
 AUTOMATE YOUR
UNIT TESTS

To be truly agile, unit tests
need to run unattended

WHY DO DEFECTS ESCAPE?

 Explore the true cost of
bugs found too late

March/April 2014 www.TechWell.com

http://www.TechWell.com

2 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

http://www.TechWell.com
http://starcanada.techwell.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 3

http://www.TechWell.com
http://sqetraining.com/certification

http://www.ranorex.com/why

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 3

18

18 YOU CAN'T BE AGILE WITHOUT AUTOMATED UNIT
TESTING
Agile projects assume that test planning, test creation, and test execution take
place throughout a project's lifecycle. So the need for unit testing (and espe-
cially automated unit testing) can't be ignored and should be considered as a
key responsibility of the entire team—not just the software developers.
by Gil Zilberfeld

WHY DO DEFECTS ESCAPE?
What happens when defects go unnoticed until it is too late? Mayank provides
an insightful view of the true cost of not providing enough test coverage dur-
ing a software development lifecycle. He also suggests some techniques to
ensure that defects are identified and mitigated early.
by Mayank Sharma

22

26

CONTENTS

Volume 16, Issue 2 • MARCH/APRIL 2014

features
COVER STORY
DO MOBILE AND EMBEDDED SOFTWARE REALLY
NEED COMPREHENSIVE TESTING?
The smaller the device, the less testing is needed. Right? Jon's insightful article
dispels the notion that traditional software testing approaches work for mobile
and embedded software.
by Jon Hagar

14

32 THE LAST WORD
THE RULES FOR WRITING MAINTAINABLE CODE
by Kaushal Amin
We've all been burned working with software code that, if not designed for
long-term maintainability, results in expensive support over a product's life-
time. Kaushal explores three approaches that provide guidelines to ensure that
software is designed with maintainability in mind.
If you're a software developer, read this!

Better Software magazine brings you the
hands-on, knowledge-building information

you need to run smarter projects and deliver
better products that win in the marketplace

and positively affect the bottom line.
Subscribe today at BetterSoftware.com or

call 904.278.0524.

14

Mark Your Calendar

Editor's Note

Contributors

Interview with an
Expert

TechWell Spotlight

Product
Announcements

FAQ

Ad Index

in every issue
4
5
6

11
17

29
31
33

columns
7 TECHNICALLY SPEAKING

HOW DEVOPS DRIVES THE AGILE ALM
by Bob Aiello and Leslie Sachs
One of the most effective approaches to DevOps involves moving the automa-
tion of the application build, package, and deployment upstream to the begin-
ning stages of the software development lifecycle—an industry best practice
long before DevOps became as popular as it is today.

A REAL SPRINT IN THE LIFE OF A SCRUMMASTER
You read so many books and articles that present how perfectly a Scrum
project goes; yet in practice, that is rarely the case. Natalie shares ten lessons
that she learned the hard way when she started out as a ScrumMaster. Special
attention is given to ways you can avoid those same mistakes.
by Natalie Warnert

26

http://www.TechWell.com
http://www.BetterSoftware.com

4 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

software tester
certification Publisher

Software Quality Engineering Inc.

President/CEO
Wayne Middleton

Director of Publishing
Heather Shanholtzer

Editorial

Better Software Editor
Ken Whitaker

Online Editors
Cameron Philipp-Edmonds

Beth Romanik
Jonathan Vanian

Production Coordinator
Donna Handforth

Design

Creative Director
Catherine J. Clinger

Advertising

Sales Consultants
Daryll Paiva

Kim Trott

Sales Coordinator
Minda Crosby

Marketing

Marketing Manager
Jonathan Greene

CONTACT US
Editors: editors@bettersoftware.com

Subscriber Services:
info@bettersoftware.com

Phone: 904.278.0524, 888.268.8770

Fax: 904.278.4380

Address:
Better Software magazine
Software Quality Engineering, Inc.
340 Corporate Way, Suite 300
Orange Park, FL 32073

MARK YOUR CALENDAR

STARCANADA
http://starcanada.techwell.com
April 5–9, 2014
Toronto, ON
Hilton Toronto

STAREAST
http://stareast.techwell.com
May 4–9, 2014
Orlando, FL
Rosen Centre Hotel

Agile Development Conference West
http://adcwest.techwell.com
June 1–6, 2014
Las Vegas, NV
Caesars Palace

Better Software Conference West
http://bscwest.techwell.com
June 1–6, 2014
Las Vegas, NV
Caesars Palace

STARWEST
http://starwest.techwell.com
October 12–17, 2014
Anaheim, CA
Disneyland Hotel

Agile Development Conference East
http://adceast.techwell.com
November 9–14, 2014
Orlando, FL
Walt Disney World Dolphin

Better Software Conference East
http://bsceast.techwell.com
November 9–14, 2014
Orlando, FL
Walt Disney World Dolphin

conferences

training weeks
http://sqetraining.com/trainingweek

Testing Training Week
March 24–28, 2014
Boston, MA

May 12–16, 2014
San Diego, CA

June 9–13, 2014
Chicago, IL

Agile Software Development
Training
June 1–3, 2014
Las Vegas, NV

http://sqetraining.com/certification

Foundation Level Certification
March 11–13, 2014
Denver, CO

March 24–28, 2014
Boston, MA

March 25–27, 2014
Los Angeles, CA

April 1–3, 2014
Seattle, WA

April 5–7, 2014
Toronto, ON

April 8–10, 2014
Houston, TX
Nashville, TN

April 29–May 1, 2014
Atlanta, GA

Advanced Tester Certification
April 28–May 2, 2014
Atlanta, GA

http://www.TechWell.com
mailto:editors@bettersoftware.com
mailto:info@bettersoftware.com
http://starcanada.techwell.com
http://stareast.techwell.com
http://adcwest.techwell.com
http://bscwest.techwell.com
http://starwest.techwell.com
http://adceast.techwell.com
http://bsceast.techwell.com
http://sqetraining.com/trainingweek
http://sqetraining.com/certification
http://www.sqetraining.com
http://www.sqe.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 5

Why Quality is such a Big Deal

With the upcoming STAREAST testing conference taking place in Orlando

this May, our focus with this issue of Better Software magazine is on

quality and testing.

Three of the four feature articles focus on quality. With so much emphasis these

days on the adoption of advanced quality assurance techniques and sophisticated

testing tools, we decided to get down to testing basics.

I think you’re going to enjoy Jon Hagar’s discussion of the special testing demands with mobile and embedded

software development. As software solutions become more connected with the latest Internet of Things craze, his

approach for testing small systems is certainly a must-read.

Gil Zilberfeld promotes the importance of adopting automated unit testing and reinforces the fact that quality test-

ing is everyone’s responsibility, not just the job of the QA department.

Mayank Sharma explains how defects escape into deployed production environments and offers suggestions about

how to find defects before your customer does.

Natalie Warnert's entertaining article is about the life and times of a first-time ScrumMaster. For those of you start-

ing out as a ScrumMaster or wanting to become a ScrumMaster, you better read her article on the tough lessons

she learned the first time she managed Scrum projects.

Don’t forget to spread the word to your coworkers about Better Software magazine. Just go to

http://www.stickyminds.com/BetterSoftware to register for a complimentary subscription.

See you at STAREAST.

Ken Whitaker

kwhitaker@sqe.com, Twitter: @Software_Maniac

Editor’s Note

http://www.TechWell.com
http://www.stickyminds.com/BetterSoftware
mailto:kwhitaker@sqe.com

6 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Mayank SharMa is a principal technical expert at the global development center of Landis+Gyr in India. With more than eighteen
years of experience, Mayank has worked as a test professional, process improvement leader, and QA manager in the software
industry. He has authored a number of articles and white papers on software testing, agile practices, and the smart grid technology.
You can reach Mayank at mayank.sharma@landisgyr.com or http://www.linkedin.com/pub/mayank-sharma/1/626/abb.

Jon hagar has been a software tester, thinker, and teacher supporting software product integrity, verification, and validation for
over thirty-five years. Jon works on various standards including ISO, IEEE, and OMG. Jon consults, publishes, teaches, and mentors
regularly and has a published book, Software Test Attacks to Break Mobile and Embedded Devices. Jon can be reached at
embedded@ecentral.com.

BoB aiello is a consultant, technical editor of CMCrossroads, and the author of Configuration Management Best Practices: Practical
Methods that Work in the Real World. Bob has served as the vice chair of the IEEE 828 Standards working group (CM Planning) and
is a member of the IEEE Software and Systems Engineering Standards Committee (S2ESC) management board. Connect with Bob
on LinkedIn or at bob.aiello@ieee.org.

Contributors

gil ZilBerfeld is the product manager at Typemock, working as part of an agile team in an agile company, creating tools for agile
developers. He promotes unit testing and other design practices, down-to-earth agile methods, and cool tools. Gil speaks at local
and international venues about unit testing, TDD, and agile practices and communication. In his spare time he shoots zombies for
fun. Gil blogs at http://www.gilzilberfeld.com on different agile topics, including processes, communication, and unit testing.

natalie Warnert is an agile enthusiast, practitioner, and coach focused on learning through experience and helping others do the
same. In the past couple of years, she has worked on a number of agile and agile-like projects. Throughout her career, Natalie
has played many roles, including developer, business analyst, project manager, and ScrumMaster. She is a Certified ScrumMaster
(CSM), Professional ScrumMaster I (PSM I), and has her Six Sigma Yellow Belt. She enjoys blogging and speaking about Scrum,
agile, and UX. Natalie can be reached on http://www.nataliewarnert.com.

kauShal aMin is chief technology officer for KMS Technology (http://www.kms-technology.com), an offshore product development
and IT services firm based in Atlanta, GA, and Ho Chi Minh City, Vietnam. He was previously VP of technology at LexisNexis and a
software engineer at Intel and IBM. You may reach him at kaushalamin@kms-technology.com.

linda hayeS is a frequent industry speaker and award-winning author on software quality. She has been named as one of Fortune
magazine’s People to Watch. She is a regular columnist and contributor to StickyMinds, Automated Testing Institute and Better
Software magazines, and author of the Automated Testing Handbook and coeditor of Dare to be Excellent with Alka Jarvis. Her
article “Quality is Everyone’s Business” won a Most Significant Contribution award from the Quality Assurance Institute and was
published as part of the Auerbach Systems Development Handbook. Contact Linda at lhayes@worksoft.com.

leSlie SachS is a New York state-certified school psychologist and the COO of Yellow Spider Inc. (http://yellowspiderinc.com).
She is the coauthor of Configuration Management Best Practices: Practical Methods that Work in the Real World
(http://cmbestpractices.com). A firm believer in the uniqueness of every individual, she has recently done advanced train-
ing with Mel Levine's All Kinds of Minds institute. She can be reached at LeslieASachs@gmail.com or link with her
http://www.linkedin.com/in/lesliesachs.

