
IS
TO

CK
PH

O
TO

18	 BETTER SOFTWARE	 SEPTEMBER/OCTOBER 2009	 www.StickyMinds.com

BY STEVEN WOODY

Longevity testing is an often-over-
looked part of software robustness
testing for many projects—from net-
working routers to Web servers and even
planetary rovers. Many software appli-
cations are intended to run indefinitely,
in an always-on operating environment.
And yet, few test plans include more
than a memory leak test case or let the
software run for longer than a few days.

Longevity testing (also known as soak
testing or endurance testing) looks for soft-
ware problems that appear only after an
extended operational time. These problems
fall into two broad categories: problems due
to the passing of time and problems due to
cumulative usage.

The Passing of Time

Accuracy drift
The passing of time can cause soft-

ware accuracy to drift. A tragic example
is the Patriot missile failure in February
1991. The software uptime was stored
as an integer and converted to a 24-bit
floating-point number, causing the soft-
ware to have noticeable inaccuracy in
the target-velocity tracking after only
eight hours of operation and to be inac-
curate to the point of failing to track the
target after only twenty hours of contin-
uous operation.

The field-mobile Patriot missile
launcher was intended to operate for only
a few hours at a time. However, nothing
prevented the system from being operated
for much longer periods. At the time of
the failure, the system had been running
continuously for one hundred hours. [1]

Don’t rely on the software users to
reboot their systems periodically. In fact,
assume the opposite—that most users will
operate the software continuously with
never a reboot. This continuous usage
goes against the practice in most software
test labs, where the software is restarted
every few days with a new build if not re-
booted hourly between test suites.

Timeouts, expirations, and
schedulers

Most software is populated with
timers and schedulers, which start or

stop activities minutes, hours, or days
into the future. Sufficient time must be
allowed during testing to exercise these
timers. Timeouts and expirations to be
tested commonly include user session
timeouts, firewall session timeouts, ARP
tables and MAC address tables aging out,
routing tables expiring, SIP registrations
renewing, DHCP leases renewing, DNS
mappings expiring [2], and age-based
passwords expiring. Software scheduler
testing should include automatic mainte-
nance activities such as daily virus scans,
nightly database resynchronizations,
weekly database backups, and monthly
software patches or upgrades.

A software license is a type of soft-
ware scheduler that commonly expires
after six or twelve months. Forgotten
software licenses tend to expire at the
worst possible time. Even worse, a bug
in the licensing software can have dra-
matic consequences, as demonstrated by
VMware virtualized servers, which were
prevented from starting up after August
12, 2008. [3] Gentle warnings should be
given weeks in advance of a software li-
cense’s expiring. When the system boots
up with an expired license, the user
should be presented with a clear path to
update the license key. Software applica-
tions that depend on the software license
need to handle the expiration gracefully.
Avoid a total crippling of all applications
when just one application has a depen-
dency on an expired license.

Some activities are postponed when
the software is very busy, and other ac-
tivities are only activated when the soft-
ware is sufficiently idle. Longevity testing
should include tests of long busy periods
(soak testing) as well as long idle periods
(quiescent testing).

Soak Testing: Testing the system
under heavy load for an extended period
is known as soak testing or endurance
testing. This testing differs from typical
stress tests, which apply a burst of heavy
load or a volume spike for a matter of min-
utes. Soak testing verifies that data buffers
and message queues operate correctly over
periods measured in hours or days.

Place the system under increasing
amounts of load (increasing users, trans-

	 www.StickyMinds.com	 SEPTEMBER/OCTOBER 2009	 BETTER SOFTWARE 	 19

actions, traffic, incoming data, or dataset
size). Increase the load to three times, five
times, then ten times normal, until any
load-regulating, rate-limiting, or discard
mechanisms become active. Then, main-
tain that load and don’t let the system
come up for air. On embedded systems,
incorrect hardware watchdog/heartbeat
timeouts can occur when the software is
busy for extended periods of time.

Keep the software busy for an ex-
tended period so that software post-
pones or preempts nonessential activities
in order to perform time-sensitive ac-
tivities. Make sure that scheduled main-
tenance activities—such as database
backups, database resynchronizations,
virus scans, and in-service software
patches or upgrades—do not crash an
already busy system if the maintenance
window inadvertently overlaps with a
period of heavy system use.

Quiescent testing: Testing the system
with no load is known as quiescent
testing. Place the system in an idle mode
with the minimum amount of activity.
Allow sufficient idle time for any timers
or leases to expire and any sleep, hiber-
nate, or suspend modes to activate. After
a sufficiently long idle period, resume
activity on the system, verifying correct
operation. This test then can be repeated
for longer and longer quiescent periods.

Calendar date and time rollovers
The passing of time eventually causes

clock and calendar rollovers for any
software that uses a real-time clock. The
Y2K rollover is the most well-known
example of this type of bug [4], but
there are many standard date and time
rollovers that need to be tested [5], de-
pending on the longevity of your soft-
ware.

