Building Executable Software Test Specifications

Michael Corning
Microsoft Corporation

Software tends to get more powerful. Hardware, and to some extent software, technol ogies evolve at hon-
linear rates with Moore's Law at the limit. Software test, however, has not kept pace, so even as systems
have more and more services and features, relatively fewer of these new services and features are
adequately tested. While thereis no panacea for this predicament, there are definite steps test organizations
can take to begin to close the gap, or at least slow down the speed of the spread.

The key to success for testing advanced software systemsisto lower the timeit takes to design, implement,
and execute software tests and to raise the amount of time machines spend executing these tests; i.e., the
goal should be to have 100% of the machines running interesting tests 100% of the time. Executable
software test specifications help with the first goal, and generating and running an arbitrarily large number
of test cases continuously hel ps with the second. Indeed, there is even some prospect that the software test
infrastructure, itself, can decide what's "interesting."

There are two obstacles to success, two specific problems, keeping us from reaching our first goal. First,
the bandwidth of the systemswetest far outstrips the bandwidth of testers. This means human
comprehension of the artifacts of human ingenuity always lags. But if we can apply the very power of the
systems we test against the systems we test then we can leverage the power of the machine to understand
machines.

Aswe make progress using this leverage we introduce a reciprocal problem: if we massively test our
systems we might expect to find massive numbers of bugs (but we should not forget that those bugs were
alwaysin there). If this happens, it's three steps forward one step back. We need to devise test systems that,
by design, do a better job of keeping bugs out of the system, altogether.

Testers on Microsoft's Server Management team face these issues everyday. There's avery good reason that
there are no widely effective server management systems on the market today: server management (among
thousands of machines) is difficult, and server management is not built into server technology. So while
Microsoft devel opers rectify this deficiency, Microsoft testers are devising clever systemsto enable them to
test these vastly more powerful server technologies. This report documents some of their success.

This document augments the Power Point presentation by focusing far more on the
technical details of the executable software test specification system. See the Power Point
slidesfor a higher level view of the system.

A Model of a Test

Over the years Microsoft test engineers have developed a model of a software test. These testers have
simultaneously developed a strategy to cope with the issues noted above, a strategy especially well-suited
to an environment like server management where all kinds and combinations of services and topologiesis
arrayed before them.

In the early stages of the design phase of test development, testers partition testsinto a handful of
categories. These categories help guide the testers' thinking about what to test. Sometimes these priorities
radically change, asthey did last year at Microsoft when the entire company did nothing but run security
tests. The categories chosen to guide test development are up to test management to sanction, but once
done, those categories become a permanent part of the test org's model of atest.

The second strategy used by testersisto stratify or prioritize tests. This permits some level of control over
which tests run when. There are two general parameters that distinguish one stratum from the next. Timeto
run and functional coverage, and they often interrelate to each other. That is, (normally) functional
constraint implies short run times. Aswith test partitions, test strata are dictated by test management who
has considerabl e discretion when setting standards.

The third strategy for dealing with complex test engagementsisto define atest matrix that maps val ues of
variables describing aspects of the overall system. Variable for server management include operating
system (including versions and service packs) and services such as Exchange Server or Active Directory or
Internet Information Services. Again, specifying these combinations enabl es test management to decide
what configurations are most important to test.

The Microsoft Server Management Test organization has given specific names to each of these strategic
components. The"Set" isthe construct that enables groups of tests to be executed in different
configurations. The "Level" construct is aflexible data container that includes both an ordinal number
(each representing one of eight strata) and a category name. Thefinal construct isthe"Var." The Var
contains a description of each individual test (or class of tests). Vars can optionally include runtime data, in
the spec, these runtime data are rendered in so-called "data tables.”

Data tables are an important productivity feature. One of the most powerful ways to use the machine to test
the machine is to enable the machine to generate test cases. In adata-driven spec the tester is responsible
for either defining individual tests (by the specific data passed to the test execution runtime) or by declaring
what values atest's arguments can take (and | et the machine actually generate the individual tests, each
with its own combination of possible values for the test's arguments).

These three constructs (Set, Level, and Var) form anatural hierarchy, and each Var can be uniquely
identified at any moment in time by the Set.Level .Var triplet. Figure 1isthe object model for Sets, Level,
and Vars.