When not working on his theory of time travel, caMeron t. PhiliPP-edMondS is writing for TechWell, StickyMinds, and AgileConnection.
With a background in advertising and marketing, Cameron is partial to the ways that technology can enhance a company's brand
equity. In his personal life, Cameron enjoys long walks on the beach, romantic dinners by candlelight, and playing practical jokes on
his coworkers. He can be reached at cedmonds@sqe.com.

http://www.TechWell.com
mailto:mayank.sharma@landisgyr.com
http://www.linkedin.com/pub/mayank-sharma/1/626/abb
mailto:embedded@ecentral.com
mailto:bob.aiello@ieee.org
http://www.gilzilberfeld.com
http://www.nataliewarnert.com
http://www.kms-technology.com
mailto:kaushalamin@kms-technology.com
mailto:lhayes@worksoft.com
http://yellowspiderinc.com
http://cmbestpractices.com
mailto:LeslieASachs@gmail.com
http://www.linkedin.com/in/lesliesachs
mailto:cedmonds@sqe.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 7

nation of hundreds (or even thousands) of tasks, each with its
own set of dependencies that are rarely completely understood
up front. Helping the entire team understand what needs to be
done is what application lifecycle management (ALM) is all
about. With many organizations embracing the enhanced pro-
ductivity and quality that comes from employing agile principles,
the agile ALM is becoming an essential software methodology.

It turns out that agile ALM benefits
greatly from the very same principles
behind the DevOps revolution.

Enhancing collaboration between
development and operations works
because each group brings a set of
complementary skills to the table
that, when integrated, enhances
both productivity and quality. De-
velopers know the technology they
have been creating better than
anyone else. They should; most de-
velopers have months to get up to
speed and focus on changing tech-
nologies and software development
frameworks. Developers often get to

choose which technologies to use in creating systems and then
focus on building their expertise on a daily basis. Operations
professionals need this information in order to be successful.
The operations team understands what happens when a critical
system is unavailable for any period time. One of the most ef-
fective approaches to DevOps involves moving the automation
of the application build, package, and deployment upstream to
the beginning stages of the software development lifecycle—an
industry best practice long before DevOps became as popular
as it is today. [1]

True DevOps groups involve development and operations
teams working collaboratively to automate the complete applica-
tion build, package, and deployment process, creating what is be-
coming known as “the deployment pipeline.” This practice enables
the team to best support iterative development by emphasizing the
synergy between development and operations. The rise of DevOps
demonstrates the powerful synergy that can be achieved with close
collaboration between development and operations.

DevOps is getting a lot of attention these days as the ben-
efits of improving communication and collaboration be-
tween development and operations is becoming readily
apparent. The need for DevOps is especially obvious in
the wake of software and systems glitches that have im-
pacted major financial services, including large banks,
trading firms, and the trading exchanges themselves. The
healthcare.gov website is the latest
high-profile software system that
failed to meet its goals, due in part
to problems related to software and
systems reliability. These problems
lead us to wonder if the technology
industry is really capable of creating
reliable enterprise software.
Software developers, by and large,
are very smart and highly skilled
technology professionals. Equally
skilled are the operations experts
who establish the IT controls nec-
essary to ensure that large-scale
systems are available continuously,
scaling them to meet the capacity de-
mands required during peak usage. Both development and op-
erations teams bring much expertise to the table, but they have
fundamentally different perspectives. Developers are expected
to write code that implements new features, while operations
is charged with seeing that systems maintain a high degree of
reliability even under heavy system load. In addition, there are
actually many other key stakeholders, without whom we could
never create robust enterprise-wide software systems.

Technology organizations consist of a wide array of pro-
fessionals, from business analysts to QA and testing profes-
sionals, each of whom is essential to the successful develop-
ment of complex software systems. Coordinating their work
is no easy task, and most organizations employ a number of
full-time project managers who track and report on the work
being accomplished by each member of the team. But man-
aging the development of large-scale software systems involves
a lot more than just creating Gantt charts and resource reports.

Developing large-scale software systems requires the coordi-

How DevOps Drives
the Agile ALM
With some of the recent enterprise software rollout disasters, it is time to

get back to basics with utilizing DevOps with your agile ALM.

by Bob Aiello and Leslie Sachs | bob.aiello@ieee.org and LeslieASachs@gmail.com

Technically Speaking

“One of the most effective

approaches to DevOps involves

moving the automation of the

application build, package, and

deployment upstream to the

beginning stages of the software

development lifecycle.”

http://www.TechWell.com
mailto:bob.aiello@ieee.org
mailto:leslieasachs@gmail.com

8 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Click here to read more at
StickyMinds.com.
n	 References

Recognizing that the other stakeholders also possess exper-
tise, it becomes clear why improved collaboration and commu-
nication throughout the complete lifecycle can help the entire
team achieve a high degree of personal productivity and ef-
fectiveness. The fact is that encouraging other stakeholders to
apply these principles often yields significant benefits as well.
Each team member can benefit significantly by better commu-
nication and collaboration.

Information security (InfoSec) is often in the position of
trying to ensure the integrity of complex systems they do not
completely understand. Similarly, testing and QA professionals
are expected to ensure that complex systems are defect-free.
Each stakeholder on the team brings expertise, and successful

Technically Speaking

companies are realizing that DevOps really applies to the en-
tire ALM. This is particularly apparent in an agile development
methodology embracing iterative development.

The agile ALM helps brings structure to the demanding and
constantly changing application lifecycle that is part of any
agile development effort. While the level of ceremony and soft-
ware process maturity may vary a great deal from one project
to another, there is always a need for just enough structure so
that each stakeholder understands what he needs to do on a
day-to-day basis. The Scrum methodology provides an excel-
lent basis for communicating and sharing knowledge and
is used successfully by many highly effective self-organizing
teams. In an agile ALM, information security professionals

have the ability to start looking at working
milestones of the system much earlier in the
process. This enables InfoSec to understand
the interfaces and core requirements for en-
suring systems security. Similarly, QA and
testing professionals who get involved early in
the process build quality in from the begin-
ning [2] and are better equipped to develop
and automate robust testing frameworks. The
DevOps environment involves moving work
upstream and creating milestone releases that
have fully automated deployment pipelines
and robust testing frameworks, including in-
formation security.

Within the agile ALM, the customer or
his representative is also a key stakeholder.
Applying DevOps to the agile ALM ensures
that systems meet their specifications and also
satisfy their business purpose. Many tech-
nology teams struggle to fully understand the
business requirements up front, and iterative
development provides an excellent means to
allow business experts early access to release
milestones to ensure that the system meets its
intended requirements and, more importantly,
that the requirements are indeed correct.
Competitive pressures, including new and
ever-changing regulatory requirements, mean
that understanding a given system’s require-
ments can be very complicated and involve
aiming for a moving target. As a result, De-
vOps applies to a lot more than just develop-
ment and operations. The agile ALM needs
to ensure that each stakeholder embraces the
collaborative synergy of sharing knowledge
and better communication as the core lesson
that DevOps brings to the table! {end}

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-164
http://www.stickyminds.com/sticky-note/references-164
http://www.astqb.org/advanced

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 9

http://www.TechWell.com
http://stareast.techwell.com

10 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

http://www.TechWell.com
http://adc-bsc-west.techwell.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 11

“Personal kanban is what lets me keep that

sustainable and help me keep my velocity high,

because I always know what’s happening next,

and when I have a distraction or an interrupt, I

always know what’s next again.”

“We are able to propagate skill

throughout the team, which reduces

our "bus factor"—how many people in

the team would it take to get hit by a

bus before the project would stop? For

most teams, it’s one person.”

For the full interview, visit
https://well.tc/IWAE16-2

Interview with an Expert

Interviewed by: Cameron Philipp-Edmonds

Email: cphilippedmonds@sqe.com

Joe Justice
Years in Industry: 10

Email: Justice@ScrumInc.com

“A visible impediment list—anything

that the delivery team thinks is

preventing them from accelerating—is

critical. If that’s not easily visible and

anyone can't easily add items to it, it’s

going to really slow everybody down.”

“Cultural inertia is the biggest block I’ve hit when I’m

working with companies. They say, “Well, this is the

way we’ve always done it, why would we change?”

Yet they have a mandate saying we have to produce

the next tractor or the next software package in half

the time and half the price if we are going to remain

competitive.”

“Not that Scrum is the only answer—agility as a

whole is—but Scrum is the rightest left way to do it

with teams. It has a highly successful track record,

which helps these companies. We are seeing it

transform at a global political level right now.”

“Some teams hit 10x velocity,

the amount they are able to get

done in a given increment of

time with quality. If they do that,

what are they going to do with

all that extra time they have?

What we propose is that they

should do some social-good

work, and that’s what Team

WIKISPEED is for.”

“The biggest win we could possibly have is for

people to understand what a high-performing

team feels like. That’s difficult to describe in a

book, and it’s difficult to create that experience

for people to know what it feels like.”

If we want teams to rock as hard as they

can, then they’ve got to be performing like

top-level sports teams. That’s absolutely a

mindset, a way of thinking.

http://www.TechWell.com
https://well.tc/IWAE16-2
mailto:cphilippedmonds@sqe.com
mailto:Justice@ScrumInc.com
http://www.stickyminds.com

12 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

http://www.TechWell.com
http://www.hp.com/go/ALM

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 13

Interested in writing an article for
Better Software magazine?

