
AGILE ACROSS THE ENTERPRISE
A performance model to help

scale your organization

ACCELERATE PROJECT
DELIVERY

Ensure that testing
plays a vital role

Reducing
the Risk of

Failed System
Updates

WINTER 2017

Orlando, FL | May 2–7, 2017
Rosen Centre Hotel

Conference
Schedule

Choose from a full week of
learning, networking, and more

Sunday Multi-day Training
Classes Begin

Monday–Tuesday In-Depth
Half- and Full-Day Tutorials

Wednesday–Thursday
Keynotes, Concurrent Sessions,
the Expo, Networking Events,
and More

Friday Testing & Quality
Leadership Summit, Women Who
Test, & the Workshop on Regulated
Software Testing (WREST)T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0

https://well.tc/STAREAST2017

Beautiful Downtown Orlando, Florida

The Year’s Most Memorable
Software Testing Event

EXPLORE
the

PROGRAM

https://well.tc/woqc

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0
https://well.tc/STAREAST2017

Learn from industry leaders
at the Keynotes

Gain new skills by
breaking software
in the Test Lab

Dive deeper into topics at
the tutorials

Meet face-to-face with top solution providers at the Expo

Network with fellow testers

ORLANDO, FL | MAY 2–7, 2017

EXPLORE
the

PROGRAM

https://well.tc/woqc

Meet Customer Expectations.
Deliver Performance

Anywhere, on Any Device.

www.microfocus.com/performance

To performance test web and mobile apps today, real
user workloads must be accurately simulated.

Micro Focus can help you do this with sophisticated tools
that replicate wide-ranging user access patterns, to make

performance testing simpler and more effective.

https://www.microfocus.com/performance

Volume 19, Issue 1
WINTER 2017

Better Software magazine brings you the hands-on, knowledge-building information you need to run smarter projects and deliver better
products that win in the marketplace and positively affect the bottom line. Subscribe today at BetterSoftware.com or call 904.278.0524.

06	 Mark Your Calendar

07	 Editor's Note

08	 Contributors

12	 Interview with an Expert

32	 TechWell Insights

35	 Ad Index

DepartmentsColumns

Features

Saying No to More Work
We’ve all been placed in the situation
where a boss asks you to perform more
work than you can possibly handle.
Johanna Rothman knows firsthand that
there is a better way to respond that
benefits you and your manager.
by Johanna Rothman

Achieving Success through
Servant Leadership
Regardless of whether you are working
with a stellar team or one that struggles,
your style of management can influence
the success of the project. Joshua
Dawson wants you to consider adopting
servant leadership. by Joshua Dawson

Alternate Testing Models: A Tale of
Veggies and Precious Gems
As if working at Lego isn’t fun enough,
Sherri Sobanski delights in finding new
ways to test. Faced with a situation
requiring a complete product redesign,
she shares the route her team took to
overhaul testing. by Sherri Sobanski

Helping Organizations Scale
Agile across the Enterprise
Transitioning a software organization
to agile isn’t easy. Kirk Botula believes
that incorporating an enterprise-wide
performance improvement model
strengthens the application of agile
throughout your company. by Kirk Botula

Testing as a Development
Catalyst: Accelerate Project
Delivery
Putting technical people together
and hoping for success isn’t enough,
according to Justin Rohrman. The
testing team’s involvement can never be
an afterthought. by Justin Rohrman

09 TECHNICALLY SPEAKING 34 THE LAST WORD

INSIDE

2520 29

14

Reducing the Risk of Failed
System Updates
As software applications become
more powerful and complex,
users are demanding seamless
and automatic updates. There is
nothing worse than a “bricked
system” after a failed update. The
selection of a reliable file system is
a vital component of the software
update process. by Thom Denholm

On the Cover

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 5

http://BetterSoftware.com
http://techwell.com

Helping organizations worldwide improve their skills, practices,
and knowledge in software development and testing.

Cutting-edge concepts, practical solutions, and today’s most relevant topics.
TechWell brings you face to face with the best speakers, networking, and ideas.

January 31–February 2, 2017
Philadelphia, PA

February 7–9, 2017
San Francisco, CA

February 21–23, 2017
Houston, TX

February 21–23, 2017
Denver, CO

February 28–March 2, 2017
Tampa, FL

March 7–9, 2017
Toronto, ON

January 17–19, 2017
Your Desktop

March 7–8, 2017
San Diego, CA

April 4–5, 2017
Boston, MA

May 7–8, 2017
Orlando, FL

June 4–9, 2017
Las Vegas, NV

November 5–10, 2017
Orlando, FL

October 15–20, 2017
Toronto, CanadaApril 24–28, 2017

San Diego, CA

May 7–12, 2017
Orlando, FL

October 1–6, 2017
Anaheim, CA

February 27–
March 3, 2017
Atlanta, GA

March 6–10, 2017
San Diego, CA

April 3–7, 2017
Boston, MA

June 12–16, 2017
Chicago, IL

Conferences

Software Tester Certification—Foundation Level
https://www.sqetraining.com/training/course/software-tester-certification-foundation-level

Fundamentals of Agile Certification—ICAgile
https://www.sqetraining.com/training/course/fundamentals-agile-certification-icagile

Software Testing Training Weeks
https://www.sqetraining.com/trainingweek

M A R K YO U R C A L E N D A R

SQE TRAINING
A T E C H W E L L C O M P A N Y

events

LEARN MORE LEARN MORE

LEARN MORE LEARN MORE LEARN MORE

LEARN MORE

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 6

https://www.sqetraining.com/training/course/software-tester-certification-foundation-level
https://www.sqetraining.com/training/course/fundamentals-agile-certification-icagile
https://www.sqetraining.com/trainingweek
https://mobiledevtest.techwell.com/
https://bscwest.techwell.com/
https://stareast.techwell.com
https://starwest.techwell.com/
https://bsceast.techwell.com/
https://starcanada.techwell.com/
http://techwell.com

PUBLISHER
TechWell Corporation

PRESIDENT/CEO
Wayne Middleton

DIRECTOR OF PUBLISHING
Heather Shanholtzer

Editorial

BETTER SOFTWARE EDITOR
Ken Whitaker
ONLINE EDITORS
Josiah Renaudin
Beth Romanik
PRODUCTION COORDINATOR
Donna Handforth

Design

CREATIVE DIRECTOR
Jamie Borders
jborders.com

Advertising

SALES CONSULTANTS
Daryll Paiva
Kim Trott
PRODUCTION COORDINATOR
Alex Dinney

Marketing

MARKETING MANAGER
Cristy Bird
MARKETING ASSISTANT
Allison Scholz

EDITORS:
editors@bettersoftware.com

SUBSCRIBER SERVICES:
info@bettersoftware.com
Phone: 904.278.0524,
888.268.8770
Fax: 904.278.4380

ADDRESS:
Better Software magazine
TechWell Corporation
350 Corporate Way, Ste. 400
Orange Park, FL 32073

Ken Whitaker
kwhitaker@techwell.com
Twitter: @Software_Maniac

F O L L O W U S

CONTACT US

E D I T O R ’ S N O T E

Another Great Year for Creating Better Software
Another year and a new issue of Better Software magazine! Our sole goal is to give you innovative

ideas so that you and your team can create better software.

A year ago, Better Software’s parent company was officially rebranded from Software Quality

Engineering to TechWell Corporation. The new name reflects our continued focus on the entire

software development lifecycle. The TechWell website was redesigned, and now it is the magazine’s

turn. We’ve overhauled the look of Better Software with a simplified layout and a more modern look.

We have some great content, starting with Thom Denholm’s article, “Reducing the Risk of Failed

System Updates,” which shows ways to build software that avoids the nightmare caused by failed

software updates. Most of us have experienced “bricked” systems after an operating system update

fails, but who would have imagined that the heart of reliability starts with the underlying file system?

There’s no doubt that software development teams have embraced agility in their approach to

projects. Kirk Botula, the CEO of CMMI, explains how to augment your organization’s transition to

agile using performance improvement techniques in “Helping Organizations Scale Agile across the

Enterprise.”

Sherri Sobanski’s article “Alternate Testing Models: A Tale of Veggies and Precious Gems” searches

for the magic formula to achieve product quality on fast-paced software projects. I promise you’ll

find her unconventional view of her QA journey both entertaining and enlightening. (Her article

mentions Cucumber, a tool that was explained in “What Is Cucumber and Why Should I Care?”

in our Fall 2016 issue of Better Software.) Justin Rohrman’s “Testing as a Development Catalyst:

Accelerate Project Delivery” shows how early integration and strong collaboration with the testing

team can help deliver projects earlier.

We truly value your feedback. Let us and our authors know what you think of the articles by leaving

your comments. I sincerely hope you enjoy reading this issue as much as we enjoy working with

these wonderful authors. And please let me know what you think of our new layout.

Don’t forget to spread the word to let people know about TechWell and Better Software magazine.

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 7

http://jborders.com
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
mailto:kwhitaker@techwell.com
https://twitter.com/Software_Maniac
http://techwell.com
https://twitter.com/TechWell
https://www.facebook.com/TechWellCorp
https://plus.google.com/u/0/+Techwell/posts
http://techwell.com

Kirk Botula is the CEO of the CMMI Institute, the home of CMMI, the globally adopted capability improve-
ment framework that guides organizations in high-performance operations. Prior to the CMMI Institute,
Kirk served as president of Confluence, a global financial technology firm. He is a global growth company
executive whose career has been focused on advancing the common good through the commercialization
of technology. For more information, please contact Kirk at info@cmmiinstitute.com.