Spec
1
n
Sat
1
o
Level] § Ordinal L 3 Ordinal
1
n
1 1| Data |1 n 1T m .
War Table Riows Columns
i 1 1
1 n*m 1
Test Test Test
Casza Case Case

Figurel: A Model of Tests

Since it might not be clear from the object model diagram, | should note in passing that a Set may contain
any number of Level numbers, and any of those Level numbers can be the same value; what makes Levels

of the same number different is the category assigned to each. So a more precise way of stating it isthat
any Set can contain any number of Level Number/Category combinations. For example you could have up
to six Level 3 (Functional) testsin any Set, each Level using a different category.

This object model is more closely related to an interface, for it merely specifies the constituents of a model
of atest. The SLV model issilent with respect to implementation. For example, early implementations of
this test model used text filesto list the Vars to execute (and testers were responsible for maintaining the
SLV identity of tests which got them into trouble when they copied and pasted linesin the file for new tests
but forgot to renumber the new lines); the current implementation of this model on the Server Management
team uses XML. Aswe will seelater, XML provides some very distinct advantages, especially when it
comes to generating (automatically numbered) test cases.

It isimportant to note that the object model in Figure 1 hasinformation only used by
humans. That human-friendly information is the Level Category. Each spec reports the
number of tests designed for each of the five categories defined by test management, but
other than reporting and guiding atester's test design, the category is not used at runtime.

Modeling a Test

The executable software test specification described above is manually (or semi-automatically) generated.
For all intents and purposes data-driven tests are static in that the combinations of data values that define a
test are fixed by the tester explicitly. Granted, by merely specifying the names of atest's arguments and the
possible values of each argument, a data-driven test will generate n * m number of test cases, but that
Cartesian product changes only if the number of arguments or number of possible values change.

There are varieties of executable software test specifications that are far more dynamic than this. One
variety generates finite state machines directly from tester input. The FSM tool used by Server
Management testers was developed by a different team inside Microsoft, and that tool is not available
outside the company. Developing asimilar tool is not outside the scope of skill of most competent test
organizations, and until athird party product appears on the market, that's the only option available for
testers who want to use models to dynamically generate test cases.

A second variety of model-based tool is, however, available to readers of this paper. The Abstract State
Machine Language (AsmL) is available from Microsoft Research. At the time of thiswriting, AsmL was
still in beta, but was capable of not only generating afinite state machine and test cases from the FSM, it
was also capable of generating a state graph of the FSM. See my " Confessions of a Modeling Bigot"”
column on ASPToday.com for more details on this invaluable modeling language.

While important, most of the balance of this paper will not discuss model-based techniques and will instead
focus on technologies and tools widely available today to develop executable software test specifications.

The Role of Test Specifications

Specifications are an important part of the software devel opment process, especially when many people
contribute to the process. The essential function of a specification isto describe what a program does and
why the program needsto doit. Thisinformation is crucial when submitting atest design to peer review
and failure investigation (by someone other than the tester).

How the software test specification fulfillsits function requires thought and care in the design of the data
the specification conveys. The data model used by the test specification is ablueprint for the design and
execution of developed tests. The spec isamodel of thetest that describes what things are important to test.
In other words, atest spec tells testers how to think about the software they will test. It'sthe tester'sjob to
decide what to think, and it's the tester's lead and peers that pass judgment during peer review on the quality

of that thinking. If consistently used and reviewed, reports of the data all software test specifications
include will be reliable and useful to readers such as test leads and managers.

Software test specifications can have one more important function: if you serialize the datain the software
test specification you can execute it by sending the serialized data to a properly constructed test execution
runtime.

Executabl e software test specifications can contribute to the consistency of the system in several ways.
First, you can validate serialized data so the test execution runtime always processes input of consistent
quality. Second, awell-designed schema enabl es testers to design and implement tests that consistently
cover the application programming interface or the user interface under test. Third, since the test execution
runtime can't start without the serialized test specification and since each test variation isbound to aclassin
the code run by the test execution runtime, the specification and implementation are always consistent with
respect to each other.

Executable software test specifications can also streamline the test execution process. Part of the data
emitted from the specification includes references to classes and optional datathat start up atest run. These
test run contexts can install software or configure the application under test before any test variations run.
Different contexts can bind to different test variations at runtime, and all this because the executable
software test specification document is serialized as xml.

An Executable Software Test Specification Workflow

Figure 2 shows specific steps and files that make up the executabl e software test specification workflow. In
thisworkflow, atester uses Microsoft Word to statically generate test cases; i.e., the tester specifies what
each test case will be, what stepsit will take and what data it will use at runtime. Word was chosen because
an effective test spec has two parts, an informal, free-form section that tells the reader something about the
system under test and the rational e for the tests outlined in the subsequent structured section of the spec
containing the actual teststo run. A word processor like Word is the natural choice for writing free form
content. Writing a user interface for Word enabled testers to create the structured document section, as

well.