Contact Ken Whitaker at kwhitaker@sqe.com. We’re

looking for article proposals for agile, testing, project and

people management, configuration management, ALM,

development, and any other topic you think is relevant to

today’s software professionals.

NEWSLETTERS FOR EVERY NEED!

Want the latest and greatest content

delivered straight to your inbox every week?

Have we got a newsletter (or four) for you!

AgileConnection To Go covers all things

agile. CMCrossroads To Go is a weekly

look at featured configuration management

content. StickyMinds To Go sends you a

weekly listing of all the new testing articles

added to StickyMinds.com. And, last but not

least, TechWell To Go features updates on

the curated software development stories

that appear each weekday at TechWell.com.

Visit StickyMinds.com, AgileConnection.com,

CMCrossroads.com or TechWell.com to

sign up for our weekly newsletters.

http://www.TechWell.com
mailto:kwhitaker@sqe.com
http://www.StickyMinds.com
http://www.TechWell.com
http://www.StickyMinds.com
http://www.AgileConnection.com
http://www.CMCrossroads.com
http://www.TechWell.com
http://www.meetup.com/renttesters

14 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 15

ecause we are testing a simple mobile app, our app
doesn't need extensive testing to submit to the app
store.”

“Because we are testing embedded software, the software
is already unit tested by our developers and we have the best
software development processes for our small amount of code.
As a result, we won’t have bugs in the field.”

I focus my energy working with mobile and embedded
product development teams, and these quotes are all too fa-
miliar to me. On the other hand, we all have read a similar
headline in the press: “Large auto manufacturer loses lawsuit
because of defective software in an electronic engine controller.”

In app store sites, I see hundreds of product reviews with
no stars and comments, like “This app is buggy and I can’t
figure out how to use it, so I deleted it after twenty minutes of
frustration.”

Both of these stories are situations the software producers
would like to have avoided, so perhaps the attitude that “we
don’t need much testing” is wrong. Worse, this lack of atten-
tion to quality costs companies millions of dollars every day.

What Are Mobile and Embedded Systems,
Anyway?

Mobile “smart” systems are small, handheld devices, usu-
ally connected to communication networks and powered by
batteries. They share many common features with embedded
devices and traditional computers, yet they have limited re-
sources.

Examples of these devices include cellphones and smart-
phones, tablets, medical devices (such as pacemakers and defi-
brillators), automobiles and other forms of transportation (like
cars, buses, trains, trams, and trolleys), and factory and indus-
trial systems (PLCs, robots, and so on).

Embedded software systems consist of unique hardware or
systems with dedicated software that solve specialized prob-
lems, often in real time. Embedded systems have the following
unique characteristics.

Unique hardware: Software interacts with special hard-
ware, providing interface and control support.

Constrained resources: The systems have limited resources,
such as RAM, ROM, stack, power, speed, or time.

Limited user interface: Embedded systems typically have a
restricted or no user interface.

Examples of embedded software systems include software-
controlled robotics, avionics systems, control devices, and
smart electronics. In fact, users may not even be aware a device
has software.

Testing Considerations
What testing approaches should be considered for mobile

and embedded systems? The simple answer is to use the same
techniques and testing approaches used for developing IT soft-
ware, PCs, and the web. You’d think that with heavily con-
strained systems, testing would be dramatically less expensive.
On the contrary, testing mobile and embedded systems may
cost more and require more effort than expected. Instead, mo-
bile and embedded validation might include the kinds of attack
testing listed in table 1, which focuses on the kinds of errors
commonly seen in mobile and embedded systems. [1, 2]

The attacks outlined in table 1 may appear to be common
to other software environments, but specific patterns of attacks
in the mobile and embedded space will be dramatically dif-
ferent. The attack patterns of table 1 are unique to mobile and
embedded environments and would also need to be customized
for specific types of software, such as medical, transportation,
industrial, space, gaming, mobile information, sales, and so on.

Examples	 of	 embedded	 software	 systems	 include	 software-‐controlled	 robotics,	 avionics	 systems,	
control	 devices,	 and	 smart	 electronics.	 In	 fact,	 users	 may	 not	 even	 be	 aware	 a	 device	 has	 software.	

Testing	 Considerations	
What	 testing	 approaches	 should	 be	 considered	 for	 mobile	 and	 embedded	 systems?	 The	 simple	
answer	 is	 to	 use	 the	 same	 techniques	 and	 testing	 approaches	 used	 for	 developing	 IT	 software,	 PCs,	
and	 the	 web.	 You’d	 think	 that	 with	 heavily	 constrained	 systems,	 testing	 would	 be	 dramatically	 less	
expensive.	 On	 the	 contrary,	 testing	 mobile	 and	 embedded	 systems	 may	 take	 more	 cost	 and	 effort	
than	 expected.	 Instead,	 mobile	 and	 embedded	 validation	 might	 include	 the	 kinds	 of	 attack	 testing	
listed	 in	 table	 1,	 which	 focuses	 on	 the	 kinds	 of	 errors	 commonly	 seen	 in	 mobile	 and	 embedded	
systems.	 [1,	 2]	

Attack	 Type	 Finds	 Notes	 on	 the	 Attack	
Developer	 level	 attacks	 Code	 and	 data	 structure	

problems	
Almost	 a	 quarter	 of	 errors	 in	 mobile	
and	 embedded	 can	 be	 found	 by	
structural	 testing.	

Control	 system	 attacks	 Hardware	 and	 software	
control	 system	 errors	

Many	 critical	 bugs	 in	 mobile	 and	
embedded	 are	 centered	 in	 the	 control	
logic.	

Hardware-‐software	
attacks	

Communication	 and	
interface	 integration	 issues	

The	 software	 works	 with	 unique	
hardware	 that	 must	 be	 assessed.	

Communication	 attacks	 Digital	 communications	
problems	

Mobile	 and	 embedded	 systems	
communicate	 with	 hardware,	
networks,	 and	 software	 with	 complex	
interfaces.	

Time	 attacks	 Time,	 performance,	
sequence,	 and	 scenario	 bugs	

Embedded	 and	 some	 mobile	 apps	 have	
critical	 timing	 and	 performance	
factors.	

User	 interface	 attacks	 Problems	 between	 man	 and	
machine	

The	 usability	 of	 devices	 and	 software	
is	 critical	 to	 success.	

Smartphone	 attacks	 Issues	 specific	 to	 smart	
device	 configurations,	
including	 gaming	 and	 cloud	
bugs	

Gaming	 and	 cloud	 computing	
comprise	 a	 majority	 of	 the	 apps	 being	
deployed.	

Security	 attacks	 Bugs	 that	 can	 expose	
devices	 to	 security	 threats	

Security	 of	 devices	 is	 increasing	 in	
importance.	

Generic	 functional	
attacks	

Requirements	 and	
interoperability	 bugs	

These	 are	 the	 basic	 checks	 testers	
should	 conduct	 on	 mobile	 and	
embedded	 devices.	 	

	
Table	 1:	 Types	 of	 attacks	 on	 mobile	 and	 embedded	 systems	
	

The	 attacks	 outlined	 in	 table	 1	 may	 appear	 to	 be	 common	 to	 other	 software	 environments,	 but	
specific	 patterns	 of	 attacks	 in	 the	 mobile	 and	 embedded	 space	 will	 be	 dramatically	 different.	 The	
attack	 patterns	 of	 table	 1	 are	 unique	 to	 mobile	 and	 embedded	 environments	 and	 would	 also	 need	 to	

Table 1: Types of attacks on mobile and embedded systems

http://www.TechWell.com

16 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Click here to read more at StickyMinds.com.
n	 References

The concept of test attacks to break software is a popular
basis for testing and is detailed in a variety of books and stan-
dards [1, 3] that go beyond basic requirements verification
checking. Test attacks are patterns of testing to find errors in
the software based on common failures. Test attack patterns
will be customized for the local context, considering factors
such as the software under test, who does the test, where the
attack is done, available resources, and the goals of the test.

This menu of attack types and test approaches will leave
most test teams concerned that to implement a full range of
tests will take too much time and money. In order to priori-
tize the best test approach, I’d recommend considering the fol-
lowing approaches for mobile and embedded testing.

Focus testing on what is important: Conduct ongoing, risk-
based test planning and prioritization. [3]

Coordinate test scope: Define your test scope in a test
strategy or plan to gain agreement with your stakeholders. [4]

Employ early testing: During development of the code, use
exploratory, nonautomated tests to provide useful information
to the team. [5]

Stay agile: Evolve the test plans and strategies to provide
more information to your stakeholders and to determine if
more or less attack testing is needed.

Using Simple Risk-Based Testing
Although there is no best or single way to test apps, always

consider the heuristics behind test approaches, planning, and
techniques.

Risk-based testing uses product risks identified by a team’s
stakeholders to determine the areas most critical to product
success. Risks are then used to focus test activities on critical
high-risk concerns. If functional and nonfunctional qualities
are quickly attack tested with cost-effective exploratory testing
(not highly scripted testing), data about product trustworthi-
ness can rapidly provide information to the team to aid de-
velopment and release decisions using an informed agreement
approach. Using risk-based testing may result in some func-
tional areas being undertested or not tested at all, but the full
team will get to decide the amount and approach of acceptable
testing for the product.

Defining Your Scoping Strategy with Early
Testing

Closely related to risk-based testing is the determination
of test strategies as part of higher-level test planning. For ex-
ample, on one mobile app software project the team decided
to use agile developer-based testing combined with a risk-based
attack during development. As the software became mature,
they employed a crowdsourced third-party group of testers to
follow a new detailed plan of validation checks, which focused
on potential bugs and risks that might likely impact the user of
the app. This was performed with a small team of developers,
testers, and a crowd team. Once the product received positive
customer reviews, the team expanded the product and attack
testing. This early and fast feedback testing approach during
initial app development not only found critical errors but also

was cost- and time-effective. Once the deployed product gained
user acceptance, more testing was performed to find latent
bugs before users found them.

Pulling It All Together
There is no best set of test attacks, number of tests, or

combination of approaches that can be generically used for
all mobile and embedded systems. A good approach should
be to focus on attack-based testing early, frequently consider
the risks to refine scope, and adjust test plans. Such a strategy
can be done within a project’s cost and schedule constraints be-
cause mobile and embedded software is often developed under
tightly constrained budgets and very aggressive schedules.