Thom Denholm is an embedded software engineer with more than twenty years of experience in operating
system internals, file systems, and specific knowledge of modern flash devices. His love for solving difficult
technical problems has served him well in his sixteen years with Datalight. After hours, Thom works as a
professional baseball umpire and an Internet librarian. Although he lives in Seattle, he has never had a cup
of coffee. You can reach Thom at thom.denholm@datalight.com.

Joshua Dawson works for Three Rivers Technologies as a QA analyst in La Crosse, WI, with interests in agile
methodology, training others in test management implementation solutions, mobile, and team integration
strategies. Outside work you’ll find Joshua with his family, creating and playing custom cornhole games,
golfing, snowboarding, and caring for his pug. Please contact Joshua at jdawson@3riverstech.com.

Justin Rohrman has been a professional software tester since 2005. In addition to being editor of
StickyMinds.com, Justin is a consulting software tester and writer working with Excelon Development. He
also serves on the Association for Software Testing board of directors. As president, Justin helps facilitate
and develop programs like BBST, WHOSE, and the CAST conference. Contact Justin at rohrmanj@gmail.com.

Josiah Renaudin is a longtime freelancer in the tech industry and is now a web content producer and writer
for TechWell, StickyMinds.com, and Better Software magazine. He also wrote for popular video game journal-
ism websites like GameSpot, IGN, and Paste Magazine, and now acts as an editor for an indie project being
published by Sony Santa Monica. Josiah has been immersed in games since he was young, but more than
anything, he enjoys covering the tech industry at large. Contact Josiah at jrenaudin@techwell.com.

Johanna Rothman, known as the “Pragmatic Manager,” provides frank advice for your tough problems.
She helps leaders see problems, manage risks, and ease the way for teams to work better. Johanna just
published Agile and Lean Program Management: Scaling Collaboration Across the Organization, her tenth
book. Johanna writes columns for AgileConnection, TechWell Insights, and http://projectmanagement.com,
writes two blogs on her http://jrothman.com website, and blogs on http://createadaptablelife.com. Contact
Johanna at jr@jrothman.com.

Sherri Sobanski has enjoyed more than twenty years of experience in information technology, as it’s the
only profession that can keep her thoroughly entertained. She is currently the test manager supporting the
global e-commerce website for LEGO Systems. Certified in a bunch of different IT and leadership things,
Sherri aspires to leverage her learned knowledge to do wicked cool things for the betterment of IT. Sherri
can be reached at sherri.sobanski@lego.com.

C O N T R I B U T O R S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 8

mailto:info@cmmiinstitute.com
mailto:thom.denholm@datalight.com
mailto:dawson@3riverstech.com
mailto:rohrmanj@gmail.com
http://www.stickyminds.com
mailto:jrenaudin@techwell.com
http://projectmanagement.com
http://jrothman.com
http://createadaptablelife.com
mailto:jr@jrothman.com
mailto:sherri.sobanski@lego.com
http://techwell.com

TECHNICALLY SPEAKING

If you’re like most people I know, it doesn’t matter what ap-

proach you take to your projects—your manager has too much

work for you to do. Instead of a potential career-limiting conversa-

tion, frame the conversation so you can show your manager you’re

considering his or her perspective.

Here are some options for how to say no and still stay on good

terms with your boss.

Ask: “Can We Add More People?”
Does your boss expect you to solve problems alone without

working with a team? That is a classic case of optimizing for re-
source efficiency, which is the least efficient way to manage (and

deliver) knowledge work.

If you have expertise in a specific area of code, testing, or a

certain function, such as database administration, your boss might

think you are most efficient when you work as an expert. Your boss

might even think that you, alone, can do

this work. And that might be true—for

your part of the work.

The problem occurs when we think of

software product development as manu-

facturing. Manufacturing is a repetitive

process. We don’t learn as we manufac-

ture.

All software is some form of product

development. We learn as we develop the

software. We need to build in time to learn

together as a team to deliver a working

product.

Think about how you perform your

work. In all the software projects I’ve

seen, people don’t spend the bulk of their

time writing code or tests. Rather, people spend their time thinking

about the problem: including wrestling with requirements; rede-

signing the interactions inside the code; and understanding what

the tests tell us about the code.

That means—regardless of your approach—you need to work

as a team to finish work. Your boss might not realize this yet. In

that case, explain flow efficiency.
Flow efficiency optimizes for finishing a chunk of work as it

flows through the team. In contrast, resource efficiency optimizes

for each person’s strengths, so it creates queues of partly finished

work waiting for the handoff to the next person down the chain.

When you suggest to your boss that you might need more peo-

ple, explain how a team of people focused on finishing work can

deliver finished features faster than experts working separately.

According to Brooks’ Law, adding more people to a late project

makes it later. I have often found Brooks’ Law to be true in prac-

tice, especially if you work with handoffs, as in resource efficiency.

[1] However, I have not seen the effects of this law when people

work together to optimize at the team level to finish features.

If you can’t add more people or organize in flow efficiency to

help complete the work, try to limit the work.

Ask: “What Should I Stop Doing?”
It is entirely possible that your boss does not know all the work

you are trying to accomplish. In that case, consider asking what

you should stop working on. This works

at the team level and at the personal level.

When I have too much work, I rank

it and put some onto my personal park-

ing lot. I don’t forget the work; I postpone

it, so I’m not thinking about it for now.

When I’m ready to address work in my

parking lot, I can reassess my decision.

You can do this for yourself, your

team, and your organization. If there is

significant customer demand for your

products, you will have more work than

you can easily complete. Separate the

work you need to deliver now from the

work you can do later.

Explain: “These Are the Risks I See …”
Every so often I realize I have taken on a project with too much

risk. I don’t know how to start, or worse, I don’t know what done

means. And, for me, one of the biggest risks is that I don’t see how

to deliver this work in someone else’s promised time.

If you are ever in that position, you can say to your manager,

“Here are the risks I see if you want me to start on that work.”

Then, you can explain how you don’t see how to do that work with

all the other work you are supposed to complete.

Saying No to More Work
THERE’S ALWAYS MORE WORK TO DO AND NEVER ENOUGH TIME. WITH A FULL PLATE
ALREADY, HOW SHOULD YOU RESPOND WHEN ASKED TO DO MORE?
by Johanna Rothman | jr@jrothman.com

“It is entirely possible
that your boss does not
know all the work you are
trying to accomplish. In
that case, consider asking
what you should stop
working on. This works at
the team level and at the
personal level.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 9

mailto:jr@jrothman.com
http://techwell.com

TECHNICALLY SPEAKING

Provide your boss facts without whining. Facts will help your

case. Whining will not.

You might provide facts about other people’s availability, the

time it’s taken so far to finish whatever you have done or not done,

and the general riskiness of the project.

Sometimes, it’s not about the project risks. You have too much

work and your manager might not realize that. It’s time to show

your manager, not just tell him.

Visualize Your Work for Yourself and Your
Manager

I use pictures to help my manager see what is on my list and

when I might finish the work. I like two views of the data: a kanban

board and a calendar.

You can start a kanban board with four columns showing the

state of the work: To Do, In Progress, Stuck, and Done. If you need

more states for your work, or you want to show the team’s work,

add the states you need. I often see these additional states: Waiting

to Discuss, Waiting to Analyze, and Waiting for Testing.

In addition to the kanban board, a calendar view can show

when you’re supposed to finish the work. You might have two-

week intervals on the calendar view. Sometimes, one-month in-

tervals work. I do not like intervals longer than one month. I find

that we interrupt ourselves with too much work if the intervals are

longer than that.

Now, label the left column “In Progress” with the intervals

across. At the bottom of the chart, draw a big, black horizontal line.

Under that line, in the left column, write “Unstaffed.”

Place a sticky note in each column of the projects you intend

to work on during that interval. If you don’t plan to work on that

project in that interval, put a sticky in the “Unstaffed” row for the

relevant column. Once you have a picture of the work, you can

have a conversation with your boss when he asks you to perform

more work.

Saying No Works
You do not have to say yes. You can say no in at least these four

ways and help your boss become more aware of what you are

working on and what is practical for you to accomplish. You might

even make it a career-enhancing conversation!

REFERENCESCLICK FOR THIS STORY'S

WA N T E D ! A F E W G R E AT W R I T E R S

I am looking for authors interested in getting their
thoughts published in Better Software, a leading online
magazine focused in the software development/IT
industry. If you are interested in writing articles on
one of the following topics, please contact me directly:

• Testing
• Agile methodology
• Project and people management
• DevOps
• Configuration management

I’m looking forward to hearing from you!

Ken Whitaker
Editor, Better Software magazine
kwhitaker@techwell.com

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 10

http://www.stickyminds.com/sticky-note/references-217
mailto:kwhitaker@techwell.com
http://techwell.com

JUNE 4–9, 2017
LAS VEGAS, NV
CAESARS PALACE

KEYNOTES ANNOUNCED!

Stamp Out Agile and
DevOps Bottlenecks
Tanya Kravtsov

Audible

Modern Evolutionary
Software Architectures

Neal Ford
ThoughtWorks

Lightning Strikes the
Keynotes

Lee Copeland
 TechWell Corp.