Each step in the workflow generates a very specific form of XML. The Intermediate Markup Language
(IML) isthe XML schema generated first. Itsroleisto faithfully represent the contents of the Word
document so that the system can generate aweb form version of the spec. The Failure Investigator
component of the system uses this machine-readabl e version of the test spec to display the section of the
spec related to afailed test. Thisability of infrastructure to reference the spec speeds up the bug resolution
process.

The transformation that generates the second XML schema, XIML, isthe process that generates test cases
from the description given by the tester in the spec. Depending on the data provided by the tester, a spec
with only afew Varsin it can expand to hundreds of test cases. The key thing to remember is that atest
consists of two things: actions to take and datato use. A single var is defined by the actionsit will take; and
the multiplicity of generated test casesis afunction of the diversity of data these actions consume. Our
executable software test specification system fully exploitsthis duality of executable test specs.

Web Version
of Test Spec;|

Y

Serialized Tests Descriptions of Failed Tests

Executable .
Software Tes! IML Failure
»/ Investi-

Specification
f gator
1

/Epand Tests with Data Tables
/{Est Metrics Report
Manual
XIML Tost /Eailed Tests

— Mgr

/Enerate Runtime XML file(s)
/ Test Exe
Runtime XML Runtime

Figure 2: Executable Software Test Specification Workflow

N1

When amodel is the executable software test specification Figure 2 is slightly modified.
ThelIML and XIML filesdon't exist and the Runtime XML Data provides the datafor the
web based version of the spec.

The ultimate goal of all this xml processing is to get the datain a shape that the test execution runtime can
consume. The final step in the workflow transformsthe XIML into an XML format defined by the
developer of the test execution runtime. Since the original data was entered into our system in aWord
document, there's the distinct possibility that the XIML data may be malformed or incomplete and the
serialization process (documented in my MSDN.Online article, " Using Visual Basic .NET from VBA to
Serialize Word Documents as XML") didn't catch the problem or couldn't resolve it without the tester's
input. And since reports of the number of tests specified should reflect the number of tests that the runtime
could actually execute, it makes sense to base the spec's reports on data validated by the XML Schemathat
defines the Runtime XML file consumed by the test execution runtime. That's what our system does.

So once the spec's datais validated it's ready for the tester to send it to the test execution runtime. Testers
use acommand lineto call on the runtime, and they can pass argumentsin the call that specifies which tests
to run. Testers can run one Set or arange of Sets; asingle Level or arange of Levels; asingle Var or a
range of Vars. It all depends on what the tester needs at runtime.

Our test execution runtime reports failures to the results repository by the Set.Level .Var triplet. This
identification can assist an investigator when resolving the bug, especially when the person investigating
the failureis not the author of thetest.

The Schema is the API

In this section we'll take a closer ook at the xml files depicted in Figure 2. Think of these XML filesas
program interfaces. If you want to devise your own executable software test specification system, use these
XML "interfaces" to guide your development work.

The IML Schema

Figure 3 shows an example IML file (some nodes without data have been removed for clarity). The IML
schema captures the basic information for its test specification, including the name of the spec document

(seedoc attributeinthet est Ar eas root element). Also noteworthy arethet enpl at eFol der and
specTr ansf or mattributes; these attributes provide alevel of indirection that enables me to change the
XSLT transform that renders the IML datainto aweb version of the spec without changing the source code
in the Word template. Thiswas alesson | learned the hard way, so my general guidelineisensure all xml
files have enough data to transform themselves without undue reliance on binary augmentation (such as
VBA codein aWord template).

ps [k Vew Pgewibee Joolh Help

=7arnl version="1.0" ancodng="uH-15" 7=

<resThress template Folder= Do\ Pragras FilesySME Test INfrastruciare S qris et SetBaorineg " speTrars oom=unlZspeca sl
mrar="Mickanl Corssng® doc="STAREastZ NS ang e TestSpuc.doc” spectiuld="1" pCt=" 130" contact="Flormemg”