For many projects, budget and schedule constraints can be
changed as testers provide information on the quality status of
the software under test. There are times when schedule changes
and increased budgets need to be considered by demonstrating
with test data that functional bugs or other software quality
problems exist in the product. You may want to avoid releasing
buggy software when the team knows about the quality issues.
There are times, however, when the team will have to make an
informed release decision by accepting the risks.

A major consideration in risk-based and attack-based
testing is that the tester must go beyond just checking func-
tionality. If testers only verify requirements, usually with
simple “happy path” test cases, many errors may remain in
the software. Missed errors can result in unhappy users, re-
sulting in negative feedback. System testing that tries to show
the software does not work should be a common practice of
mobile and embedded testers within project constraints. Such
“break-it” system testing, with a focus on risks and using at-
tacks or complementary test techniques, can provide valuable
information to the team and decision makers. The balancing
of constraints and test approaches requires highly skilled and
practiced testers. This is true in general for most software, but
mobile and embedded systems can have significant risk in-
volving safety, hazards, finances, legal issues, or other factors,
which should elevate the need for comprehensive testing.

In Summary
Risks of bugs, bad customer feedback, and other undesir-

able results should be considered by the team when selecting an
optimal testing approach to take. Skilled mobile and embedded
testers who balance testing to constraints will most likely re-
lease products that are good enough and meet expected quality
goals. Unfortunately, as we have all witnessed with quality di-
sasters in PC and web app environments, many of the newer
mobile and embedded teams who don’t learn the testing les-
sons of the past may not be around in the future. {end}

embedded@ecentral.com

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-165
mailto:embedded@ecentral.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 17

TechWell Spotlight

Ants in Space? That's a Good Thing
by Pamela Rentz
The orbiting International Space Station (ISS) just got 600 or
so new visitors who arrived via cargo spacecraft.

They’ll be taking part in a new research project to help de-
termine how they adjust to microgravity conditions, and map-
ping their behavior could lead to more refined algorithms for
solving complex problems—such as how robots could better
search for survivors in a burning building or at a disaster scene.

Continue reading at https://well.tc/qan

The Benefits of Making Deliberate Mistakes
by Naomi Karten
In his book Antifragile: Things That Gain from Disorder, Nassim
Nicholas Taleb describes a loser as someone who “after making a
mistake, doesn’t introspect, doesn’t explain it, feels embarrassed
and defensive rather than enriched with a new piece of informa-
tion, and tries to explain why he made the mistake rather than
moving on.” These types, he points out, often view themselves as
victims of a large plot, a bad boss, or bad weather.

That’s quite a characterization, given how tempting it is
when we make a mistake to run from it, rationalize it, conceal
it, or blame others. But the reality is that sometimes a mistake
is exactly what’s needed to make progress. So, sometimes you
require not just a mistake—but a deliberate mistake.

Continue reading at https://well.tc/c2A

Is It Time for Cloud Providers to Control
Malware Distribution?
by Rajini Padmanaban
Is malware only about unwanted software gaining access to se-
cure information or the process of infecting websites? There
is clearly more to this, including complex transfer distribution
systems that make even trusted sites and applications play a
role in this malicious activity.

There are several categories of people who may be involved
in malware creation and several categories of malware itself—
making this a very specialized segment of security engineering in
the software development world. Malware distribution by and
large is an illegal activity and government bodies continue to take
condemning actions against malware creators and distributors.

Continue reading at https://well.tc/cLV

Wearable Apps Not Wearing Out Welcome
by Cameron Philipp-Edmonds
Wearable tech and accessories that interact and communicate
with your tablet or smartphone aren’t overwhelmingly pop-

Featuring fresh news and insightful stories about topics that are important to you, TechWell.com is the place to go for what is

happening in the software industry today. TechWell’s passionate industry professionals curate new stories every weekday to

keep you up to date on the latest in development, testing, business analysis, project management, agile, DevOps, and more.

Here is a sample of some of the great content you’ll find. Visit TechWell.com for the full stories and more!

ular—yet. But research from Gartner shows that many analysts
expect a significant uptick in the number of wearable devices
and connective mobile applications. In fact, Gartner’s predic-
tion goes so far as to suggest that as many as half of all app
interactions will come from wearable devices.

Brian Blau, an analyst for Gartner, explained that because
most wearable devices can share the interface with a mobile
device, the manufacturers are able to keep the devices small,
efficient, inexpensive, and easy to maintain.

Continue reading at https://well.tc/cnw

Is a Framework Needed to Scale Agile?
by Kent J. McDonald
As larger organizations adopt agile, there is an increased focus
on figuring out how to apply agile across a large part of the
organization and how to deal with obstacles and dysfunctions
that are more prevalent in larger organizations compared to
smaller ones. These obstacles often relate to the size of proj-
ects that are attempted, the number of people who have to be
involved with them, and the organizational structures that are
involved in delivering new software assets or changes to ex-
isting assets.

This focus, usually labeled as “scaling agile” or “enterprise
agile,” is viewed by some in the agile community as the next
step in the agile evolution. There are varying reactions to the
need to scale agile. Some in the community have identified new
methods along with training, consulting, and certification to
help with adoption. Two of these methods are the Scaled Agile
Framework (SAFe) and Disciplined Agile Delivery (DAD).

Continue reading at https://well.tc/cux

Nervous about Your Big Presentation? Don’t
Try to Relax—Get Excited
by Beth Romanik
“Keep calm and carry on”? When it comes to preperformance
jitters, it turns out a better mantra might be “Get excited and
try to fight it.”
For years, people who experienced sweating, a racing heart-
beat, and nervous thoughts before being in the spotlight were
advised to just take deep breaths and try to keep themselves
calm. However, new research from the American Psychological
Association suggests that getting excited before a presentation
is more effective for decreasing anxiety than trying to relax.

Continue reading at https://well.tc/cua

http://www.TechWell.com
https://well.tc/qan
https://well.tc/c2A
https://well.tc/cLV
http://www.TechWell.com
http://www.TechWell.com
https://well.tc/cnw
https://well.tc/cux
https://well.tc/cua

18 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
http://www.THINKSTOCKPHOTOS.COM

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 19

A
gile methodologies are approaches to managing
software development based on short-term, itera-
tive, and incremental deliveries, enabling contin-
uous feedback and flexible response to change.

Stemming from a rapidly evolving business environment
that demands faster product improvements and modifications,
the agile methodology promotes the organizational qualities of
speed, responsiveness, and adaptability throughout the entire
application management process, from defining product re-
quirements to coding, testing, and, finally, release management.

This article explains why agile development cannot be im-
plemented effectively without unit testing—and especially au-
tomated unit testing.

The Importance of Code Quality
Developers have known for decades that the further into a

project timeline a bug gets discovered from its insertion point,
the more costly it is to fix. When a developer finds a bug, it can
sometimes take minutes to fix. If it slips through testing and
finds its way to the customer, figure 1 shows that mitigation
can be exponentially more expensive to fix. [1]

 Correcting quality issues can take months of rework, cost
millions of dollars, or, if done too late, may even cost lives.
Take, for example, the first launch of the Ariane 5 rocket in
1996. Its flight abruptly terminated just thirty-seven seconds
after liftoff, taking with it hundreds of millions of dollars in
invested effort. Also think of Toyota recalling four hundred
thousand vehicles because of a bug in the brake control system,
costing an estimated three billion dollars.

While we can’t eliminate all bugs, we can fight them by
baking quality into the code. There are many ways to define
code quality depending on the perspective of the customer or
the developer.

The customer expects working software. Customers do
not care how the code is written—they just need the software

to work. When developers talk about code quality, they talk
about code that is easy to maintain, easy to read, and risk-ad-
verse to change. Each perspective takes the cost of bugs into
consideration. The customer knows that for each bug, he’ll
lose precious business hours or days. The developer knows that
each returning bug means considerable time spent fixing it in-
stead of working on new features.

Agile methodologies take working software and combine it
with early feedback. For example, early releases can get user
feedback about how well the software operates. To give the
developers confidence that their code works, unit testing gives
the fastest available quality feedback.

The earlier defects are found, the cheaper they are to fix.
As agile methodologies encourage high code quality, the team
should run lots of unit tests. Similarly, automated tests give the
developer early feedback on the quality of the software in a
repeatable fashion prior to release.

What Is Unit Testing?
Unit testing is a methodology where individual units of soft-

ware, associated data, and usage procedures are tested to de-
termine whether they operate correctly. The unit is usually a
small piece of code—for example, a single function. The unit
test is a short function that tests the behavior of the unit that
produces a pass/fail result. This is achieved by performing the
tested function on a known value with a single correct result.
Unit tests often use mock objects to simulate the behavior of
dependencies in a predictable way.

The main purpose of unit testing is to allow developers to
identify as many problems as possible at the development stage
and to do it in an automated, repeatable fashion that can be
applied for every code change.

This makes developers directly responsible for producing
working code, even before it reaches the quality assurance
team.

Figure 1: Example of the cost of defect correction during a software project's development lifecycle

http://www.TechWell.com

20 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Click here to read more at StickyMinds.com.
n	 References

What Does Unit Testing Have to Do with
Agile Development?

I think the two are closely linked. In fact, I believe you can’t
be truly agile without implementing automated unit testing as
an integral part of the development process. Automated unit
testing has several benefits that align closely with agile develop-
ment principles.

The central benefit of unit testing is that it produces
working code faster and with fewer bugs. The ability to au-
tomate tests and catch bugs at the development stage reduces
a huge amount of overhead that is otherwise spent on releases
that are immediately rejected by QA due to basic functional-
ities being broken. Unit testing increases the chances of a new
feature working correctly upon first delivery, as it becomes the
developer’s responsibility to verify that he is delivering working
code.

Another reason that unit tests cut down on development
time is that their fine resolution allows them to pinpoint pre-
cisely the location of a problem. A failed unit test can direct
the developer to the exact location of the problem in the code,
allowing him to quickly resolve it. This minimizes or even
eliminates the time that would otherwise be spent locating the
problem.