Big Data: The Magic to
Attain New Heights
Ken Johnston

Microsoft

Identify Development
Pains and Resolve

Them with Idea Flow
Janelle Klein
 Open Mastery

software managers • directors • CTOs

and CIOs • project managers and

leads • measurement and process •

improvement specialists • requirements

and business analysts • software

architects • security engineers • test

and QA managers • developers and

engineers • technical project leaders •

testers • process improvement staff •

auditors • business managers

WHO SHOULD ATTEND? CHOOSE FROM A FULL WEEK OF LEARNING,
NETWORKING, AND MORE

Special Offer for Better Software Subscribers:
Register using promo code BSMCW17 by
April 7, 2017 to save up to an additional

$400 off your conference*

SUNDAY Multi-day Training Classes begin

MONDAY–TUESDAY In-depth half- and full-day Tutorials

WEDNESDAY–THURSDAY Keynotes, Concurrent Sessions,
the Expo, Networking Events, and more

FRIDAY Agile Leadership Summit

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | B S C W E S T . T E C H W E L L . C O M

*Discount valid on packages over $400

https://well.tc/woqp

Mark Levy
	Years in Industry: 	 25

	 Email: 	 MicroFocusEmailList@vocecomm.com

	 Interviewed by: 	 Josiah Renaudin

	 Email: 	 jrenaudin@techwell.com

“DevOps is not ‘something
you do,’ but rather a state
you continuously move
towards by implementing
a culture of continuous
improvement and by doing
many different things.”

“Software success is
increasingly indistinguishable
from business success. All
business innovation requires
new software, changes
to software, or both. And
business innovations can’t
wait for long software cycles
to finish.”

“Software development and
delivery has always been a
race against time. But over the
last several years, that race
has entered an even more
challenging phase.”

“Accelerating application
delivery is the number
one reason companies
implement agile development
methodologies but agile, by
itself, is often not sufficient.”

“With the explosion of mobile
apps and low-switching costs,
the business needs to deliver
quickly to prove out business
ideas and innovations.”

“As development teams
transition to faster and
more iterative development
methodologies, the delivery
cycle times will continue
to shrink and continuously
improve.”

“As far as the
‘speed vs. quality’
trade-off, with
modern software
practices, you
should not have to
make a choice.”

I N T E R V I E W W I T H A N E X P E R T

CLICK HERE FOR THE
FULL INTERVIEW

“DevOps has proven that speed
and quality are not mutually
exclusive.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 12

mailto:MicroFocusEmailList@vocecomm.com
https://well.tc/IWAE19-1

Delphix data virtualization completes the modern DevOps stack by
making it easy for organizations to enable automated, self-service
data delivery that accelerates development.

Companies of all sizes use Delphix to:

Integrate with
existing DevOps tools

Restore data
in minutes

Branch and
version data

Learn how data virtualization can help your organization

Visit us at delphix.com

The market leader in
data virtualization

C

M

Y

CM

MY

CY

CMY

K

BSC Magazine Print Ad.pdf 1 12/2/16 9:03 AM

https://www.delphix.com

by Thom Denholm

Reducing
the Risk of Failed
System Updates

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 14

http://techwell.com

problems for its users with its Windows 10 anniversary update.

During this update, many users would see the progress indicator

progress all the way up to 100 percent before rolling back to the

previous system settings in a process that took more than an hour

to perform. Microsoft technicians have been working to solve this

problem, but the recommendation from industry pundits in Au-

gust was for users to block this update for the time being.

And if major industry leaders like Apple and Microsoft—with

nearly unlimited resources—experience these difficulties, then no

company is immune to update failures with their own software

products.

The Real Cost of Failure
The company I work for, Datalight, partnered with Embedded

Market Forecasters in its 2015 annual survey of embedded engi-

neers to find out customers’ preference for frequency of software

updates. Figure 1 compares how frequently developers expected

updates to be performed (left) with their perception of the cost of

losing stored data when an update occurs (right). According to the

survey results, 80 percent of respondents expected updates for

their devices at least yearly, 27 percent desired quarterly updates,

and 20 percent specified their devices should not be updated at all.

When customers were asked about the importance of the data

on these devices, a combined 41 percent considered system update

failures to be of major importance or mission-critical. For them, a

failed update comes with significant cost.

The Nest thermostat offers a recent example of a high-profile

failed update in an embedded device. In November 2015, Nest

rolled out a firmware release with devices updating to this ver-

sion over a two-month period. But the update did not go quite as

planned.

In our modern world, frequent updates of embedded devices

(laptops, smartphones, wearables, and so on) are a reality. These

run the gamut from minor bug fixes and security updates to feature

releases and full operating system updates. Most of the time sys-

tem updates take place seamlessly with minimal user knowledge

of them happening. While this might seem like a nice convenience,

lack of user notification can make it more problematic when a fail-

ure occurs. When a simple application update fails, it can be down-

loaded again. However, if something goes wrong during a software

system update, a device can be rendered unusable or, in the worst

case, completely dead—no better than a brick.

Some of these update problems are related to the installed

update itself, some are problems with the update software or

procedure, and others are related to the environment or update

conditions. Most software companies do not release full details

explaining why or how an update failed, although tech-savvy cus-

tomers can come up with some guesses.

Challenges with Updates
Update failures happen more frequently than most users are

aware of. When Apple released an iOS 10 update in early Septem-

ber, many iPhone and iPad users ran into installation problems.

For some, the update process failed, with a subsequent error mes-

sage asking users to plug the device into a PC or Mac for a complete

restore of the operating system. By mid-September, a web search

resulted in 14 million hits for the keywords “iOS 10” and “brick.”

Fortunately, the problem was fixed later that day. These devices

were all recoverable, so they didn’t technically fit the definition

of a brick, but the initial bug proved to be a major headache for

people who installed the update in the middle of their workday.

Not to be outdone, Microsoft has inadvertently caused repeated

Figure 1: Survey results of the frequency desired for system updates in the embedded industry

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 15

http://techwell.com

As Matt Rogers, cofounder and vice president for engineering

at Nest, put it, “We had a bug that was introduced in the software

update that didn’t show up for about two weeks.” In January 2016,

for those devices that started to go offline, “that’s when things

started to heat up.” [1]

Homes with a problematic Nest just got colder—a real prob-

lem in the northern United States and Canada in January. The bug

caused the onboard battery to drain to a point where it was no

longer able to control the furnace. Once discovered, Nest engineers

created a second update, which could fail due to low battery on the

device. Eventually, a nine-step procedure was produced to reset

affected Nests, and the company even offered to send an electri-

cian to homes of users who continued to experience problems. The

cost to Nest was significant—not only in repairs but also in terms

of their reputation.

In another recent publicized failure, Fitbit, the maker of the

popular wearable activity trackers, ran into update problems. On

Reddit, users reported having to attempt an update twenty or more

times before it succeeded, or being forced to update through the PC

because the Bluetooth update continued to fail.

The point here isn’t to pick on any particular company. Tech-

nology analyst Alan Zeichick put it best when he said that our aim

is to “point out the hazards of pushing out software updates, es-

pecially to real-world embedded systems. Sure, it’s a pain if our

phone app crashes due to an update, or if we have trouble start-

ing a desktop app. However, in our increasingly connected world

and the trend toward the Internet of Things, we developers simply

should not place our customers in this situation.” [2]

How to Avoid Becoming a Statistic or a
Headline

Database vendors know how important it is to perform an

operation perfectly only once. For example, the mortgage check

funds need to be withdrawn from your account and deposited with

the loan company in one atomic opera-

tion, which is reflected in the acronym

ACID. A procedure should be atomic, con-

sistent, isolated, and durable. Those same

requirements apply to successful system

updates.

Atomic is the first requirement uti-

lized by database vendors. For an atomic

update, all of the data is written (or mod-

ified) at once, with no partial operations.

This is the case whether the system up-

date involves a single or multiple files.

Consistency is also applied to the in-

dividual files, mainly by requiring that

they be valid. In other words, no down-

load errors or media bit flips are allowed.

For that matter, changes should be vali-

dated after they are applied, perhaps by

performing a cyclical redundancy check of the resulting files, re-

verting to the previous state upon any failure.

The isolated part can definitely apply here also. Performing an

update while the embedded system is still writing other data to the

media increases the likelihood of failure.

The final requirement of the ACID acronym is durable. Any up-

date process should have the ability to recover from interruption.

Most of the time errors in updates are due to a power failure, but

it could also be a media error, failed cyclic redundancy check, or

other exception.

Meeting those requirements for an update happens at the file

system level, unless the device doesn’t have a file system. A design

with a minimal or no operating system is either executing code

from RAM or a combination of RAM and system flash memory (EE-

PROM, NOR, or NAND). In the former case, new system data could

be written to the storage while the device continues to execute the

application in memory. A reload or system restart would subse-

quently begin executing the new updated system code.

With enough storage available, the device could download and

check the system update before it is applied. If additional storage

is insufficient, an in-place update could be attempted, but this pres-

ents a considerable risk. This same method would apply in a design

with just one main system file. Increasing the number of files to be

updated also increases the risk.

Using a separate update routine applied at system boot time

can mitigate both kinds of risk. This is the method used by Android

phones and some desktop computers today. Providing the user

with an animated graphic of Andy the Android isn’t necessary, but

it is always a good idea to have a visible status update with more

information than the old system BIOS update message: “Do not re-

boot or power down until the update is completed.”

Using a boot manager and sufficient empty storage space

means that the update can be thoroughly validated before it is ap-

plied. Many file systems will overwrite files in place, destroying

Figure 2: Update system failure due to file overwrites

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 16

http://techwell.com

 A transaction point is used to identify the working state as

committed, and after this it can become the new known good

state. When a power interruption occurs, the system reverts to the

known good state on the media, where blocks changed during the

working state are still part of the free block pool.

In the context of system updates, one or several files can be

updated within a single atomic transaction point. When all of the

updates are performed and validated, a single transaction point

can commit this as the new known good state, allowing the sys-

tem to continue from that point. In the case of any interruption,

the system can revert to the previous state where no changes have

occurred.

The New Normal
With the increasing frequency of updates and criticality of

data, planning for a failsafe update process is now a requirement.

This involves more testing of the updates themselves, including the

impact of power failure during the update, and a better method

for installing software changes. Systems that use a power failsafe

transactional file system can simplify this process while using stor-

age resources more efficiently.