= *hitg=) fsmainframetf schemas fsgris.net/ 2002501 femi*=

"STAKEASL Test. Sped SFamele” sot="True"~

St §: Pirst ot [STAREsstd f Mo Greup{s} axsigned] (STAREavt TestSpec. Sampbe]- heschng:
"17 oartegar v P as ITwe” g0t "trus"s

tusld Varifecation (E¥T] [Positive] haadngs

“nre’l” e First Var® sce"trus” -

= namm =08 fn s >
< wal- AW inbnng sl
= vEl=WiniP = faale
AT
<arg>
< e LN e e
< wal=EngeSvals
= val=Dpresival>
< val=Fry gl
= vl »hex sl >

"1° categry="Hamual =
i shawel 12 Bushd Vesileoaen (E¥T) [Maneal]« taadngs
— = war rear="N4" nr="7" hte="Disrenneck nefwsrk rable” soi="trees
t WA Taxe
< chrfTabln =
<Ky
< nams=EnwtaliThasFrogram = rams =
< wal=LE B sE= v ale
< vl >0 icm1 1= val >
< wileRsned B RdlxSvals

EaE g W

£l § My Compube

Figure3: Typical IML

The other implementation specific datainside each IML fileisthe pr oj ect s node near the top of the

t est Ar eas node and thecl s attribute (in Figure 3, only the set node usesacl s attribute, but thecl s
attribute can appear onl evel andvar nodes, aswell). Thefi | e attribute of the pr oj ect node contains
the name of the dll the test execution runtime will run. Thecl s attribute cites the name of the classin the
dil that actually provides the execution context for all var s under the set node.

If thecl s attribute appears on child nodes, the class reference will override any class set
by ancestor nodes, otherwise all descendents inherit the highest class reference.

Theact attribute onset, | evel , andvar nodes enables the tester to temporarily disable atest, perhaps
because of an unresolved blocking bug. Toggling the value of thisact attributeisdonein the Word
document's user interface.

Note in Figure 3that there aretwo | evel nodes, each using the number 1, but each using a different

cat egory. Asyou will see below, the manual testswill be separated and collected in their own nodein the
XIML file. Thisway the manual test manager system can easily access the data necessary to render manual
tests asweb forms.

Thei var attribute on thevar nodeisanimmutablevar id. You can identify eachvar inatest by its
set .| evel .var number or by itsi var number. The SLV number acts like a nhame and can change from
one version of aspec to the next. Thei var value, however, never changes; it issimply the letter "v" with
an appended integer incremented by the Word document every time anew var isadded to the spec.

Last, but not least, Figure 3 includes both a Declared test and a Defined test. The decl Tabl e element
contains the names of the arguments (the nane elements) and the possible values (theval elements) of
those arguments used by the Run method of the class cited inthe var 'sset parent element. The Run
method is mandated by the interface specified by the devel oper of the test execution runtime. Every
runtime class implements a Run method, and the test execution runtime provides the Run method with a
context object that includes the SLV value of the currently runningvar along with any runtime data
specified by the tester and contained in the var 'sr ec tag(s). It's up to the tester to implement (and
hopefully reuse) test code for eachvar in the spec.

Asyou will see next, theimmediate effect of the decl Tabl e isto expand one specifiedvar into eight
runtimevar nodes. The system generates the Cartesian product of the number of arguments and the
number of possible values of each argument. Care must be taken for tables with even a small number of
rows and anything more than ten columns (columns act like a power function so 4 rows and 10 columns
can produce almost s million test cases!). The system warns the tester when expansion will produce more
than 100 test cases. Our test execution runtime is capable of optimizing pair-wise combinations of
parameter values.

The XIML Schema

Figure 4isthe XIML file transformed from the IML file shown in Figure 3 above. Thefirst thing to noteis
that the system has flattened the IML. Now eachvar hasa (possibly duplicated) valuefor set and| vl .
The next thing to noteisthat the cl s attribute has the value given either to thevar nodeinthe IML or the
var's | evel orset nodes. Next, note that the first Var inthe IML has expanded into eight var nodesin
the XIML file. Eight isthe Cartesian product of two arguments with two and four possible values.