Unit testing may not be able to catch all bugs, but it is highly
effective in catching regression bugs that are defects that break
existing functionality. These bugs hamper progress and waste
valuable development and QA resources as code is sent back
and forth between the two departments, delaying new versions
of existing products and new product releases. Without auto-
mated testing, it is virtually impossible to detect bugs during
the development phase. This causes sprints to become bogged
down as developers need to spend more and more time fixing
regression bugs in order to keep producing working software. It
becomes impossible to maintain a steady and predictable soft-
ware delivery schedule while also maintaining quality. When a
release date draws near and the product is not working, panic
sets in, software is released without enough time to test it, and
more bugs are introduced, creating a vicious cycle.

Code that is not properly maintained very quickly becomes
legacy code that developers either refuse to change or insist on
rewriting themselves. To keep code alive, you need to be able
to change it and be confident that your changes won’t break
anything. Unit testing promotes this confidence. Without it,
you end up either refusing to change older code or investing
large amounts of time rewriting it every so often. In order to
respond quickly to change, you need to be able to modify all
parts of your code quickly and confidently. Some tools even
allow you to develop unit tests for older code without having
to change the code itself.

Agility through Automation
The platform for unit testing is implicit, and we usually

omit the word automated before it. In reality, unit testing is
a collection of processes, skills, and tools that support agility.
For example, writing the tests is an actual skill. I look at tests
I wrote five years ago and think, “How would anyone let me

write this?” (I’m sure I’ll feel the same in five more years about
what I’m writing now.)

In addition, using isolation and mock objects correctly is a
capability that improves over time. Refactoring of the tested
code or changing code design can fill up a three-day workshop,
and much like design, it can be improved and lead to maintain-
able test design.

When we improve our skills, we can move more quickly
and change directions as we go with agility. But without au-
tomation, we won’t be able to use our skills effectively in a
repeatable fashion.

Automation is the foundation that gives the power to get
quick feedback from running tests. It gives us the ability to
cover more code and know we didn’t break anything. And it
gives us the independence to change our design when we need
to without risk and to mold the software the way we want it.

In the end, the Agile Manifesto favors working software.
Automated unit tests bring us close to that point quicker than
other processes.

Conclusion
The benefits of unit testing are closely aligned with the

principles of agile software development. Unit testing allows
you to make code changes while remaining confident that they
will not break existing functionality and that the major part
of new functionality will work on first delivery. This enables
frequent, timely delivery of working software, which in turn
enables swift response to changes in requirements. Automated
unit testing also promotes a transparent view into the code’s
health by producing reports that allow anyone to see which
problems occur and their precise locations in the code. Further,
automated unit testing reduces the number of regression bugs,
preventing development sprints from becoming bogged down
and enabling developers to maintain a constant, sustainable
work pace.

Together with the agile methodology, an integrated, auto-
mated unit testing tool that works well within your program-
ming environment is a crucial necessity for managing modern
software development. {end}

gilz@typemock.com

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-166
mailto:gilz@typemock.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 21

http://www.TechWell.com
http://www.virtusa.com

22 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 23

A
n important quality measure of a software solution
is the rate at which customers find defects after a
release is deployed in a production environment. A
high rate of production defects not only poses a risk

to how well the solution works as expected, but also impacts
the customer experience. The situation is more intimidating
with contractually obligated ventures and mission-critical sys-
tems. Moreover, it is a well-known fact that the cost of quality
exponentially increases when more defects than expected are
discovered either late in the project lifecycle or after the release
is deployed into production. An effective defect analysis prac-
tice plays a vital role in an organization’s ability to prevent de-
fects from escaping into production.

A famous quotation reminds us that “Those who cannot
remember the past are condemned to repeat it.” Measure the
statistical trend of production defects and establish a profound
defect analysis methodology in order to take the initial strides
toward the realization of quality from the customers’ perspec-
tive. The key to improvement of quality is to tackle the preva-
lent causes affecting the quality over time.

In order to begin our journey of quality improvement, my
company envisioned a defect analysis methodology with the
intent to minimize the number of production defects by tar-
geting the defects that need engineering resolution. Gradually,
a repeatable practice should evolve as we seek answers to some
fundamental questions after consistently measuring and ana-
lyzing production defects every month.

Identifying Weak Process Phases
In the first phase of our investigation, we categorized the

key process areas of the overall release lifecycle. Using infor-
mation collected within my company, figure 1 shows the dis-
tribution of production defects by overall time spent in project
phases.

The distribution of production defects in the graph depicts
that the majority of production defects escaped from the in-
tegration and system testing phase and the coding and unit
testing phase. As a result, these two process phases need an
in-depth analysis in order to understand and address the root
causes of detected problems. To ensure a comprehensive anal-

ysis, further investigation of other factors, such as the type of
defects and their areas of origin, can help pinpoint the root
causes.

What Are the Most Overriding Behaviors
of Escaped Defects?

In the next step of our analysis, we identified the broad cat-
egories of defects considering the most commonly occurring
patterns in production. Ideally, it is a good idea to classify the
nature of defects based on various components and the overall
architecture of the system. Such a classification allows isolating
the most repetitive natures of defects based on the predefined
defect types.

The distribution of defects in figure 2 illustrates that the
majority of defects are of the timing or serialization type and
exception handling type, followed by the functional behavior
type. The next logical step is to dig into the origins of these
defect types in order to determine preventive actions.

At 13 percent, missing data defects can pose business risk in
terms of system reliability in reporting accurate data to other
applications such as the billing system of the utilities. As a re-
sult, it is important to reduce the number of defect types with
missing data in order to make the system reliable to comply
with customer contractual obligations. In spite of a relatively
lesser percentage, such defects taking place in the field would
need immediate attention due to their high impact on the busi-
ness.

Where Is the Root Cause of a Defect?
In order to prevent defects from escaping into production, it

should be a priority to understand the source of when the de-
fects are being introduced. A table consisting of the commonly
repeating defect types with their origins helps in isolating the
root cause of defects. Figure 3 shows major categories of defect
origin areas classified by defect types in order to segregate root
causes of production defects.

In a later stage of our analysis, we define the underlying
areas from which the majority of defects possibly originate.
These areas are identified based on the most common origins
found during the root cause analysis of the defects when they
are resolved and the associated corrections in code. It may not

Figure 1: Distribution of production defects by overall time spent in project
phases

Figure 2: Distribution of defect types

http://www.TechWell.com

24 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

be viable to ascertain the exact origin in some cases if the root
cause analysis is not conclusive. In that case, I recommend dig-
ging into the underlying cause once the defect is resolved. It
is always a great idea to have a detailed discussion with the
developers and testers to help everyone understand how your
findings can reduce escaped defects.

Figure 3 depicts code error and missing code issues as some
of the most prominent causes for escaped defects. The portion
of code error and missing code defects is approximately 37 per-
cent of total defects. The distribution of defects by overall time
spent in project phases in figure 1 also supports the fact that
35 percent of escaped defects take place during the coding and
unit testing phases in a project lifecycle. Timing or serialization
defects and missing data defects are the two most prevalent
types within the code error and missing code category. As a
result, these areas demand greater attention to the effectiveness
of code reviews and coding guidelines compliance in order to
prevent such defects from occurring in the future.

Another problem area within the same category is func-
tional defects originating due to code errors. One of the solu-
tions to this issue may be to review the existing unit testing and
code coverage analysis practices with the aim of preventing
such defects from occurring in code logic. In addition, a large
number of functional defects are in the code logic and archi-
tecture issues category. This implies the need for a review of
the robustness of the high-level design and architecture before
the implementation is performed because the cost of noncon-
formance can be significantly higher if the design defects are
discovered after the release into production.

Testing everything before going into production is neither
desirable nor realistic. So, how much do you test? The lack of
test coverage is another important cause of defects escaping
into production, as evidenced by the data in figure 1 showing
that 38 percent of defects occurred during the integration and
system testing phases in a project lifecycle.

The combination of the data transaction area and the ex-
ception handling area in figure 2 stands out after taking a
deeper look at the defects happening within the test coverage

Figure 3: Defect origin areas classified by defect types

issues category. To mitigate these defects, test design should
focus on better test coverage for data transactions and negative
test cases for exceptions in handling error conditions.

Last but not least, the performance or stress type and the
configuration or environment type from figure 2 are areas of
concern for defect escapes. A thorough review of your test
framework (also known as a test harness), improved test de-
sign techniques, and reprioritizing your test strategy can help
in overcoming these test gaps. The identification of critical
areas of defect origins helps to eradicate the root causes of de-
fects and, subsequently, to prevent their reoccurrence.

Miles to Go
Defect analysis findings need consensus from all stake-

holders in order to move forward with a defect escape miti-
gation plan. The corrective actions to overcome defect escape
gaps should be tracked until closure is made in order to com-
plete a defect analysis cycle. Preventing defect escapes is an on-
going journey toward improving the overall quality from the
customers’ perspective. It is a good idea to periodically repeat
the defect analysis cycle because it helps to continuously rein-
force defect prevention.

The adoption of an effective defect analysis practice does
not mean there won’t be any more defects reported from the
field. But reducing the total number of defects (and especially
in critical defects) can be a realistic expectation. This will take
time, and a sound defect escape mitigation practice seeded
today will certainly ensure a positive outcome in the future.
{end}

mayank.sharma@landisgyr.com

http://www.TechWell.com
mailto:mayank.sharma@landisgyr.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 25

http://www.TechWell.com
http://www.capgemini.com/testing

26 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

TH
IN

KS
TO

CK
PH

O
TO

S.
CO

M

http://www.TechWell.com
THINKSTOCKPHOTOS.COM

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 27

Y
ou will face many challenges that ScrumMaster
training does not prepare you for, from manage-
ment and corporate roadblocks to disgruntled team
members and self-organization follies, and pure ex-

citement alone does not compensate. I compiled some lessons
I learned the hard way in my first few years of being a Scrum-
Master. As many ScrumMasters know, a real sprint is very dif-
ferent from the controlled, safe environment of ScrumMaster
training. There are ten lessons learned that I’d like to share.