All date and time software should
be tested for near-term rollover dates
and times such as the one-hour adjust-
ment for daylight saving time (in fall
and spring) and February 29 (Leap Day,
occurring mostly every four years). Sys-
tems using UTC or NTP need to contend
with an extra leap second being added
(23:59:59, 23:59:60, 00:00:00) yearly in
June or December, as needed.

How long can your software operate continuously? Is your answer measured in
hours, days, months, or years? More to the point, how long do you let the software
run during your test cycle?

Longer-term rollover dates in-
clude the GPS system seconds reaching
999,999,999 on September 14, 2011,
and the GPS week number rollover on
April 7, 2019. Operating systems and
compiler-date and time-library routines
have rollover dates as well. [5] The most
well-known operating system calendar
rollover is the Unix 32-bit time overflow
that will occur on January 19, 2038. [6]

Some calendar rollover bugs occur
on non-standard rollover test dates, as
demonstrated by the Tandem CLX fault-
tolerant workstations, which stopped
working at 3:00 p.m. on November 1,
1992. [1] A bit of research and code in-
spection will be needed to determine the
key rollover dates to be tested for your
particular software. Software testers
should not hesitate to “look under the
hood” at the code, as advocated by Len
DiMaggio. [7]

For each rollover date and time test,
manually set the date and time of your
system and then verify that your soft-
ware operates correctly during and after
each rollover. Verify that billing cycles,
reservation dates, alarm clocks, and
other date-based calculations operate
correctly. Verify that age-based calcu-
lations work equally well for someone
born today as for someone born 122
years ago. Set the date years into the fu-
ture to verify that your software does not
have an unexpected date or time limita-
tion over its expected product lifespan.
Reboot the software after each rollover
to verify that the system will boot up,
initialize, and then operate correctly.

System uptime and clock ticks
System-uptime counters and any al-

gorithms that use the system uptime are
particularly prone to failure when the
counter reaches its maximum value and
overflows, restarting the uptime count to
zero. These uptime counters are incre-
mented every few milliseconds by a hard-
ware clock, making the rollover occur
quite predictably after a specific number
of days, depending on the period of the
clock tick, as shown in table 1.

Examples of software problems
caused in 2008 by system-uptime roll-
overs included crashes of the Cisco Uni-
fied Communications Manager after 248
days [8] and the Cisco MDS 9000 Series

Multilayer SAN Switches restarting after
497 days. [9]

Even longer uptime problems are pos-
sible, of course, as demonstrated in 2006
by the Sun StorEdge RAID Manager re-
setting after 828 days. [10] For acceler-
ated testing of system-uptime rollovers,
it is quite helpful to have a debug com-
mand allowing manual setting of the
system-uptime counter.

Cumulative Usage

Resource exhaustion
The cumulative usage of software

tends to create more and more inten-
tionally stored data. If storage resources
are not managed carefully, this stored
data causes file systems to fill up or
free memory to be depleted, a problem
known as resource exhaustion.

A dramatic example of resource ex-
haustion occurred on NASA’s Spirit
rover, which stopped communicating
with Earth on January 21, 2004, after
having landed on Mars just seventeen
days earlier. Suspecting a problem with
the flash memory, JPL engineers com-
manded the rover to boot up without
reading the flash, and then deleted
hundreds of unneeded files on the flash
memory, which quickly addressed the
problem. [11] The rover has now been
running for more than five years, well
surpassing its longevity design goal of
ninety days of operation.

Resource exhaustion also can occur
due to unintentional consumption of
resources such as memory—commonly
known as memory leaks. A simple bug
that neglects to free up a small block of
memory after it has finished using it can
eventually cause the whole system to
crash when no free memory is left. Unix
daemon programs must be particularly

well tested for memory leaks, as these
programs are intended to run indefi-
nitely. [12]

A recent example of a memory leak
problem was discovered in the Cisco
MDS 9000 Family SAN-OS Release
3.0 in February 2008, which caused the
switches to reload after running out of
memory after about 233 days. [13]

When testing longevity, verify that the
software gracefully handles commonly
occurring resource exhaustion scenarios.
According to Jim Gray’s often-cited
study of Tandem computer outages,
“The most common procedural mistake
is letting the system fill up: either letting
some file get so big that there is no more
disc space for it, or letting the transac-
tion audit trail get so large that no new
log records can be written.” [14] At the
very least, software should monitor the
resources and give clear warnings as crit-
ical resources are consumed past 90 per-
cent, 95 percent, and 99 percent levels.

Resource monitoring is a vital tool
for quick detection of resource manage-
ment bugs during testing and operation,
but resource exhaustion problems often
creep in on resources that are not moni-
tored, including inodes, file handles,
sockets, process threads, and data buf-
fers and queues. Longevity testing at-
tempts to find resource exhaustion bugs
in as short a time as possible.