Success is often fleeting. Succeed, and often no one notices. Fail,

and everyone notices. Reputation is a company’s currency, and it

should be every software company’s goal to avoid costly public

failures that could lead to the tarnishing of their reputation.

thom.denholm@datalight.com

the original data and making it impossible to recover from an in-

terruption.

A system update manager can provide some protection against

power loss by instead writing new files and then replacing the old

files after validating the applied update. This would give some de-

gree of protection against power loss during the update process.

For embedded devices, this solution can

create a period of downtime, which is an

option for some use cases but not for oth-

ers. Sensitive to this problem, Google will

use seamless updates for embedded de-

vices partitioned for Android Nougat. For

those designs, there are two system parti-

tions: one active and one dormant. When

an over-the-air update becomes available,

the active partition downloads and vali-

dates it, and it is then applied to the dor-

mant system partition. On the next reboot,

the dormant partition becomes active and

is fully updated. [3]

Linux BTRFS file system and Microsoft

Windows use another related option, re-

ferred to as a checkpoint, where a system

state is committed before updates start and

then again after updates are complete. In

some cases, this can allow a user to roll

back to a previous state.

These desktop file systems point to an

excellent alternative with a file system designed specifically to pro-

tect the data on a device. A transactional file system that follows

the ACID design methodologies can be used in embedded devices.

This provides the developer with complete control over how often

data is committed. Using a transactional file system can simplify

a reliable update process, saving the need to develop a separate

update manager application or reserving storage space for a com-

plete replacement operating system image.

A transactional file system has two metaroots, as shown in fig-

ure 3. Each points to the used and free blocks, but one contains the

known good state of the media, while the other contains the work-

ing state. Unchanged blocks will be pointed to by both metaroots;

pointers to blocks that have been changed are only located in one

of the metaroots. REFERENCESCLICK FOR THIS STORY'S

Figure 3: How metaroots improve reliability in a transactional file system

“Success is often fleeting.
Succeed, and often no
one notices. Fail, and
everyone notices.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 17

mailto:thom.denholm@datalight.com
http://www.stickyminds.com/sticky-note/references-214
http://techwell.com

T E C H W E L L TM

Two In-Depth
Conferences,
1 Great Location

April 24–28, 2017
Westin San Diego
San Diego, CA
#MobileIoTCon

Register by Feb. 24, 2017

AND SAVE UP TO AN
ADDITIONAL $400 OFF

MobileDevTest.TechWell.com IoTDevTest.TechWell.com

https://well.tc/woqx

T O R E G I S T E R C A L L 8 8 8 . 2 6 8 . 8 7 7 0 | M O B I L E D E V T E S T . T E C H W E L L . C O M

A Screenless Future
Is Closer Than You

Think

 Dona Sarkar,
Microsoft

A Coded Mind:
From Ideas and
Assumptions to

Applications

TJ Usiayn,
The Iron Yard

Enterprise IoT:
Solving the

Challenges of the
Smart City

Bee Hayes-Thakore,
ARM

Rooting Your
Devices to Test
Outside the Box

Alan Crouch,
Coveros

Swift Programming: From
the Ground Up
James Dempsey, Tapas Software

Building Cross-Platform
Mobile Applications with
C# and Xamarin
Alan Crouch, Coveros

Super Rad Brainstorming
Jaimee Newberry, MartianCraft

Internet of Things: From
Prototype to Production
Brian Huey, Sprint
Michael Finegan, MultiTech

Develop Your Mobile App
Test and Quality Strategy
Jason Arbon, Appdiff, Inc.

Testing Mobile Apps in the
Cloud with Selenium
Max Saperstone, Coveros

Keynotes

JUST A FEW OF OUR

IN-DEPTH HALF-
AND FULL-DAY

TUTORIALS

36 Concurrent Sessions—Choose Which Topics Matter Most to You

Mobile Testing

Mobile Testing:
What To Automate
and What Not to
Automate
David Dang,
Zenergy Technologies

Leverage Node.
js for Mobile Test
Automation
Stacy Kirk, QualityWorks
Consulting Group, LLC

Plus 7 More

Mobile Development

Fun with Enterprise
iOS
Joe Keeley,
MartianCraft

A Taste of ES6
JavaScript: The
Language and the
Tools
Rob Richardson,
Richardson and Sons

Plus 7 More

IoT Testing

IoT—Let’s Code Like
It’s 1999!
Theresa Lanowitz,
voke, inc.

Internet of Fun:
Winning Ways for an
IoT Hackathon
Alexander Andelkovic,
King/Midasplayer AB

Plus 7 More

IoT Development

Harnessing IoT
and Mobile Apps
to Improve Driver
Experience at BMW
Jorge Coca, BMW

Wireless IoT Network
Communications:
Now and into the
Future
Michael Finegan,
MultiTech

Plus 7 More

https://well.tc/woqx

hether you are seeking to adopt ag-

ile or are in the midst of a complete

agile transformation, organizations

like yours are increasingly seeking guidance

from the Capability Maturity Model Integra-

tion (CMMI) to both strengthen and scale

their implementation of agile approaches.

As an enterprise-wide performance im-

provement model that is the de facto stan-

dard model for improving quality and per-

formance in the software industry, CMMI

helps organizations reap the benefits of ag-

ile and scale its adoption across teams, divi-

sions, and the global enterprise.

W

HELPING ORGANIZATIONS
SCALE AGILE ACROSS

THE ENTERPRISE
by Kirk Botula

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 20

http://techwell.com

How CMMI Strengthens Agile
It’s no secret that agile is well suited for software projects by

encouraging improved team collaboration, transparency, and the

rapid delivery of working software. However, its performance ad-

vantage often degrades as organizations attempt to scale agile be-

yond the team level and across the enterprise.

Most agile approaches are derived from a set of common val-

ues with high-level guidance for ceremonies, roles, timing, and ar-

tifacts. In contrast, CMMI provides a robust set of critical practices

that can be used to strengthen agile methods and address behav-

iors not specifically defined by agile approaches.

CMMI defines the most important practices that organizations

must demonstrate to build great products and services, and pro-

vides a comprehensive model that organizations can use to assess

their capabilities against these practices.

CMMI does not define how to apply specific business process-

es. CMMI specifies what organizations must do to be successful,

but not how. It provides flexibility for organizations to consider

their own business environment and organizational context in

determining appropriate ways to implement each practice. Most

importantly, CMMI provides guidance for numerous behaviors,

including those that enhance code quality, peer reviews, product

integration, performance measurement, code reviews, large-scale

estimation, quality management, and software version and revi-

sion control.

The CMMI model reflects best practices in organizational per-

formance. CMMI is framework- and methodology-agnostic and

is equally valuable for Scrum, Extreme Programming, V-model,

Kanban, and waterfall environments. Organizations can imple-

ment business processes using their choice of methodologies or

frameworks, including any agile approach. For high-performing

organizations, CMMI also provides a set of practices for adopting

statistical, data-driven analysis, along with the use of process per-

formance baselines and models, which accelerates performance

and dramatically improves the quality of software products.

In short, embracing CMMI will bring the resiliency and predict-

ability required to reliably deploy agile across the enterprise.

The Benefits of Scaling the Agile
Enterprise

A recent McKinsey study shows that incorporating agile above

and across individual projects can be a formidable task. [1] Or-

ganizations that attempt to scale agile need significant structural

changes and support. Defining measurable processes that apply to

a broad range of behaviors helps technology leadership to scale

agile across the enterprise. Agile organizations also adopt ways to

increase discipline and improve consistency across projects, which

help decrease go-to-market time, improve product quality, and bet-

ter meet customer requirements.

Located in Bangalore, India, Minacs IT Services is comprised of

450 employees who provide leading banks with technology solu-

tions and support. Internally, the group also supports over 20,000

employees in the business solutions and marketing optimization

divisions. To meet current and future business requirements, the

division was determined to reduce rework and ensure a faster

time to market in their support of services.

Minacs IT Services realized that it needed a solution to help

establish processes based on industry best practices for software

development and service delivery—and integrate support func-

tions, such as HR, training, and internal IT. The solution also had

to integrate with an existing Scrum approach being used for prod-

uct development projects. By applying CMMI with agile, Minacs

IT Services was able to establish clear, defined, lightweight pro-

cesses for service delivery and product development, enabling

service-level agreement improvements and higher customer sat-

isfaction. Specific measured achievements included a 7 percent

quarter-over-quarter gross margin increase, 30 percent to 40 per-

cent increase of sprint goal improvement, 30 percent increase in

the number of features delivered in a sprint, and a 40 percent in-

crease in on-time delivery.

In addition to these measureable benefits, the effort has trans-

formed Minacs’s internal culture from an organization of silos to

an organization aligned with a single common vision. Minacs has

since scaled its CMMI and agile integration across other Minacs

offices, including the North America division and global internal

IT functions.

Transferring Knowledge across the
Enterprise

Poor knowledge transfer and lack of shared learning are ma-

jor sources of organizational inefficiency and impediments to con-

tinuous improvement. Organizations must create and sustain an

information-sharing and problem-solving culture across the en-

terprise by empowering teams to work through software, product,

and management issues in a structured and methodical way. CMMI

helps agile teams identify and share impediments early in the de-

velopment cycle by making lessons learned and solutions available

from previous team members within a collective knowledge base

shared by the entire enterprise.

Honeywell Technical Solutions (HTS) is the development and

engineering arm of Honeywell Inc. HTS delivers machine-critical

products and offerings, so strong processes are required to deliver

consistent, high-performance products.

To meet their ongoing business challenges, HTS sought to im-

prove its problem-solving capability among its 7,000 engineers

across multiple lines of business. Accomplishing this goal required

standard methods of communicating, implementing, and transfer-

ring knowledge.