1. Change is a journey, not a destination
I find it’s not prudent to try to change everything at once,

especially if the organization is new to Scrum implementations.
Take it in steps, take your time, modify where necessary, and
expect there will never be a steady state. I realized this as I was
doing a Scrum implementation. When I first started, the idea
of Scrum was a foreign concept to the product development
team, and I wanted to completely retrain them and the way
they worked. I was met with tremendous opposition to a new
way of working. There was uneasiness to commit to fast-paced
sprint iterations, and the team members feared they would be
in trouble if they didn’t complete what they committed to. This
led to the team undercommitting by padding estimates.

On my next project, I decided to take the “Scrumness” out
of team conversation entirely. I started by asking about work
items and writing them down without calling them stories.
This slowly evolved into planning meetings and continually
documenting work items with the product owners. To avoid
tool complication, all of this was done by hand and put on a
Scrum board for visualization. I kept setting small goals with
the team to get to the next implementation milestone and then
evolving those goals as things were met. Was it perfect? No.
But it was constant evolution and iteration to meet our next
goal in being a great Scrum team and less pressure than imple-
menting all pieces of Scrum at once. Change takes time.

2. self-organization takes longer than you think
There is no single prescriptive way to know if your team

has self-organized. One size does not fit all. Sometimes the
team has to take two steps back to advance one step forward.

What does self-organization really look like? Scrum proj-
ects rely on teams’ self-organizing, yet does the team know
they’re supposed to be doing that? I felt that something wasn’t
going well when I wasn’t getting invited to some team meetings
and gatherings. I was nervous and panicked, and I was some-
times unaware that meetings were taking place unless I saw
the team gather. Then I realized this was the team members’
form of self-organization, and they didn’t always need me to
be present. It was extremely rewarding to see them solve their
own problems in the way they saw fit.

3. Be authentiC and vulneraBle
It’s OK to not know everything or to ask for help. Giving

up power makes us vulnerable. Admitting mistakes makes us
authentic. If you do, the team will learn that being wrong is
part of team growth. They’ll see you as human and will be
more likely to take the risks that Scrum touts as the way to be
efficient and agile.

One example that comes to mind was working with a
difficult leadership team on a new Scrum implementation.
The essence of Scrum was being compromised with testing
and requirements performed in different sprints. The team
was working in mini-waterfalls, all supported and promoted
by leadership. I struggled to influence project decisions for
months, with little to no success. I consulted with a leader—
with more authority and experience—outside the project and
department.

I admitted that I needed help to influence the project lead-
ership team. I received great advice on “managing up” that I
wouldn’t have known if I hadn’t sought help.This leader also
took an active interest in the project and eventually helped to
influence the leadership direction toward true Scrum. It was a
very humbling experience, and I wish I hadn’t waited so long
to admit I needed help.

4. find your sCrummaster style
Is your style similar to being a Scrum purist? Are you more

or less flexible than other ScrumMasters? What approach
works best for you? What works best for the team? How much
are you willing to adjust while still staying true to yourself and
the Scrum guidelines?

When I was given the reins as ScrumMaster on my first
large Scrum project, my style was that of a Scrum purist. I was
not in favor of detailed release planning and I was totally fo-
cused on story points over ideal days. I even created a deck
weighing out the pros and cons of both to make my point clear
to the team and leadership.

Not only did this brand me as a “Scrum crazy person,”
but it also demonstrated to the team members my inflexibility
about their needs. I wasted a lot of energy fighting “Scrum-
But” (meaning being Scrum-like, but not really) when I could
have been improving other things that would have helped the
team more.

Now I’ve adapted my style to be more flexible, and I only
have a few key Scrum practices I make sure the teams stick to.

5. What you do is as important as What you don’t do
Although you can’t and shouldn’t solve every problem, find

out how to make things easier for the team without doing ev-
erything yourself. Your team needs to remove some of its own
obstacles or self-organize to solve the problems and can’t al-
ways be dependent on you.

One of my teams did not like to update its tasks in the agile
lifecycle management software. This agile software was diffi-
cult to use and the web interface didn’t work well in Safari, so
I didn’t blame them. For some period of time, I updated the
information for them. In fact, I was handling all of the project
planning, and when I was not available to the team, sprint
planning would not take place. Could they have done it by
themselves? Sure, but I had made it too easy, and they got lazy.

By taking a different approach, I laid out cards to make a
Scrum board instead of using software tools. I had everyone
write stories during planning and put them on the board to
avoid any excuses for not being able to access the ALM system.

Did they complain? Yes. But did they learn and self-orga-
nize? Yes.

http://www.TechWell.com

28 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

6. let the team fail
A key tenet of agile is the need to trust your team mem-

bers to do what is right—for themselves, the project, and, ulti-
mately, the customer. Sometimes team members will go down
the wrong path. And sometimes, even though you know that a
wrong path is being taken, you have to let them. By jumping in
all the time as the problem solver, you undermine them. That
can result in a huge step backward because team members may
feel that you distrust them, or you may be hindering an idea
that in fact works great for the team.

I worked with a team who didn’t like the daily stand-up.
The members didn’t see value in it, and while I see it as an
important part of Scrum, why should I make them do it if it’s
not valuable to them? They suggested changing it to twice a
week, and while I disagreed with the idea, I agreed to try it.
After awhile, the benefit of frequent team collaboration and
communication eroded rapidly. They eventually realized that
they needed to meet more frequently, and the team agreed to
meet daily. It was vital that I let them try it to show I trusted
their decision-making.

The other important piece of information here is that I
didn’t challenge them to prove me wrong or make a big deal
about their modifying Scrum. This likely would have added
more resistance and made it a “team versus ScrumMaster”
mentality, something I’ve seen before from a ScrumMaster who
was too purist and wanted Scrum, as a methodology, to prove
all things right. It is of great benefit to use Scrum as a pow-
erful project framework, but it is the team’s interactions and
everyday decisions that truly result in project success or failure.

7. Being a sCrummaster is not alWays glamorous
You’re removing obstacles, protecting the team, and acting

as a servant leader. That also means you’re doing a lot of busy
work required to keep day-to-day projects going. Embrace
it! No one person on the team is more or less important than
anyone else, and you’re not above any kind of work that is
going to help in the end goal to produce software project de-
livery.

Regarding busy work, this includes a whole lot of things. I
set up meetings, I send status reports, I make project plans, and
I order food. I had to order food multiple times in a city I didn’t
even live in for a few release planning sessions. At the time, I
thought this was menial work and I felt like I was being under-
valued. Surprisingly, I was the most important person of the
meeting, according to everyone else on the team. I was asked
multiple times every day what awesome food I had picked for
the day and when it was coming. It was like a herd of elephants
was coming at me when I brought in the afternoon coffee. Did
I like ordering food? No, and I still don’t. But by doing it, I
freed up the team to do the work they committed to, and re-
ally, that is what my commitment is. As the ScrumMaster, you
must embody the agile values, too, and walk the talk to be a
part of the team, no matter how unglamorous it is.

8. perform a personal retrospeCtive
A self-review and team member review should take place

at determined intervals so everyone can see how far they have

come, not only as a team, but also as individual technical con-
tributors.

I did a personal retrospective at the end of the year. I had
made some large changes in the past year, both personally and
professionally. When I looked back, I realized that I had been
witnessing a lot of things as failures instead of learning oppor-
tunities, and it made me think of the impact on my team. If I
were feeling this way, were they? Instead, I wanted to see what
I had really accomplished and learned. I turned this around and
did an individual exercise with the team to see their accom-
plishments and learning. Failure was not a term used during
the discussion, and from every issue we identified, at least one
lesson was learned. These retrospectives were extremely pow-
erful, and we made a great poster of our successes in the past
year to hang up by our working agreements.

9. don’t forget to CeleBrate
Celebrate small wins. Celebrate at the end of a feature com-

pletion, sprint, or any other important project event. It doesn’t
need to be a huge party every time, and it doesn’t have to be
expensive. But make it fun with small gestures of gratitude.

Sometimes I use retrospectives as a form of celebration by
hanging up accomplishments around the team room. You can
do this by printing out a particularly complex piece of code, a
hard bug that was corrected, some important screen shots of
user interface improvements, and so on. Another thing I like
to do is have others recognize their teammates by writing col-
leagues’ accomplishments on sticky notes and sharing them
with the group. On the more social side of things, there are
potlucks, happy hours, and game ideas. There are endless ways
to recognize small wins.

10. learn something neW every day and enCourage your
team to do the same

Whether this is inspecting and adapting, reading a blog, or
talking to a team member one on one, it’s important to always
strive to improve and learn.

One way I like to do this is by using Agile in a Flash cards
from The Pragmatic Programmers. They give a new tip or an-
ecdote to talk about every day after the stand-up or during
a lull. Though the team groans sometimes, I know they like
them. I also often post links on the team wiki with good ar-
ticles I come across on Twitter or share good tweets. Finally, I
put my agile books out on the table, and whenever I get some
spare time, I pick one up. When the team saw this, they started
doing it too, and it almost sent me through the roof celebrating
that win. Talk about authentic enthusiasm.

There are many things traditional ScrumMaster training
does not prepare you for, and much of the time, lessons need
to be learned through practice. I hope some of these examples
of how I learned things the hard way will help you become
a better ScrumMaster to your team and organization. And
maybe you will avoid some of the frustration I went through as
I learned from my mistakes. {end}

http://www.nataliewarnert.com

http://www.TechWell.com
http://www.nataliewarnert.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 29

Coverity Inc., Announces Coverity
Development Testing Platform 7.0
Coverity, Inc., a development testing company, announced
the availability of the Coverity Development Testing Platform
7.0, the next-generation of its software testing platform that
enables development organizations to create and deliver better
software, faster. The rapid growth of cloud, mobile, and web-
based application development in enterprise IT organizations
has elevated development testing to a business-critical process
in the software development lifecycle (SDLC), arming devel-
opers with a way to quickly and efficiently test their code and
address critical quality and security issues as it is written.