nbnghesking S TARE a5 200 M8 ample TesfSpec. sl snsl
Ba B en Fiveke [ook tok it
<ximlr oy
< WBITIB0 FRYESION =** arsemblh ;- ETAHEMI: dIF framamorioa®MCF oonbacte’ MEseEmng” dooe® gners s
1= “ Ivi="1" wid="1" ="W1" dec="First 'Hr’ fe="STREE i, Test.Spec Same e sct="trpe" >
5 I:II- > Il'lnlﬂlli-c.l'l-r +3
£t Kigpm “Lasuage »Enge /rics
e
cyar st 1" Ivle"1" vide” 2" vare"F1 " doce" First Yar lie STARESST Test.bpec,5amals” art="tree >
< re b= O S WIn2 008 <o
srac bap="Language” ~Jan</recs
< A
cugr sitm 1" Ivla"L" vide" 3 vare W1 doo="Firet Yae© cli= GTARE 8% Te st 5pec, Samele” sot="trpe >
w e bt OF = WanZ00E - roce
= rac bap="Lasguage” >Fr: /recs
BT
<vmr gt belaL" vide 4" vare' 1 dooe"First Yae© olim GTARE st Te st Gpec.Samgle” sot="tres’s
= rex; by 08 = Win2008 < /rec=
= rec bap="Lasquage” D= rece
LA
<yar setm"l” |vi="1" vide” §7 ivar=""F1" dso="First V40" ols="5 TARE&SL Teshopec. Sample™ sot="tree">
< rey bepm 05 WD TP« o
= re bep=" Lamquesge” = Engs recs
= faars
woear set="1" k=TT vid="8" var=""¥ 1" dic="First Yo" cli="STARE&&1. Tesl Spec. Samele” ao="1ree" >
< rem) ke 05 = WEREP< oo
= rew; bmy="Lamgusge” =Ion<irecs
-Eflll ars=
ayar pat="1" lvl="1" wid="T" lvar="¥i" dic="Firct ¥a=" cli="STARE a1 Toct.Spac. Samgle” ict="trek" =
< ped w08 - WENEP < raor
< raad ks Lamguage” =Fefraor
=fears
womr pml="1" |y =1 id="E" ivar="¥1" doc="Firut Yar" cli="GTARE ant. Tust.Spoc. Samele® act="tren"-
< fax ke 057 - WRREP e
< fa bape Langissge’ wOue fince
AT

uision =" framewo ks Tamual” ovwnerslichael Cornimg ™ contact="rComieg" dso=""x
< clom" STARE ast Test S pec Samphe” sole"trus -

© N- lx.l:-’!-!l Kz Pirst et [STREEask, 08 § Mo Group]s) sssbgned] (STARE s58, Test, Spec, Same ek headng =

= hval r="1" cabagary="Hamual ">

ading rlaved 1= Build Fer atan {B¥T) [Manial] < Mesding»

nr="E" var="¥a” tle=Hsoenmect network cable” aot="tree -
< dezorphons Meconsect network cable dusng instal of GUT, </deconphons
<atapa -

< muan Step > v

&l pone 3 My Compuber

Figure4: XIML generated from IML

Finally, note that the manual test appearsin itsownvar map node. As explained above, we treat manual
tests asfirst class citizens and permit the executabl e software test specification to include both manual and
automated testsin a single document. However, since adifferent test execution "runtime" (a human) will
run the manual tests, the XIML file needsto group the manual tests in separate nodes. Thisway the next
processing step, generating runtime xml for the test execution runtime, can more easily transform XIML
into the runtime xml schema.

The Runtime XML Schema

Thefinal transformation of serialized test data occurs for the benefit of the test execution runtime. Figure 5
shows the runtime xml generated by the XIML file from Figure 4 above.

B C\Doeviments and Settingsancorning\Deskiopls TAREast. dilsaml v |
Bl Eil S Faokes Ink mep i

wrarmnan assembly="8TAREastdil” conbact="MCorning" dsc="" aurpr=""
crnlns=hittp:f f snaxinfranet fachemas fmof /2002001 fvarmap®s
ar set="1" lyl="1" wid="1" wer="¥1" dic="First ¥ar" cli="STAREast.Test.Spec.Sample’ 2="true'>
e ke y= S W R B0 Aec e
sy="Language > Eng< /e

= cwar set="1" lpl="1" wid="2" rar="¥1" dic="First Yar® cl:="8STARE szt Test. Spec. Sample’ sc="trus"=
ares key="5%"=WmZ 00l rocs
sree kay="Language " >1pn«racs

wfvar
wwar seta10 ul="1" vid="3" ivar="W1" dic="First Yar" cl:="STAREast. Test.5pec.Sample’ 2ot="true "~
¢ kEy="05"=Wm2 000 rec=

