speeds?

The Importance of DevOps
Traditional efforts to deliver innovative software solutions are

often hampered by the limitations of the disparate tools, methods,

and platforms in use today. Teams tend to be spread out geograph-

ically, and today’s software development requires collaboration

between R&D and IT operations.

DevOps will become an even higher priority to the enterprise

as IT professionals learn how it helps bring innovative ideas to life

by accelerating and improving software development. Companies

that expand their DevOps practices will experience the benefits of

better teamwork between development and other groups across

the enterprise.

Next-generation DevOps tools are starting to deliver compre-

hensive views of software release cycles. They combine those

views with operational data that teams can use to make better-in-

formed decisions. Key performance indicator (KPI) data will come

into play, providing a link between an organization’s software de-

velopment lifecycle and its business. Fundamentally, DevOps will

change in 2017 to usher in these and other advances that connect

software development to the heart of the enterprise.

Here are some of the trends I see developing in the next year as

the DevOps market evolves.

The Left Shift
Companies are beginning to leverage specific DevOps tools,

which has led to a rapid uptick in automated testing and contin-

uous delivery. The adoption of automated testing created a left-

ward shift in the pipeline, resulting in smaller-scale tests that are

completed earlier and faster. Quality continues to be a focus, and

micro-services are helping accelerate that drive by enabling the

deployment of higher-quality code at a smaller risk to the business.

These shifts in testing and code deployment have pushed feed-

back further left in the pipeline, so teams are receiving responses

earlier in the delivery lifecycle. As more organizations pick up on

this shift, software quality will improve, and risks will be reduced

2017 Is a Pivotal Year
for DevOps
AS CUSTOMERS DEMAND REAL-TIME SOFTWARE UPDATES, DEVOPS IS NO LONGER
AN AFTERTHOUGHT. NOW IS THE TIME FOR DRIVING INNOVATION.
by Eric Robertson | erobertson@collab.net

“Traditional efforts
to deliver innovative
software solutions
are often hampered
by the limitations of
the disparate tools,
methods, and platforms
in use today.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 44

mailto:erobertson@collab.net
http://techwell.com

further down the pipeline. This lowers the potential impact to the

customer in terms of outages and operational costs by lessening

the number of service requests.

Driving DevOps with Analytics
Focusing on analytics provides a more holistic and comprehen-

sive approach to DevOps. Over the next year, we will see more con-

nected tools and processes, as well as KPI data that can enable new

levels of decision making by leveraging operational data to provide

intelligent correlation and traceability. Through KPI data, for exam-

ple, organizations can unwrap the hidden issues within a software

release that led to a jump in service tickets. With this type of power-

ful analytic data, detailed and revealing reports can be used to col-

lect metrics from the tools and activities from chained associations.

DevOps Becomes an Integral Part of the
Project Lifecycle

While DevOps tools are meeting the needs of organizations in-

volved with the software development lifecycle, many organiza-

tions have evolved. They now need to understand their DevOps

value stream across the software development and delivery life-

cycle—from planning to operations. This enables organizations

to deliver end-to-end traceability across every DevOps tool chain

component and to leverage objective metrics and KPIs. This en-

sures that the delivered value is always operational and meets

service-level agreements for the business. Essentially, this means

continuous monitoring and feedback across DevOps tool chains.

This year, DevOps excellence is expected and has become the

catalyst for successful software solutions. We are witnessing the

importance of DevOps even at the executive level of enterprise

software solutions. Consider bringing DevOps to the very begin-

ning planning stages of your project lifecycle and coupling KPIs

with analytics to measure operational success. By prioritizing

these considerations, enterprise leaders will better leverage ex-

isting investments and set themselves up for future success in an

industry that is constantly changing.

REFERENCESCLICK FOR THIS STORY'S

THE LAST WORD

 L I N K T O O U R A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is published four

times per year: January, April, July, and October. Entire

contents © 2017 by TechWell Corporation 350 Corporate

Way, Suite 400, unless otherwise noted on specific

articles. The opinions expressed within the articles and

contents herein do not necessarily express those of the

publisher (TechWell Corporation). All rights reserved.

No material in this publication may be reproduced in

any form without permission. Reprints of individual

articles available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile Dev, Better Software & DevOps West 2

Apica Systems 18

Delphix 13

Hiptest 19

Microfocus 4

Parasoft 25

Perfecto Mobile 34

Remote Test Kit 3

SauceLabs 39

Scrum.org 11

SQE Training Live Virtual 33

SQE Training STF/ADV Certification 41

STARCANADA 35

STARWEST 27

TCS 40

Turnkey 26

B E T T E R S O F T W A R E T e c h W e l l . c o m 45

http://www.stickyminds.com/sticky-note/references-221
mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://bscwest.techwell.com
https://apicasystem.com/start-trial
https://delphix.com/state-of-tdm-report
https://hiptest.net
https://www.microfocus.com/performance
https://parasoft.com/iot
http://info.perfectomobile.com/selenium-automation-essential-guide.html?utm_source=egs-bsm
https://appkitbox.com/en/testkit/?tw2017
https://saucelabs.com
https://www.scrum.org
https://www.sqetraining.com/delivery-options/live-virtual-training
https://www.sqetraining.com/certifications/istqb-software-tester-certifications
https://starcanada.techwell.com
https://starwest.techwell.com
https://goo.gl/ohPnda
http://turnkeysolutions.com/free-assessment
http://techwell.com