The new version of the Coverity Development Testing Plat-
form is the industry’s first enterprise-scale solution that com-
bines code analysis, change-aware unit test analysis, and policy
management across C/C++, Java, and C#. With this release,
Coverity has built on its market leadership and multiple pat-
ents for scalable and accurate defect detection with new inno-
vations to C# and Java code analysis.

http://www.coverity.com

Linode Launches Linode CLI
Linode, an established leader in cloud hosting, launched
Linode CLI, a new tool that provides a convenient way to
provision and manage Linode cloud services from the com-
mand line. The Linode CLI enables users to easily automate
common tasks, such as creating, rebooting, or resizing servers,
while also making it straightforward to manage DNS records
and distribute workloads across backend Linodes. While some
users will be content using the Linode Manager or Linode Mo-
bile to administer their services, those who prefer the conve-
nience of the command line will find Linode CLI a time saving
alternative. Not only can Linode CLI be used to provision
Linodes and manage NodeBalancers, it also makes it easy to
modify DNS zones and records and output to JSON format for
scripting of repetitive tasks.

http://www.linode.com

East Coast Datacom, Inc., Releases Stateful
Traffic Generator
East Coast Datacom, Inc., a communications specialist, re-
leased the Stateful Traffic Generator, STG-10G based on the
generation engine, D-ITG. The STG-10G is composed of a
graphical user interface (GUI) that wraps the D-ITG engine,
INTEL DPDK Fast Packet Technology, and other test tools.

The STG-10G produces IPv4 and IPv6 traffic by accurately
replicating the workload of current user applications. The
platform supports eight-ports 10/100/1000 and four-ports of
10GbE traffic generation managed via the easy to use GUI. This
allows users to perform load tests on hardware prior to deploy-
ment and to simulate wired or wireless network traffic behavior.

The STG-10G supports UDP, TCP, ICMP, DCCP, SCTP pro-
tocols and soon to be released support for IGMP. The STG-10G
also supports replay of Pcap files with an easy to use Pcap player.

http://www.ecdata.com

Product Announcements

AvePoint Unveils DocAve Online Service Pack
(SP) 3
AvePoint, a provider of enterprise-class big data management,
governance, and compliance software solutions for next-gener-
ation social collaboration platforms, unveiled DocAve Online
Service Pack (SP) 3. This update features data protection, gov-
ernance, and reporting enhancements that allow organizations
to maintain the same level of protection and control over their
cloud-based assets as they have with on-premises solutions.

Updates in DocAve Online SP 3, AvePoint’s software-as-
a-service platform for Microsoft Office 365 management, in-
clude policy enforcement, granular content protection, and
configuration reports.

http://www.avepoint.com

Compuware Corporation Announces New
Features to Compuware Workbench
Compuware Corporation, a technology performance com-
pany, announced new features to Compuware Workbench, a
modern, intuitive, Eclipse-based mainframe development envi-
ronment. First released in 2010, the Workbench has evolved
into a solution that's made application development, testing,
and tuning faster and more efficient for both new and experi-
enced developers across the globe. Updated offerings include
significantly more robust data search and editing capabilities,
additional debugging support, and a code coverage reporting
feature. The Workbench has also been more tightly integrated
with Compuware APM for Mainframe and the company's
other developer productivity solutions, improving the way
teams collaborate when resolving application exceptions and
performance problems.

http://www.compuware.com/en_us.html

Blueprint Releases Blueprint v5.4
Blueprint, a leading provider of enterprise requirements defi-
nition and management (RDM) software, released Blueprint
v5.4, the latest version of its best-in-class RDM solution.
Blueprint v5.4 features new application lifecycle management
(ALM) integration capabilities that align cross-functional
teams; and includes Blueprint Analytics, a solution that gives
enterprises clear visibility into the early stages of large, com-
plex IT project portfolios.

Blueprint v5.4 features new and enhanced integration ca-
pabilities that enable deep bi-directional data synchronization
with leading agile ALM solutions, including: IBM Rational
Team Concert, JIRA, Microsoft Team Foundation Server,
Rally, and VersionOne. This integration allows these systems
to “talk” to one another, enabling better communication be-
tween business analysts, developers, testers, and all other team
members who use these products. Customers can unify their
ALM infrastructure with Blueprint v5.4 to deliver complete
traceability, improved visibility, and efficient collaboration be-
tween cross-functional teams throughout the application devel-
opment lifecycle.

http://www.blueprintsys.com

http://www.TechWell.com
http://www.coverity.com
http://www.linode.com
http://www.ecdata.com
http://www.avepoint.com
http://www.compuware.com/en_us.html
http://www.blueprintsys.com

30 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

Product Announcements

Red Hat Makes Available Red Hat Enterprise
Linux OpenStack Platform 4.0
Red Hat announced the availability of Red Hat Enterprise
Linux OpenStack Platform 4.0. Red Hat Enterprise Linux
OpenStack Platform offers IT infrastructure teams, cloud ap-
plication developers, and experienced cloud builders a clear
path to the open hybrid cloud without compromising on avail-
ability, security, or performance.

Red Hat Enterprise Linux OpenStack Platform 4.0 also
continues Red Hat's integration of its infrastructure product
portfolio with OpenStack. Red Hat CloudForms 3.0, sold sep-
arately, can now manage and deploy workloads to Red Hat
Enterprise Linux OpenStack Platform and provides manage-
ment across OpenStack, Red Hat Enterprise Virtualization,
VMware vSphere, and Amazon Web Services (AWS). Red Hat
Storage Server, also sold separately, offers Red Hat Enterprise
Linux OpenStack Platform an open, software-defined, and dis-
tributed storage foundation that provides a massively scalable
and highly available storage platform and native compatibility
with OpenStack storage interfaces.

http://www.redhat.com

Typemock Launches Isolator V7.4.3 for .NET
Typemock, a provider of easy unit testing solutions, launched
Typemock Isolator V7.4.3 for .NET. The new Typemock
Isolator V7.4.3 takes developer productivity even further,
speeding up programming processes and eliminating develop-
ment down-time due to redundant debugging and QA. Un-
interrupted development flow is at the heart of this version
release. With FastFix, the relevant test is "pinned" for debug-
ging, while the status of all tests is visible as well. This eradi-
cates time-consuming navigation, expediting bug-fixing.

The new version has improved productivity for faster devel-
opment flow with enhanced usability features, including: new
shortcuts, updated menus, highlighting capabilities, and easier
navigation.

V7.4.3 also supports the newly released Visual Studio 2013
as well as all other leading development tools.

http://www.typemock.com

Centrify Corporation Announces Centrify
Developer Site
Centrify Corporation, the provider of unified identity services
across data center, cloud, and mobile, announced the Centrify
Developer Site for easy and direct access to Centrify’s software
development kits (SDKs), giving enterprise application devel-
opers and ISVs the resources and support needed for integra-
tion of Centrify’s identity management into their cloud, mo-
bile, and datacenter applications and systems. The Centrify
Developer Site also serves as a hub for newly introduced and
updated SDKs, technical resources on integration, code sam-
ples, interaction with Centrify developers and the developer
community, and more.

http://www.centrify.com/developers

WANdisco Unveils New Version of Git
MultiSite
WANdisco, a provider of high-availability software for global
enterprises to meet the challenges of big data and distributed
software development, announced the next release of Git Mul-
tiSite, the company’s performance, scalability, and continuous
availability solution that provides LAN-speed Git access and
collaboration to developers everywhere, even across a WAN.

The new features of Git MultiSite 1.2 include centralized
management and replicated configuration settings for simpli-
fied administration and enhanced security across multiple
sites. In addition, Git MultiSite 1.2 integrates seamlessly with
common ALM toolsets with enhanced support for distributed
notification mechanisms. These features alleviate administra-
tive burdens and boost security for global enterprises looking
to streamline their source control management systems.

http://www.wandisco.com/git/multisite

Compuware Corporation Announces New
Release of Data Center Real User Monitoring
Solution
Compuware Corporation, a technology performance com-
pany, announced a new release of its Data Center Real User
Monitoring solution (DC RUM). Enhanced analytics and new
network packet capture and analysis capabilities simplify iden-
tification and triage of performance issues across applications,
infrastructure, and network. Now application operators can
monitor and understand the network impact on application
performance down to the transaction and user level at packet-
level depth. The new availability analytics span all layers of a
business transaction, from the network TCP session all the way
up to the application logic.
http://www.compuware.com/en_us/application-performance-management/products/
application-aware-network-monitoring.html

Seapine Software Unveils TestTrack 2014
Seapine Software unveiled TestTrack 2014, the latest version
of its product development management solution. TestTrack
2014’s new interface integrates the functions of Seapine’s three
previous web clients, further enhancing the user experience
with a modern interface, improved usability, and additional
features.

TestTrack 2014 replaces its three previous web clients—
TestTrack Pro Web, TestTrack RM Reviewer, and TestTrack
TCM Test Runner—with a cleaner interface that is optimized
for usability. It features new search filtering capabilities and
enhanced options for removing interface elements to increase
usable screen real estate. Deployment is easier with TestTrack
2014 because it eliminates the need to install desktop clients on
multiple computers.

TestTrack 2014 also includes new, integrated dashboard
capabilities for the ALM Reporting Platform. Teams can now
easily launch ALM RP dashboards to monitor project progress
across an organization.
http://www.seapine.com/almnewfeatures.html

http://www.TechWell.com
http://www.redhat.com
http://www.typemock.com
http://www.centrify.com/developers
http://www.wandisco.com/git/multisite
http://www.compuware.com/en_us/application-performance-management/products/application-aware-network-monitoring.html
http://www.compuware.com/en_us/application-performance-management/products/application-aware-network-monitoring.html
http://www.seapine.com/almnewfeatures.html
www.seapine.com/testtrack.htmlhttp://www.seapine.com/almnewfeatures.html

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 31

by Linda Hayes

Should QA Perform Unit Testing?
The short answer is no, absolutely not.