Overflow and wraparound
Integer overflows happen as the cu-

mulative use of the system causes integer
counters in the software to reach their
maximum values.

After reaching the maximum value, the
counters then go negative (for signed num-
bers) or rollover to zero (for unsigned num-
bers). These unexpected jumps can cause
catastrophic problems for the software.

20	 BETTER SOFTWARE	 SEPTEMBER/OCTOBER 2009	 www.StickyMinds.com

Table 1

Transaction-based protocols that
increment the transaction ID or ses-
sion ID with each new transaction must
handle increasingly larger session identi-
fier numbers as time goes on. Database
applications must handle increasingly
larger database record ID numbers.
These overflow issues can occur more
rapidly with larger scale systems, with
larger dataset sizes, and with higher
transaction rates, all of which can be
used to accelerate longevity testing.

Reentrant Code
Some bugs don’t show up until the

same code has been run more than once.
A subroutine that works flawlessly the
first time may crash the software when
it runs later, due to an improperly re-ini-
tialized variable affecting the results the
second, third, or nth time around.

Just such a reentrant problem oc-
curred during simulator testing just
prior to the NASA shuttle flight on the
STS-2 mission in 1981, causing all four
of the flight computers to lock up. The
subsequent investigation revealed that
a reentrant subroutine for fuel control
was not properly initializing a variable
during subsequent passes. [15]

Similarly, a reentrant bug in Micro-
soft’s Internet Explorer was found in De-
cember 2008, requiring a security patch
to address it. [16] In order to catch reen-
trant code bugs, software features must
be tested repetitively during longevity
testing—without any reboots or restarts
of the software.

Accelerated Testing
Techniques

Scaling up the system to the max-
imum that resources allow will help ac-
celerate the occurrence of many longevity
bugs. Increase the number of users, the
number of transactions per second, the
interface traffic rate, the incoming data
rate, or the dataset size as your system
and testing budget allow.

Another technique to accelerate lon-
gevity testing is to preset any counters,
session IDs, or record numbers to within
a few counts prior to the rollover point.
Then, start normal operation and ob-
serve that the integer rollovers are han-
dled correctly in the software.

A third acceleration technique is to

pre-consume the software resources.
Nearly fill each storage type, including
flash memory, RAM, and hard disks.
When creating test files to fill storage
space, perform two types of accelerated
tests: the first using one or two extremely
large files, and the second creating thou-
sands of minimum size files in multiple
subdirectories. For both tests, repeatedly
create and delete files and directories to
exercise the file system data structure.

Which Longevity Test to
Run?

When running a longevity test, should
the software be idle, as busy as possible,
or somewhere in between? Each type of
environment has its advantages and dis-
advantages. An extended period of heavy
usage followed by an extended period of
normal usage will find many longevity
problems. Try to compress at least one
year of expected activities (logins, re-
freshes, transactions, calls, packets) into
the first seventy-two hours of testing.

During any longevity testing, increase
the sensitivity on system alarms and
logs, and then periodically check for any
unexpected error messages. If supported,
start a run-forever command such as a
continuous ping. Monitor critical soft-
ware resources for leaks. Continuously
verify the software operation for cor-
rectness, accuracy, and performance.

How Long to Run
Longevity Tests?

Testing for the full operational life of
the system is only practical on software
with the maximum run time measured in
just hours or days. Most software will
be in operation for months or years or
will be expected to run indefinitely. Even
with automated testing tools and acceler-
ated testing techniques, how long should
you test software longevity?

If the test overhead or equipment
costs are prohibitively high for a product,
a full suite of longevity tests might only
be done once. Communications satellites
and space exploration probes are oper-
ated continuously for weeks at a time
during system testing prior to launch.
[17]

Other products may benefit from
a regular verification of longevity test
cases, if only for major releases. High-

availability, continuous-uptime, and
nonstop software should be endurance
tested with a continuous, heavy load for
a full eight days, as some problems will
not appear until after a full seven days of
continuous stress testing.

Keep track of how long the software
runs continuously during testing. Docu-
ment the maximum uptimes tested for
idle, normal, and stress operation for
each version of software. A software fea-
ture useful for longevity testing is a log
message giving the system uptime at the
point when any reboot, restart, or reload
command is issued.

To determine how long to test lon-
gevity, perform a code review and make
a list of the integer counters. Calculate
how long it will take for each counter to
overflow. Your longevity testing should
run at least long enough to verify that
counter rollovers are handled correctly.

Start longevity testing early with
the available software version under
development, well before the planned
release date. One approach is to set
up six longevity test systems (powered
via an uninterruptible power supply).
Once a month, verify correct operation
on all six systems. Once a quarter, up-
date the shortest-running system to the
latest software version under test. Do
this every three months until you have
six systems, one each running 90, 180,
270, 360, 450, and 540 days. When the
oldest system reaches 540 days of up-
time, update the software on that system
to the current version.

To summarize the steps for longevity
testing, start early, put the system under
heavy load, continuously monitor the
performance, and let it run for days,
months, or years. Remember that a few
simple longevity tests can prevent major
problems from eventually occurring—it’s
just a matter of time. {end}

References
[1] Neumann, Peter G. Computer Related Risks.
Addison-Wesley Professional, 1994.
[2] Brewer, Eric A. “Lessons from Giant-Scale
Services.” IEEE Internet Computing. July/August
2001. www.cs.berkeley.edu/~brewer/Giant.pdf
[3] Keizer, Gregg. “VMware licensing bug blacks
out virtual servers.” ComputerWorld. August,
2008. www.infoworld.com/article/08/08/12/
VMware_licensing_bug_blacks_out_virtual_
servers_1.html

	 www.StickyMinds.com	 SEPTEMBER/OCTOBER 2009	 BETTER SOFTWARE 	 21

22	 BETTER SOFTWARE	 SEPTEMBER/OCTOBER 2009	 www.StickyMinds.com

[4] Collard, Ross. “The Y2K Bust.” StickyMinds.
com www.stickyminds.com/s.asp?F=S3241_ART_2
[5] “Potential problem dates for computers.”
The Institution of Engineering and Technology,
2001. www.theiet.org/factfiles/it/index.cfm
[6] “RFC2550 – Y10K and Beyond.” The Internet
Society, 1999. www.faqs.org/rfcs/rfc2550.html
[7] DiMaggio, Len. “Looking Under the Hood—
An Investigative Approach to Software Testing.”
Software Testing and Quality Engineering,
January 2000. www.stickyminds.com/getfile.asp?ot=
XML&id=5023&fn=XDD5023filelistfilename1%2Epdf
[8] Field Notice: FN – 63174- Cisco Unified
Communications Manager. Cisco, 2008.
www.cisco.com/en/US/ts/fn/631/fn63174.html
[9] Field Notice: FN - 63178 - MDS Fabric and
Blade Switches May Reload After 497 Days of
Uptime. Cisco, 2008. www.cisco.com/en/US/ts/
fn/631/fn63178.html
[10] Sun StorEdge RAID Manager. Sun Micro-
systems, 2006. sunsolve.sun.com/search/document
.do?assetkey=1-66-201560-1
[11] Reeves, Glenn and Tracy Neilson. “The
Mars Rover Spirit FLASH Anomaly.” Jet Propul-
sion Laboratory, 2005. trs-new.jpl.nasa.gov/dspace/
bitstream/2014/39361/1/04-3354.pdf
[12] DiMaggio, Len. “Testing Unix Daemons.”
Dr. Dobb’s Journal, March 2000.
www.ddj.com/184404033
[13] Cisco MDS 9000 Family SAN-OS Release
3.0. Cisco, 2008. www.cisco.com/en/US/ts/fn/620/
fn62818.html
[14] Gray, Jim. “A Census of Tandem System
Availability between 1985 and 1990.” HP Tech-
nical Reports, 1990. www.hpl.hp.com/techreports/
tandem/TR-90.1.html
[15] “Excerpt from the Case Study of the Space
Shuttle Primary Control System.” Communica-
tions of the ACM, 1984. www.rvs.uni-bielefeld
.de/publications/Incidents/DOCS/ComAndRep/Ariane/
shuttle.html
[16] Howard, Michael. “MS08-078 and the
SDL.” blogs.msdn.com/sdl/archive/2008/12/18/
ms08-078-and-the-sdl.aspx
[17] Academy of Program / Project & Engineer-
ing Leadership. “Redesigning the Cosmic Back-
ground Explorer (COBE).” National Aeronautics
and Space Administration. www.nasa.gov/
pdf/293139main_COBE_case_study.pdf

For more on the following topics go to
www.StickyMinds.com/bettersoftware.
n	 Longevity bug examples
n	 More reading on longevity testing

Sticky
	 Notes

The Seven Habits of Highly
Effective Testing Organizations

How are you tackling quality issues?

Is your testing organization regarded as trusted advisor –
or a perceived bottleneck to getting releases out the door?

Contact us: 1 800 613 7535 | info@mks.com

From this white paper you will learn:

. How Agile is changing the way we test

. Why the testing organization no longer needs to be a distinct group

. The importance of risk-based testing and its main elements

. Change management’s importance for producing quality software

Lee Copeland brings us a look at the habits that we should adopt to
take testing to a new level and reap greater value from QA efforts.

www.mks.com/seven_habits
Get the free white paper, compliments of MKS:

A New White Paper by

Testing Expert Lee Copeland