HTS identified several layered outcomes for this initiative.

HTS wanted to define a simple, easily adopted problem-solving

process. They needed to improve problem-solving accuracy and

address root causes effectively and efficiently. Building on this,

they wanted to improve systematic and layered problem-solving

capabilities for each engineer, commensurate with their roles and

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 21

http://techwell.com

responsibilities, training and competency development plans, and

mentoring plans. They also had the overall goal of reducing the

time engineers spent solving problems.

To achieve these goals, HTS deployed CMMI for Development’s

Causal Analysis and Resolution (CAR) practices to help the orga-

nization bring continuous improvement and best practices to its

processes.

The consistency, repeatability, and transparency of the CMMI

model helped HTS standardize practices, improve problem-solving

abilities, share knowledge, and improve performance of engineer-

ing teams across the organization. The result was a 12 percent to

15 percent decrease in the occurrence of functional defects and 15

percent improvement in implementation of kaizen strategy over

the past three to four years. This companywide program has re-

sulted in a corporate culture that encourages collaborative prob-

lem solving and innovation, increasing knowledge sharing at each

tier and shortening the learning curve for employees.

CMMI Adoption in Agile Organizations Is
Increasing Worldwide

Organizations that adopt a capability improvement model like

CMMI improve agile deployment by scaling agile adoption across

the enterprise, strengthening agile performance, and improving

their capabilities through organization-wide knowledge sharing.

Adoption of CMMI in organizations implementing agile is

steadily increasing. In 2009, 30 percent of CMMI-adopting orga-

nizations reported using one or more agile approaches. In 2015,

more than 70 percent of appraised organizations reported the

same. Multinational companies with technology centers in China,

India, and Latin America are using CMMI to scale agile and export

that capability into more geographically-distributed operations.

Where Does Your Organization Stand?
According to CMMI, there are five maturity levels that corre-

spond to an organization’s overall capabilities compared to CM-

MI-defined best practices. As shown in figure 1, a CMMI maturity

level 1 organization is unpredictable and reactive. Projects are

often delayed and over budget. A CMMI maturity level 5 organiza-

tion is stable and flexible. The organization is focused on measur-

able and continuous improvement and is built to quickly pivot and

respond to opportunity and change. The organization’s stability

provides a platform for agility and innovation.

The series of levels 1 through 5 encourages organizations

to continually self-assess and improve their operations as they

achieve higher maturity levels. Agile approaches alone are only

sufficient for CMMI maturity level 2, and they begin to fall short as

organizations assess practices across the enterprise in pursuit of

CMMI maturity level 3.

Every agile software development organization should operate

at a CMMI maturity level 3 or above to win in this highly competi-

tive industry. To learn more about how CMMI drives agile perfor-

mance, browse to http://cmmiinstitute.com/cmmi-and-agile.

info@cmmiinstitute.com

Figure 1: CMMI defines five maturity levels for organizations

REFERENCESCLICK FOR THIS STORY'S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 22

http://www.stickyminds.com/sticky-note/references-215
http://techwell.com

http://turnkeysolutions.com/free-assessment

https://goo.gl/GmUBcZ

Alternate
Testing
Models:

A T A L E O F V E G G I E S A N D P R E C I O U S G E M S
by

Sherri Sobanski

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 25

http://techwell.com

kin syntax and code in the Ruby programming language. We would

implement continuous integration, leveraging Jenkins with a code

repository in HG Mercurial being controlled by RhodeCode. In es-

sence, this combination of methods and tools represented an entire-

ly new way of working.

We Covet the Gray
Why did we select this combination of tools? If you have never

coded before, it can be a bit overwhelming. As QA testers, we aren’t

typically developers, but we aren’t screen jockeys, either. We are

somewhere in the gray of the geek profession. If we must code, it

makes sense that we use tools that are based on simplicity and read-

ability. We are business-oriented, consumer-focused technology

warriors. In order to test, we must supply simple, highly readable

artifacts that are easy to understand and maintain. Underneath that

simplicity holds the more complex code structure that houses our

geeky gray goodness.

Now, I know some of you will object that Java reigns supreme as

a coding standard. Perhaps it does, but does that really make sense

for quality assurance? Our test automation framework was devel-

oped in Java prior to this endeavor, but only a handful of people

who were skilled in automation could maintain it. This pigeonholed

team members into certain roles. With the new approach, there are

no more specialists, just highly skilled engineers who happily live

in the gray.

Adopting a Behavior-Driven Development
Approach

Let’s talk test structure and behavior-driven development. Ev-

erything in automation is about behavior. Four words are all you

need for Cucumber written in the Gherkin syntax: given, when, and,

and then. Here is an example:

Given that I am shopping at my local dollar store

When it’s raining on a Saturday

And I have a purple store discount card

Then I purchase twelve bananas

I love software testing. Making sure that software rocks is some-

thing that makes me absolutely giddy, even after all these years of

working in quality assurance. Every day I come in to work all jazzed

up to break things, and I like to think I’ve more than earned my test-

ing mojo. I can plot out edge cases in my sleep and find bugs most

people only dream of.

Recently, I was bewitched by an alternate testing model. I’m go-

ing to take you on a journey that started nine months ago—a jour-

ney that promises to redefine the quality assurance world.

A Shock to the System
Allow me to set the stage. Our department had a relatively young

test practice for our e-commerce website, and UI automation was

steadily improving over time. The team was doing a great job within

the boundaries they were given. Everything was checked off: agile

methodology, Java-based automation, test cases, test scripts, and test

plans.

At this point, our Scrum team had just finished a difficult up-

grade to our e-commerce platform. It was so challenging that we

had to put our dreams for a more responsive web design on the

shelf. Smack dab in the middle of mourning responsive web design,

our team was asked to travel to London to attend a project meeting.

We weren’t sure what to expect, and we quickly discovered we

were being schooled. A vendor was acquired to take charge and

help us move forward with a completely new site design and re-

sponsive web design implementation. The perception was that we

weren’t cutting-edge enough, and the vendor was hired to execute

the design and teach us their techniques in the process. It stung at

the time, but it was the most efficient way to remove our boundaries

and catapult us into a brighter, geekier future.

The core of the changes we were asked to take on were rearchi-

tect, redesign, and become responsive immediately. Redesign and

become responsive, no problem. We were already headed in that

direction, and it was a comfortable user experience space. But rear-

chitect? That’s a completely different story, one that ultimately sets

the stage for our rapid evolution.

Decoupled Architecture Is a Game
Changer

The goal to rearchitect primarily consisted of implementing ser-

vices. So if your world is UI-related, how the heck does a service

fit into that world? It doesn’t. So how do you test it? Roll up your

sleeves and learn to code.

At this point in my career I had mastered managing technology

and enjoyed breaking software. However, I wasn’t a developer by

any stretch of the imagination. As a test manager, I would never

push my team in a direction I wasn’t willing to journey myself. So

I volunteered to learn how to code and implement this new model.

We had been an agile shop since I joined the company, so the

fact that we were going to be using that methodology was comfort-

ing. The new twist was that we were going to use behavior-driven

development, writing our feature files in Cucumber using the Gher-

“AS QA TESTERS, WE AREN’T
TYPICALLY DEVELOPERS,
BUT WE AREN’T SCREEN

JOCKEYS, EITHER. WE ARE
SOMEWHERE IN THE GRAY OF

THE GEEK PROFESSION.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 26

http://techwell.com

The front-end point-and-click is now replaced by automation

code. A test harness is helpful, but if you want repeatability, you

roll up your sleeves and start coding. It takes some getting used to,

but Ruby is a forgiving language and adapting to it doesn’t require

weeks or months in a classroom. Just dive in, mess things up, and

learn hands-on.

Avoiding the Big, Bad Test Set
When we first started this journey, we wanted to test everything.

That’s a lofty goal, but we didn’t lose sight of where we were headed.

In a couple of months we had more than five thousand tests run-

ning. If we didn’t structure our folders and test hierarchy careful-

ly, it would have been unmanageable. Refactoring, changes in ap-

proach, and even deleting things at times were a perfectly natural

progression.

We reserved ourselves to the organic nature of our test set and

allowed it to keep evolving. Easily understood folder structures and

naming conventions went a long way toward keeping our sanity

when the test sets bulked up. We tried very hard to keep it clean and

simple so chaos didn’t reign.

Long Live Continuous Integration
With all this automation goodness going on, it would be a down-

right shame to not automate the execution of the full test lifecycle.

In our case we are using RhodeCode as the code manager and Mer-

curial as the code repository, but these can easily be substituted with

other tools if desired. Jenkins comes into play as the orchestrator of

the code builds and test execution. Currently, our full automation

kicks off every time our QA environment is built with new code. We

control the environment builds as well, so we basically have free

reign with the automated execution. This allows us to run the test

suite at will or in a scheduled fashion. With Jenkins, all I have to

do is click four times and the environment builds and automation

executes. It couldn’t be simpler.

Fast Forward to the Present
Looking back on the past year, I am amazed at what we were

able to achieve in such a short period of time. Our previous testing

environment was mostly a manual test shop with an automation

suite that only specialists could manage. Our new way of work-

ing embraces a new test framework, decoupled architecture, and

employs full automation coverage with continuous integration—

all with a small team of QA engineers. Our headless tests number

around nine thousand and run to completion in approximately two

hours. It’s magical and exciting, and I sleep better at night knowing

that my coverage is just shy of 100 percent.

So open yourself up to the experience of alternate testing mod-

els. You may find yourself bewitched and experiencing a whole new

level of QA enlightenment.

sherri.sobanski@lego.com

The purpose of this syntax is to start with a readable frame and

then turn the text into an automated test. Each line is then broken

down into steps and methods that can be used to create the nec-

essary automation. Before coding takes place, this general feature

keeps you grounded and gives you lifelines back to the intended

purpose. It describes tasks bit by bit rather than creating an over-

whelming landslide of functionality.