The long answer goes like this: You know that old saying that indicates the later you find a
defect, the more it costs to fix? Well, it’s true; yet few make decisions as if it is. Rigorous testing in
design and development lifecycle phases is rare, as is root cause analysis to determine where the
defect was introduced (requirements, design, and build) and where it was detected (engineering,
QA, and production). But without this analysis, you can’t really tell where to adjust your processes
for improvement.

you Can’t fix quality in qa
Unit testing is the responsibility of engineering in most system development lifecycles. The de-

veloper who creates or modifies a unit of code should be accountable for testing whether the code
meets its technical requirements before it is delivered to QA. While some developers are diligent
about unit testing, others may not be, and still others simply lack education. Even worse, schedules
rarely allocate time for testing, and developers are usually only rewarded for delivering code, not
necessarily for delivering quality.

If you skimp on or skip early-stage testing activities, the impact inevitably flows into QA. Low
quality code complicates or blocks functional, regression, and performance testing. This forces
QA to perform unit testing in self-defense. This comes at the sacrifice of QA’s own responsibili-
ties, given the reality of limited schedules and resources. The more unit testing is performed by
QA testers, the less other types of testing gets done, and, as a result, the more defects escape into
production.

The ultimate irony of this predicament is that in most cases, QA is held accountable for escaped
defects instead of engineering. Show me an engineering organization that is lax about unit testing
and I will show you a testing organization that is compromised. We have all witnessed companies
throw more and more resources into QA to counter low quality yet completely ignore upstream
processes like review of requirements definitions and design specifications.

If you are part of a QA organization that finds itself being sucked into unit testing because low-
level capabilities like field edits, menu navigation, and error handling are missing or unreliable,
here is some advice:

1. Review your company’s systems development lifecycle (SDLC) documentation and review
the section about unit testing. I will lay odds that it belongs to engineering and not to QA.

2. Analyze the types of errors you are encountering and identify those that should have been
uncovered with appropriate unit testing.

3. Schedule a review with management and present your data as objectively, but firmly, as pos-
sible. Point out that your responsibilities are being compromised by noncompliance with up-
stream SDLC activities. Augment your data with industry data that shows how much more
costly defects are to fix the later they are detected.

4. Present alternatives, which should start with educating engineering in unit testing techniques
and formalizing the process to assure compliance. Make it clear to management that unit
testing is outside your scope and that it will cost time and resources to include it.

5. Finally, no matter what the outcome, institute root cause analysis for every defect, not only
where it was introduced and discovered, but also where in the process it should have been
detected. Then, make sure you include this information in every project status review.

I can’t guarantee you will get everything you ask for right away, but if you continually arm
yourself with data and educate management with ways to improve product quality, simple eco-
nomics and the positive impact to customer satisfaction should eventually prevail. The earlier you
uncover a defect, the cheaper it is to fix. Really. {end}

lhayes@worksoft.com

http://www.TechWell.com
mailto:lhayes@worksoft.com

32 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

The Last Word

the code is fully commented. Here are a few best practices.
Choose a clear coding style: Keep your function and data

naming consistent.
Optimize for the reader, not the writer: Saving time while

you write code can cause serious frustration and confusion for
anyone reading that code later.

Include concise comments: If it isn’t obvious what’s hap-
pening when you look at the code or you’ve implemented
something a little unusual, make sure you include good com-
ments to explain it. Don’t write your comments for yourself—
imagine someone else trying to understand your code cold.

Always do the smallest, simplest thing to add value: Al-
ways focus on the task at hand and write the best code you can

to achieve your current aim.
Don’t do anything unusual.
Writing code with one eye on
future requirements is a recipe
for disaster. Designing your
code in a modular fashion
with separate, discrete parts is
much easier to understand.

KISS (Keep It Simple,
Stupid): Don’t assume the
next person working on your
code is going to be at the same
level of understanding or ex-

perience. Write code that a novice can understand and leave
out the experimentation and excessive optimization out.

Ensure good logging of code execution: Effective debug-
ging requires good code logging. You need evidence of what
was going on when the code was written. Log actions, entry
points, exit points, and parameters, and make the code con-
figurable. When you log from the beginning, it will be easier
to pinpoint specific errors and the origins of those errors
down the line.

2. Write Code that is easy to modify and enhanCe
To write code that is truly maintainable, it must be easy to

add new functionality and features. Extensibility is vital. If a
single change is liable to break the code in ten different places,
then you’re in serious trouble. It is possible to make your code
easier to change down the line. Here’s how.

When a developer writes code, he imagines that he will be
the only one working on it in the future. But the reality is
that someone else will have to work on it. This may be due
to a number of reasons: New functionality may be required,
changes will be needed for existing features, and fixes for de-
fects will need attention. The latter is a certainty. All of this
work is often performed long after the original code was
written and by a developer who did not write it. The challenge
is to make changes without breaking the existing code. This
situation can be complicated by the fact that there may be little
technical documentation summarizing what the code actually
does, and any future work will typically have tight schedule
demands.

If we accept Robert L. Glass’s
assertion in his post “Frequently
Forgotten Fundamental Facts
about Software Engineering”
for the IEEE Computer Society
[1] that software maintenance
accounts for 40 to 80 percent
of total software development
costs, then we can understand
the importance of writing main-
tainable code from the start. Fo-
cusing on rushing the product
out the door and failing to make
code easily understandable for those who will work with it in
the future dramatically increases the cost down the line.

Starting over from scratch because you’re afraid that every-
thing will break if you make too many changes is hugely dis-
ruptive and costly. It’s a simple truth that the more maintain-
able your code is from the start, the longer its lifecycle will be.

The question is, how do you write maintainable code?
These three simple rules will keep you firmly on the right track.

1. Write Code that is easy to understand and deBug
If the next developer to work on your code can’t understand

what you’ve done or why you’ve done it a specific way, then
they’ll usually throw that code away and start over. It takes
longer to understand poorly written code than to write new
code from scratch. Write structured code with a clear format,
follow conventions, and, if it isn’t self-explanatory, make sure

“It’s a simple truth that the more

maintainable your code is from the

start, the longer its lifecycle will be.”

The Rules for Writing
Maintainable Code
There are three fundamental rules that every software developer should

take into account when creating code to support long-term maintainability.

by Kaushal Amin | kaushalamin@kms-technology.com

http://www.TechWell.com
mailto:kaushalamin@kms-technology.com

 www.TechWell.com MARCH/APRIL 2014 BETTER SOFTWARE 33

Click here to read more at StickyMinds.com.
n	 References

DRY (Don’t Repeat Yourself): Many developers have a
nasty habit of writing code for one purpose and then copying
and pasting elsewhere to do something else. If it gets used
in multiple places and there’s something wrong with it, then
you’ve just multiplied the defect. If you’re tempted to copy and
paste code, consider extracting the common functionality to be
available throughout your code base.

Separate concerns: You should modularize code based on
distinct features that overlap as little as possible in terms of
functionality. If the code needs to do fifteen things, then split
it up into fifteen modules that each do one thing. Don’t try to
do all fifteen things in one module because that will make it
tougher to make changes without breaking everything else.

Separate code and data: You should always externalize text
into separate files. For example, it takes additional effort to iso-
late menu options and error messages into an external file, but
if you put text in the code, it will be more difficult to change
it later. Make sure you use a consistent nickname in language
text file names. This approach enables text to be updated by
nondevelopers without letting them near the actual code.

Avoid long statements and deep nesting: Don’t write all
your code in one big function because it’s really tough to un-

derstand if it’s performing too many tasks. In my experience, a
single function that is more than a couple of printed pages long
is way too long and should be subdivided.

3. Write Code that is easy to test
Saving the best for last, a good suite of tests can serve as

documentation, indicating how the code is supposed to behave
while making sure that the code actually supports the expected
behavior. Even better, great tests can give you confidence that
your code still works after you've made your changes.

Automated unit testing should be implemented from day
one so that when you make changes, the automated testing
program will run and you can see what needs to be fixed imme-
diately. In agile, even though it takes more time at the outset to
write test programs and code concurrently, comprehensive tests
should save major time and resources in the long run. {end}

The Last Word

Better Software (ISSN: 1553-1929) is

published six times per year: January/

February, March/April, May/June, July/

August, September/October, and November/

December. Back issues may be purchased

for $15 per issue plus shipping (subject

to availability). Entire contents © 2014 by

Software Quality Engineering (340 Corporate

Way, Suite 300, Orange Park, FL 32073), unless

otherwise noted on specific articles. The

opinions expressed within the articles and

contents herein do not necessarily express

those of the publisher (Software Quality

Engineering). All rights reserved. No material

in this publication may be reproduced in

any form without permission. Reprints of

 individual articles available. Call 904.278.0524

for details.

Display Advertising
advertisingsales@sqe.com

All Other Inquiries
info@bettersoftware.com

Agile & Better Software Dev Conference West http://adc-bsc-west.techwell.com 10

ASTQB http://www.astqb.org/advanced 8

Capgemini http://www.capgemini.com/testing 25

Cognizant https://fastest.cognizant.com/webapps/home Back Cover

HP http://www.hp.com/go/alm 12

Ranorex http://www.ranorex.com/whyBSM 2

Software Tester Certification http://sqetraining.com/certification 1

SQA http://www.sqasolution.com 13

STARCANADA http://starcanada.techwell.com Inside Front Cover

STAREAST http://stareast.techwell.com 9

Virtusa http://bit.ly/1ePFwO3 21

index to advertisers

http://www.TechWell.com
http://www.stickyminds.com/sticky-note/references-167
mailto:advertisingsales@sqe.com
mailto:info@bettersoftware.com
http://adc-bsc-west.techwell.com
http://www.astqb.org/advanced
http://www.capgemini.com/testing
https://fastest.cognizant.com/webapps/home
http://www.hp.com/go/alm
http://www.ranorex.com/whyBSM
http://sqetraining.com/certification
http://www.sqasolution.com
http://starcanada.techwell.com
http://stareast.techwell.com
http://bit.ly/1ePFwO3

34 BETTER SOFTWARE MARCH/APRIL 2014 www.TechWell.com

http://www.TechWell.com
https://fastest.cognizant.com/webapps/home

	StarCanada Ad 3:
	Button 17:
	Ranorex Ad 2:
	SQE Logo:
	SQE Training Logo:
	Button 25:
	STAREAST AD2:
	Button 18:
	StickyMinds:
	com logo: Off

	Button 19:
	Button 20:
	Button 21:
	Button 22:
	Button 23:

