
“Trying to improve software quality by
increasing the amount of testing is like
trying to lose weight by weighing yourself
more often…. If you want to lose weight,
don’t buy a new scale; change your diet.
If you want to improve your software,
don’t test more; develop better.”

— Steve McConnell in Code Complete

THE BEST WAY TO ENSURE THAT THE CUS-

tomer never sees a bug is to never create
one in the first place. Yet, improving the
quality of development, or “developing
better” as McConnell calls it, is rarely
even discussed. I remember one annual
review in which I gave myself a poor
score for creating too many bugs. My
manager responded, “Yeah, well, every-
body has bugs.” That’s the crux of the
problem. Bugs are expected. Everybody
has them. We’ve created “testing” to help
find these bugs so that we can “cure”
software applications before they ship.

We all know that prevention would be
better. Studies show that the cost of fixing
a defect grows exponentially over time,
and the earlier in the lifecycle the defect is
detected, the cheaper it is to fix. Shifting
the focus of the industry away from cure
and toward prevention requires an entire-
ly different mode of thinking, but it’s the
next obvious step. The software industry
has survived other big mindset changes.
We’ve moved from structured thinking to
object-oriented thinking, from mainframe
to desktop to client/server to Internet,
from text-based to GUI. In fact, in many
cases, developers were the ones driving
the changes.

Many people in the industry are al-
ready “developing better.” Agile methods
admit that humans make mistakes and
then focus on compensating for those
mistakes when they happen. Techniques
such as pair programming and two-per-
son design make review a creative team-
ing endeavor instead of an IRS-style audit

or a teacher with a red pen. Source code
control systems stop developers from
“stepping” on each other’s code. Hallway
usability tests step through the user inter-
face of the software before it is even writ-
ten. Test-driven development forces devel-
opers to focus on inputs, outputs, and
boundary conditions of the software be-
fore they write a single line of code. Proj-
ect velocity helps with improving esti-
mates over time and picking realistic ship
dates. Iterative software models get a sim-
ple working system into the hands of
testers fast, then build onto that system,
instead of discovering all the integration,
logic, and other errors in one big chunk
of time at the end of the project.

All too often, “quality problems” are
blamed on the mysterious “quality peo-
ple” instead of the person who actually
introduced the defect. If we are to move
toward prevention, management must
create an environment and culture of
quality. Developers must choose to do
the right thing instead of the easy thing
because they believe doing the right thing

now will save time and effort later. To en-
sure quality requirements, design, and
code, the tester role must become one of
a quality champion who is involved in
the project from the outset. It’s surprising
that it has taken us so long to adopt a
prevention mindset—the idea is not new.
The automotive industry and most of
American manufacturing has been deal-
ing with it for decades. Maybe in compa-
nies that build things, the pile of scrap
that is thrown away after rework makes
its own point. In software, with such in-
tangible products, it may feel far too easy
to do sloppy work and “put a patch on
the website if we have to.” Moving to-
ward prevention is a challenge. Yet, if we
are to win in this increasingly competi-
tive world, it is a challenge we must rise
to meet. {end}

Matthew Heusser is a programmer/ana-
lyst at Priority Health, where he is also
chair of the QA committee for software
engineering. He can be reached by email
at heussers@datawise.net. S

A
N

TA
 F

A
B

IO
/R

E
D

U
X

 P
IC

T
U

R
E

S

48 BETTER SOFTWARE MARCH 2004 www.stickyminds.com

The Last Word

An Ounce of Prevention ...
by Matthew Heusser

Matthew Heusser believes prevention is the best cure for bugs.