I’ve found that an important benefit of this approach is reus-

ability. Let’s take the line “And I have a purple discount card.” That

one line can be used in any test where a discount card is relevant.

And if you architect it correctly, this also applies to the code behind

it and to the validation of results. I architected full tests that could

be completely reused without writing a line of code. By leveraging

existing puzzle pieces and architecting the relevant test for my own

purposes, we have reused our test suite more than a hundred times.

That is just so beautiful it brings tears to my eyes.

So, where’s the code? That purple discount card step will link

you to your programming steps and, subsequently, to your Ruby

method. Ruby is the backbone for this entire model, but Java or

others could be used if desired. Cucumber is a Ruby gem, which,

in laymen’s terms, is a plug-in that allows Ruby to tap into that en-

hanced functionality. Ruby is known for its simplicity and ease of

use, which, applied to QA, is just magnificent because we aren’t

building applications, we are testing them.

Testing with a Blindfold On
If you’re a UI tester, testing services is very similar to testing

with a blindfold on. There is no UI, so you are going to have to

communicate differently with the system, which causes mild panic

until you accept that your shiny front-end application is no more.

With that enlightenment comes the realization that all the UI rules

to which you were once bound no longer apply. That means I can

break things piece by piece and in all kinds of crazy ways, sort of like

a hacker would. Big fun!

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 27

mailto:sherri.sobanski@lego.com
http://techwell.com

SQE TRAINING
A T E C H W E L L C O M P A N YSQETRAINING.COM/TRAININGWEEK

O N S O F T W A R E T E S T I N G T R A I N I N G W E E K S

BUNDLE AND SAVE

2017 Software Testing Training Weeks

Atlanta, GA February 27-March 3, 2017

San Diego, CA March 6-10, 2017

Boston, MA April 3–7, 2017

Chicago, IL June 12–16, 2017

When you attend a Software Testing
Training Week, you can choose
from up to 10 specialized courses
developed by some of the industry’s
most respected and knowledgeable
testing/QA professionals.

We’ve bundled some of our most popular courses to give
you special pricing on the training you need. Choose one
of our course bundle packages and save 10% off the cost
of single courses. Or, create your own custom schedule
and save 10% when you register for two or more courses.

Software Testing Foundations Bundle
Software Tester Certification—Foundation Level + Mastering Test Design

ISTQB Certification Bundle
Software Tester Certification—Foundation Level + Agile Tester Certification

ICAgile Agile and DevOps Certification Bundle
Fundamentals of Agile Certification—ICAgile + Fundamentals of DevOps Certification—ICAgile

Agile Testing Foundations Bundle
Fundamentals of Agile Certification—ICAgile + Agile Tester Certification

Agile Testing and Automation Bundle
Agile Test Automation—ICAgile + Agile Tester Certification

New Course Bundles

New Super Early Bird Pricing
Save up to $250 on our standard pricing
when you register 8 weeks before any
Software Testing Training Week with our
Super Early Bird pricing.

SEE ALL
10 COURSES

and
LEARN MORE AT

SQETRAINING.COM/
TRAININGWEEK

https://well.tc/woq5

Testing as a Development
Catalyst: Accelerate

Project Delivery

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 29

by
Justin

Rohrman

http://techwell.com

Historically, the programmer owned the only technical role on

a software team. These people often took the role of a one-person

band: programmer, tester, and product person.

As the software development industry matured, software test-

ing became a specialty role, performed independent of program-

ming. This tide change led to people studying testing as a complete-

ly separate activity and role from programming. This eventually

resulted in the creation of independent test groups. Today, I see

these independent programming and testing roles slowly shift-

ing back together, much like tectonic plates. Regardless, the goal

of providing better testing service

hasn’t changed.

A catalyst, someone that can

help developers make better soft-

ware faster, can come from any

number of unlikely sources. Mak-

ing testing a development catalyst

can be simple, and most people

know how to do that, at least intu-

itively. Learn to work together, and

become technical enough so we can

participate in every part of the de-

velopment process.

Let’s examine why teams that are optimized for radical collab-

oration and technical work are able to build great software at a

sustainable pace.

The Importance of Collaborative Work
Collaboration has always been a cornerstone of successful soft-

ware development. But achieving a collaborative culture is more

complicated than we like to imagine. The agile literature claims

that putting groups of technical people together at a table works

like some sort of magic pill. The truth is—if either of these things

worked as well and as often as we like to think, software would be

delivered with high quality every day.

Collaboration on projects fails in at least one of three ways.

Objections by management: Several jobs ago, I was working

for a company making a software product designed to help compa-

nies price commodity items. Our project was running late, with en-

tirely too much work left to complete. I wanted cursory testing to

be performed before code was committed to our code repository.

Because builds took a couple of hours, this approach should save

time. A development manager saw what we were doing, shooed

me off, and had a not-so-pleasant conversation with the test man-

ager. “How can we get these bugs fixed if testers are always inter-

rupting our programmers?” As a result, I was banished to the test-

ing cubicles. This was followed by a “do not disturb” policy email

sent to our programmers. Ugh.

That manager was rejecting two teammates who wanted to

work together in the name of productivity. He was completely ig-

noring the time sucked up by builds (that ultimately will fail) and a

more effective find-fix-retest cycle.

Personality differences: Another company had a manager

who acted mostly in a facilitation role. He was happy to let the

programmers work and interact however they wanted as long as

the product was getting delivered on time and the customer was

happy. Developers occupied space in the back corner of the office.

The lights were low, the blinds were closed, and it was very quiet.

People were working separately on their own computers in their

own cubicles.

This office arrangement tended to suggest a “leave me alone”

and “I don’t have time to help you” culture. For highly reactive

[1] or introverted people, being in

a noisy room around other people

is often uncomfortable and a drain

on productivity. It was rare to find

programmers working together on

code, even if a programmer were

stumped for several days.

Questionable effectiveness: A

year ago, a client proclaimed that

their teams regularly do mobbing, a

development strategy where a team

of people work on the same pro-

gramming problem one at a time.

I had read about mobbing but had never actually witnessed it. I

was super excited to see it in practice. Instead, what I witnessed

was a group of people sitting around one monitor. One person was

working on code, one person was watching over her shoulder, a

few people off to the right were having a separate conversation,

and one uninterested person in the back was playing on his phone.

My observations could have been related to the Hawthorne ef-

fect, where people change their behavior if they are being watched.

[2] Regardless, the mobbing I observed seemed suboptimal. Was

the resultant code a byproduct of the mob, or was it due to the most

extroverted person winning arguments in a group setting?

The stories I hear about successful pairing and radical collab-

oration—where two or more people work on a software problem

continuously until it is delivered to production—come from places

where that is built into the culture. For example, interviewing can-

didates for a job can be effectively performed in pairs. This allows

the hiring company not only to assess a skill and culture match but

also to show a candidate’s ability to facilitate work and exchange

power back and forth. Whenever code changes are made, it is also

done in pairs. There is no intermittent collaboration, getting to-

gether randomly to solve a specific problem. That is just how the

work is done, and to do otherwise is unthinkable.

Despite difficulties with team collaboration, groups built on

radical collaboration, like constant pairing, can be wildly success-

ful. Something special can happen. Typical low-hanging fruit for

testers, such as boundary conditions and layout issues, disappears.

These types of bugs can be discovered in code while a test expert

and a programmer work closely together. These groups inevitably

need fewer, but more skilled, testers in that dedicated role.

“Collaboration has always
been a cornerstone of
successful software

development.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 30

http://techwell.com

The Role of the Technical Testing Expert
The role of an independent tester is like a net below a cir-

cus trapeze. Ideally, anything big that falls should automatically

bounce back up. A technical tester working closely with developers

is more like the harness that keeps the trapeze artist from hitting

the net. This role has four key characteristics, all of which offer

great benefits to the software development process.

Working alongside developers: Technical testing is a spec-

trum. It starts with basic skills, such as opening developer tools in

a web browser, and ends with the ability to read and write code.

My best experiences doing technical testing work involved build-

ing test automation in parallel with a developer writing a new fea-

ture. We didn’t have any product management at that company, so

discovering requirements was an exploratory process by the team.

The developer and I sat next to each other. As he wrote code ini-

tially creating APIs, I asked questions and stubbed out tests using a

JavaScript framework called Frisby. Throughout this collaborative

process, we discovered missing data, incorrect data types, authen-

tication problems, and unusable workflows. A nontechnical tester

might have to wait until the feature was nearly complete and a UI

was in place to access those parts of the code.

Code was changed, tested, and packaged days before a front

end was even available.

Rather than working in a function mostly independent from

the developers, technical testers act as technical contributors with

developers. Whenever a new code change is being made, the tester

is either making the change or acting as an adviser, questioning

how the product will be used.

Coaching: Most of the code quality tools available (unit testing,

behavior-driven development, test-driven development, and so

on) help developers confirm their own assumptions by performing

very narrow and simple checks. The technical tester-as-coach role

can help drive overall product quality rather than a focus spent on

typical testing tasks.

The coaching role could teach testing skills to developers. For

example, this person might visit a development team and run

through a game with testing themes. At the end of the game, the

tester would debrief and point out the testing skills that were used,

such as note-taking, experiment design, and observation. These

lessons at least seed the idea that there is more to testing and writ-

ing code than confirming what you already know.

Everyone on a technical team tests software to some degree;

this testing coach can help developers become aware of that activ-

ity and focus on developing that skill.

Continuous integration, continuous delivery, and monitor-
ing: This is outside the boundaries of what most people think of as

the role of a tester. Continuous integration, continuous delivery,

and monitoring are tools for reducing project risk and lowering

defect exposure.

A trend I see these days is when a company wants automation

yet stumbles on making it useful.

Several years ago, I was working on a UI automation frame-

work built using Watir. We had a small piece of framework, just

big enough to provide the DSL to build a couple of tests. Developers

responsible for the build process had other higher priority work

than getting these new tests running after each new build. As the

framework grew, the number and complexity of tests grew along

with it. Eventually we had an unwieldy beast, and no one wanted

to spend the time getting it in the build system or dealing with the

pain of discovering everything we would have to change to make

it useful and relevant.

When I do this sort of work now, I build enough framework to

get one test running. Then I work with developers to get the ap-

propriate packages running in Jenkins so that tests can run with

every build.

Automation that isn’t hooked up to the build is often forgot-

ten or not acknowledged by the development team as something

useful. Ideally, your build system is encouraging programmers to

make smaller changes that can be released more often.

Mastering one skill: Any time spent focused on learning to

write code is time not dedicated to testing. Most technical testing

experts I work with spend significant time becoming skilled in one

area, like programming, and later take on a second skill. This is like

growing up in one country, and then moving to another and learn-

ing a new language. Maybe you never master the new language,

but you become proficient, and that should be enough.

The One–Two Punch: Collaboration and
Technical Skills

There is a circular relationship between collaboration and

technical skill for software testers. A tester who successfully col-

laborates with developers will probably learn the technical skills

needed to enable deeper testing and faster product releases. A tes-

ter who has technical skills to read code, inspect a DOM, search

through a database, and write code will probably have an easier

time contributing to the product development process. Technically

proficient testers usually have an active role in releasing software

more frequently.

For testers, collaborative work and technical skill aren’t is-

lands. One must be there for the other to thrive.

Testers who once were on independent teams are now com-

monly embedded in a development team. Strategies that worked

then are now a liability. Blending collaborative and technical skills

is the key for testers to become a development catalyst in these

new teams.

rohrmanj@gmail.com

REFERENCESCLICK FOR THIS STORY'S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 31

mailto:rohrmanj@gmail.com
http://www.stickyminds.com/sticky-note/references-216
http://techwell.com

Why Your Software Team Shouldn’t Aim
for a Five-Star App Rating
By Jason Arbon

I hope your app doesn’t have five stars.
I’m not being rude. It’s just that when your app has five stars, there

is nowhere to go but down. Star ratings are important, but many teams
are so focused on that metric that it is killing their apps and hurting
their business. Having a five-star rating stops innovation, puts teams
under pressure, and can even get you fired.

It is an open secret that the best apps from the best companies don’t
have five stars. Facebook is doing just fine these days, spending mil-
lions of dollars each year on testing, and their app hovers around four
stars on the Google Play Store. Google Search, Google Maps, and Snap-
chat also have four stars.
https://well.tc/w422

The Art of People Facilitation: Servant
Leadership and Team Dynamics
By Robert Woods

Servant leadership has become a popular term in modern business.
Many managers claim to understand what that means, preaching open-
door policies and the “I’m just here to help you out” philosophy. But
when the rubber meets the road, they simply lack the skill set to carry
through on the concept.

Perhaps it’s generational. I was describing my job to my seventy-two-
year-old father, who had been an ERP implementation manager for twen-
ty years, and we talked about the concept of servant leadership. His gut
response was a grunting, “I don’t like that term, servant.”
https://well.tc/w42s

Test Automation and When Enough Is
Enough
By Josiah Renaudin

There are seemingly endless reasons why your test team might
need to make use of automation. Whether you’re working with a web
or mobile app that’s expected to bring in thousands of users simultane-
ously, your application contains code that’s changing frequently, or you
just have piles of tests that need to be run, automation can be invalu-
able to your success.

However, even if we’re at a point where most people agree you
need some sort of test automation to compete in today’s rapid, agile
landscape, using automation indiscriminately will lead to way more
headaches than benefits.

https://well.tc/w42e

Changing the Narrative: Using
Storytelling in Software Testing
By Isabel Evans

Stories are so powerful. They change our worlds, they change how
we think, and they change how we perceive our surroundings. Even
testers can use stories in several ways.

There are monsters that snarl at meetings and threaten terrible
consequences. There are magic tokens that will solve all our problems.
There are impossible tasks to achieve, with fairy-gold rewards that fol-
low. We tell ourselves stories, then watch our narratives come true.
https://well.tc/w42m

Reviving the Master Test Plan in the Age
of Agile
By Michael Sowers

Retro is back: Vinyl is in, and clothing styles are a throwback to
decades-old flares, fringe, and suede. Of course, Jimmy Buffett seems to
have spanned generations, but I digress!

One of the more retro—or, in this case, I prefer “traditional”—soft-
ware development and testing approaches is the master test plan. The
idea is that there is an overarching plan describing all the testing activ-
ities for a project or product, with subplans focused on specific testing
activities such as integration, system, and acceptance testing, called
detailed test plans.
https://well.tc/w42n

Pushing System Performance with Stress
Testing
By Dale Perry

In performance testing, you hear people talking about “stress test-
ing” the system to make sure it performs correctly. The challenge comes
when you ask them what exactly they mean by “stressing” the system.
In performance testing, the term “stress” can have several possible
meanings and can represent several different types of stress.

In a typical performance test using an operational profile to place
load on the system, the focus is on identifying resources that begin to
reach their maximum usable capacity within the system at varying
load levels (volume). In load testing, if you were running an average
load test and memory utilization began to approach 75 percent to 80
percent, memory is now under “stress,” as it is becoming a bottleneck
on the system. Increasing load on the system will push this resource
beyond acceptable stress limits.
https://well.tc/w42h

Featuring fresh news and insightful stories about topics important to you, TechWell.com is the place to go for what is
happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday
to keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and
more. The following is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

T E C H W E L L I N S I G H T S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 32

https://well.tc/w422
https://well.tc/w42s
https://well.tc/w42m
https://well.tc/w42n
https://well.tc/w42h
http://techwell.com
http://techwell.com
http://techwell.com

What Is Continuous Delivery Doing to
Software Testing?
By Justin Rohrman

Most of the conversations I’ve heard about testing over the past few
years are related to its death. (Or supposed death.) Some people go as
far as saying that having a tester role is an antipattern for software de-
velopment—something that points to organizational dysfunction.

Software teams using continuous delivery focus on building soft-
ware in small pieces so that new code can be pushed to production mul-
tiple times a day instead of on a sprint cadence. There is also an explicit
focus on code quality before production and on monitoring afterward.

So, what is this doing to testing?
https://well.tc/w428

When It’s OK to Ignore Company Policy
By Lee Copeland

A few days ago, my wife got a new debit card from Wells Fargo,
the kind with the chip in it for better security. When she used it at the
grocery store, it was declined. Embarrassed, she came home and told
me the story. I told her I would call the bank and find out what had
happened.

When I called customer service, I pointed out that there was plenty
of money in the account, my wife had activated the card properly, the
account had been active for thirty-eight years, and I was joint owner
of the account. But when I asked what the problem was, the customer
service representative would not discuss it with me because although
it was my account, it was not my card. She cited “policy” as the reason.
I asked to speak with her supervisor, who parroted the same answer. It
was “policy.” They could only speak with the cardholder.
https://well.tc/w42u

The Importance of a Dynamic and Open
Culture in the Workplace
By Rajini Padmanaban

A culture that is carefully built and nurtured in an organization
is key to its long term success. While every organization has its own
culture and there is no right or wrong answer to which culture should
be fostered, a culture that is open and dynamic goes a long way in con-
necting with employees and fostering a rapport with them.

The product that the organization works on and the service it pro-
vides take a backseat when an organization’s culture is under consid-
eration, as a strong culture can do wonders in terms of reviving a sick
unit, a strategy that is going south, or a weak positioning against the
competition. A positive culture can bring in clear thinking, a long term
view, innovation, and an empathy for each other—all of which can
push the organization forward. An open culture is one that even large
organizations strive to achieve in order to grow. Google touts an open
culture and attributes the company’s success to its culture.
https://well.tc/w42a

Why Process Standardization Is a Terrible
Idea
By Johanna Rothman

One of my colleagues wants to standardize all his agile teams on one
process. He happens to like iterations, so he wants everyone to use two-
week iterations. He wants them to use Scrum rituals and ceremonies.

I understand what he wants to accomplish: gaining the ability to
look across the projects and see the same metrics, when teams are
stuck, and progress across the organization. That makes sense.

But the teams do not work on similar projects. Some projects have
interrupting work in addition to their project work. Some teams ar-
en’t cross-functional, so they can’t deliver features on their own. Some
teams are geographically distributed, so the Scrum ceremonies and rit-
uals don’t work because the team members are in too many time zones.
https://well.tc/w427

The Myths behind Brainstorming, Open
Office Plans, and Collaboration
By Linda Hayes

More and more companies are moving to some version of open of-
fices or pod configurations in the hopes of inspiring collaboration and
improving productivity. But does it work?

If you ask the vendors who sell these new seats, of course they say
yes. There are also anecdotal stories from companies that extol the cost
savings and the odd inspiration or connections that arise from mixing
employee seating up.

But if you ask the scientists who actually conduct objective, rigor-
ous studies, the answer tends to be no. In fact, reducing privacy and
increasing proximity is shown to decrease productivity, and it can even
harm employee health.
https://well.tc/w42b

Make It Easy for Your Customers to
Provide Feedback
By Naomi Karten

Soliciting customer satisfaction feedback can be a heart-pounding
experience. Once you know your customers’ feedback, you have to ei-
ther act on it or deliberately ignore it. So maybe it’s not surprising that
the way some organizations request feedback ensures they don’t get
much of it. This seemed to be the case at some of the hotels I stayed at
during a recent trip.

Two weeks after staying at the first hotel, I received an emailed
request for feedback and a link to the web-based feedback form. But by
this time, I’d been to several other hotels and this one was at best a blur.
Timing matters in soliciting feedback. If you really want that feedback,
ask for it soon enough after the delivery of the service that customers
can still remember it.
https://well.tc/w426

T E C H W E L L I N S I G H T S

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 33

https://well.tc/w428
https://well.tc/w42u
https://well.tc/w42a
https://well.tc/w427
https://well.tc/w42b
https://well.tc/w426
http://techwell.com

THE LAST WORD

Think of the most difficult team you have ever worked with—a

team that was hands down the absolute worst. Think of what made

them the worst team ever … and remember that you were part of

that team.

Now think of the best team you have ever worked with—the

A team. They were the team that consistently got things done and

never failed to deliver, no matter how difficult things got. This was

the team that could spin gold miraculously out of nothing. Think

of what made them the best team ever … and remember that you

were part of that team, too.

What are the differences between these two teams? There are

the usual suspects: communication, team processes, use of proper

tools to perform the work, weak links or

superstars, and so on.

It all comes down to this: What makes

a good team good and a bad team bad?
When you get a taste of working with

the best team, a few things happen. First,

you recognize how good things are, and

you do your best to make it last as long

as you possibly can. Second, you get as

many people as you can to be committed

and involved in the work. Last, you look

for ways to recreate with other teams

what you experienced with this team. We

should strive to take success with us ev-

erywhere we go.

So, what makes a good team good? In my experience, it is ser-
vant leadership.

Servant leadership has its origins in many different manu-

scripts and texts in the ancient world. To be a servant leader means

to lead others by example of serving them and caring for their

needs before your own. This general philosophy integrates well

into any software development or testing team—and integrates es-

pecially well with teams using agile practices.

When you witness servant leadership being executed by an en-

tire team of people, it might appear to be too good to be true. You

and your team will wonder how the team is getting so much done,

so accurately to what the customer wants, and so quickly. Achiev-

ing team flow through servant leadership can be addicting.

The best team I have ever worked with was agile at its best.

This software development and testing team was charged to cre-

ate for their client a unique piece of software to develop specific

healthy living plans tailored to each of their customers. The team

consisted of a project manager, a business analyst, developers, and

testers. The developers were collocated, and everyone else was

geographically distributed.

We started the project with only abstract ideas, and it felt like

the Wild West. We had an idea of the tools we wanted to use and

processes we wanted to implement, but we adjusted along the

way and went to production with code at

the end of each two-week sprint. A dai-

ly standup with all members provided a

forum to bring up issues or bring in new

requirements, which would inevitably

redirect our sprint focus. At times when

high-priority items came to our attention,

the team was able to drop something off

the sprint and deliver the priority items

to production within the sprint.

This is how I learned about the power

of servant leadership. Every single team

member was focused on the health of the

overall team. Everyone was always look-

ing for ways to help other team members.

Based on projects I worked on, I have come up with four examples

of servant leadership.

Example 1: We’re Going to Need a Bigger
Boat

Testing tasks are split 50/50 between two testing resources for

a sprint. One of the testers figures out that he can’t complete his

work. His boat is too small. He brings this to the team’s attention at

the daily standup. Several team members indicate that they have

excess capacity to assist with the particular testing needs. In agile,

full transparency is expected, and it pays to be honest without fear

Achieving Success through
Servant Leadership
THERE ARE MANY DIFFERENT STYLES OF TEAM LEADERSHIP THAT CAN MAKE OR BREAK THE
SUCCESS OF A PROJECT. FOR AGILE TO WORK, CONSIDER ADOPTING SERVANT LEADERSHIP.
by Joshua Dawson | jdawson@3riverstech.com

“Servant leadership
has its origins in many
different manuscripts and
texts in the ancient world.
To be a servant leader
means to lead others by
example of serving them
and caring for their needs
before your own.”

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 34

mailto:jdawson@3riverstech.com
http://techwell.com

of being judged.

This gives the tester the idea of using another team member to

help execute the testing. When the idea is presented to the team

and another resource can assist with testing, the tester’s boat gets

bigger. The original scope agreed upon for the sprint can be tested,

and the expected functionality can be delivered to the client.

Example 2: Dealing with the Busywork
Paradox

Every member on our team acted as a servant leader by be-

ing honest about estimating his work and actual workload. When

a teammate completed work, he asked the team where help was

needed. In the rare case that help was not needed in the current

sprint, a team member could focus on preparing work for the next

sprint. Because each member was serving the team as a whole, his

honesty and transparency resulted in an extremely efficient team.

Alternatively, open hostility or individual members suffering from

busywork can quickly put the kibosh on servant leadership.

Example 3: I See Smoke
Smoke coming out of the hood of a car is invariably a bad

sign, signaling that something is wrong. In software development,

it is usually the practice of testing a small subset of functionality

delivered to an environment to ensure system stability at imple-

mentation. This is called smoke testing. As a team, we spent any-

where from fifteen minutes to an hour smoke testing production

each time we went live with code. Even if only one or two people

did the testing for the sprint, everyone on this team pitched in to

smoke test, all while simultaneously coordinating efforts on a web

meeting. Smoke testing significantly reduced quality issues, and

all it took was each team member’s willingness to spend a couple

of minutes testing verification points. In addition, focused smoke

tests reduced the need for large, biweekly testing tasks.

Example 4: Stop, Drop, and Roll
How many times have you worked with a team that is completely

fine with dropping everything and working on something complete-

ly different that the client believes is more important? Disruptions

like this can be jarring and a little disorienting. In one case, the client

came to us with an immediate need based on something that was

causing the client’s customers to be incorrectly scheduled in their

current production system due to a previously unknown require-

ment.

As a development team, we were able to deliver fully tested code

that fixed this in less than a week. Although the team had to change

course, they maintained an extremely positive and supportive team

demeanor. This represents servant leadership in action.

Servant leadership may seem old and out of style, but there is a

reason it is still around. Servant leadership brings teams together

in a helpful environment where members will not feel judged. It

seeks to build up everyone’s confidence. It seeks to help everyone,

including those falling behind.

By placing client and coworker needs above your own, you will

want to bring servant leadership to every team you join.

I N D E X T O A D V E R T I S E R S

Better Software (ISSN: 1553-1929) is
published four times per year: January,
April, July, and October. Entire contents
© 2017 by TechWell Corporation 350
Corporate Way, Suite 400, unless
otherwise noted on specific articles. The
opinions expressed within the articles
and contents herein do not necessarily
express those of the publisher (TechWell
Corporation). All rights reserved.
No material in this publication may
be reproduced in any form without
permission. Reprints of individual articles
available. Call 904.278.0524 for details.

DISPLAY ADVERTISING
advertisingsales@techwell.com

ALL OTHER INQUIRIES
info@bettersoftware.com

Agile Dev, Better Software & DevOps West	 https://bscwest.techwell.com	 11

Delphix	 https://www.delphix.com	 13

Microfocus	 https://www.microfocus.com/performance	 4

Mobile Dev + Test and IoT Dev + Test	 https://mobile-iot-devtest.techwell.com	 18

SQE Training—On-Site Training	 https://sqetraining.com/on-site	 36

SQE Training—2017 Software Testing Training Weeks	 https://sqetraining.com/trainingweek	 28

STAREAST	 https://stareast.techwell.com/program/keynotes	 2

Turnkey	 http://turnkeysolutions.com/free-assessment	 23

TCS	 https://goo.gl/GmUBcZ	 24

THE LAST WORD

B E T T E R S O F T W A R E T e c h W e l l . c o m 	 35

mailto:advertisingsales@techwell.com
mailto:info@bettersoftware.com
https://bscwest.techwell.com
https://www.delphix.com
https://www.microfocus.com/performance
https://mobile-iot-devtest.techwell.com
sqetraining.com/on-site
sqetraining.com/trainingweek
https://stareast.techwell.com/program/keynotes
http://turnkeysolutions.com/free-assessment
https://goo.gl/GmUBcZ
http://techwell.com

For more than twenty-five years, TechWell

has helped thousands of organizations

reach their goal of producing high-value

and high-quality software. As part of

TechWell’s top-ranked lineup of expert

resources for software professionals, SQE

Training’s On-Site training offers your team

the kind of change that can only come

from working one-on-one with a seasoned

expert. We are the industry’s best resource

to help organizations meet their software

testing, development, management, and

requirements training needs.

With On-Site training, we handle it all—

bringing the instructor and the course to

you. Delivering one of our 60+ courses

at your location allows you to tailor the

experience to the specific needs of your

organization and expand the number of

people that can be trained. You and your

team can focus on the most relevant

material, discuss proprietary issues with

complete confidentiality, and ensure

everyone is on the same page when

implementing new practices and processes.

9
REQUIREMENTS
COURSES

40
TESTING
COURSES

7
MANAGEMENT
COURSES

4
DEVELOPMENT
AND TESTING
TOOLS COURSES

17
AGILE
COURSES

2
SECURITY
COURSES

BRING THE TRAINING TO YOU
Software Tester Certification—Foundation Level

Mastering Test Design

Agile Tester Certification

Agile Test Automation—ICAgile

Integrating Test with a DevOps Approach

Mobile Application Testing

And More!

SQETRAINING.COM/ON-SITE

TRAIN YOUR
TEAM ON

YOUR TURF

6 0 + O N - S I T E C O U R S E S

IF YOU HAVE 6 OR MORE TO TRAIN , CONSIDER ON-S ITE TRAINING

https://well.tc/woqq