"Langurage” = Frefrecs-

- ovar pet="1" lul="1" vid="4" var="¥1" dic="First Var" ci="STAREast Tast.Spoc.Sample’ act="trua’>
wrer key="05" - Wn2000< recs
<ren koy="Language”~De-= Teo-
=fvar=
= cwar set="1" lyl="1" wid="5" war="¥1" dic="Firsgt Yar" cl:="STARE ast Test, Spec, Sample” sct="trus"=
4 rat key="05" > WhnKPF oo
srer boy="Language " > B fhac
< Pvar
~ wwar sot="1" lul="1" vid="6" var="¥1" dic="First Yar" cls="STAREast. Test.Spec.Sample’ 2ot="true"=
<re; key="05"=Wmik-rec=
arec key="Language" = Ipn=rec=
E¥CETES
- wwar setat 1Y =10 vid="F" var="W1" dic="First Yor© Cli="STAREast.Test.Spec.Sample’ sct="true*>
cren key="0%" *WinXP recs
<ren koy="Language” > Fr= /oo
civar=
wremr get= 1 Iyl="1" wid="8" var="Y1" dyc="First Yor" clo="STAREast, Tost, Spoc,Sample” sc="true">
Aras k=S WP
<rer ke y="Langiage De< e
< fvar
TSP
- grp=
wwarral sal="1" /=
“/grp>
L gipE
~fwarmap = w

&) D Wy Conputer

Figure5: Runtime XML data

The datain the var map node is practically indistinguishable from the var nap nodeinthe XIML. For
automated tests this means the final processing step merely writes each XIML var map nodeto thefile
system with its own name (a name taken from the assenbl y attribute in the var map tag). At this point, the
tester is ready to begin executing tests.

If amodel generates test cases (instead of atester doing it by hand), the model's xml file
istransformed directly to the runtime xml schema above. Thereis no need for the IML or
XIML file. And where the IML file gets transformed into HTML for data-driven tests,
our system transforms model-driven runtime XML into HTML. The end result is aweb
form that |ooks the same for both data-driven and model-driven tests, and this makes peer
review of specseasier.

What We Learned

The system outlined in this document has been evolving at Microsoft for over twelve years. Its current
incarnation fully exploits the power and flexibility of XML and the Common Language Runtime. The
model of atest represented by the three constructs, Set, Level, and Var continue to serve testers well as
they work hard to develop tests for ever more powerful software systems such as Microsoft Application
Center, Microsoft Operations Manager, and future generations of Microsoft Server Management software.

Our team has made a substantial investment of intellectual capital in this executable software test
specification system, and we continue to enjoy the dividends from thisinvestment. A common, consistent,
and effective software test specification document format has streamlined the peer review process yielding
test specs of measurably superior quality. One testament to the quality of test was the minimal number of
bugs we needed to fix in the first service pack for Microsoft Application Center 2000.

But the advent of model-based testing has provided the greatest surprises, some good, some -- well, not so
good. It took almost three years of development to produce a user interface in Word that was easy to use
and effective at producing high quality serializable and executabl e test specifications; but within months of
shipping version 2.0 of that Ul, test managers made a full commitment to model-based testing. The
consequence was that the Word-based Ul was obsolete. Now instead of typing dozens of pagesin Word,
testers spent their time specifying models of the system under test. With the push of a button, those models
could spit out thousands of test steps, far more than they could have conceived manually. Asaresult,
functional coverage of testsincreased dramatically.

The first pleasant surprise came when we saw how easy it wasto use XSLT to transform the XML
generated by our model-based testing tool into the runtime XML format expected by our test execution
runtime. By relying on acommon XML grammar, we were able to follow good object oriented design
practices and encapsul ate variability; in our case, we encapsul ated the variability of test case generators.
That is, by producing acommon XML schema from both data-driven and model-driven test specification
user interfaces, we were able to use either technique without changing the way our test execution runtime
worked. Asaresult, it took |ess than two months to produce an executabl e software test specification
system that was orders of magnitude more powerful than our previous data-driven system (that took al most
three yearsto develop).

Improved efficiency notwithstanding, even model-generated test cases require peer review, and hereis
where we saw our second pleasant surprise: with no changes to the original executable software test
specification infrastructure, we were able to write an XSL T transform that could convert the runtime XML
data generated by the model into the same HTML that previously rendered IML data. The result was that
even model-generated test cases could be reviewed the way data-driven test specifications had been; so all
the benefits of peer review accrued to model-based as well as data-driven testers. Indeed, given the
additional data provided by the model (and only occasionally provided by testers who manually specified
test cases), the review of model-based test cases was better than reviews of most data-driven test specs.

After all these years, testers on our team are beginning to think it's possible to get afirm grip on the testing
challenges posed by even our most advanced next generation server management architectures. As one of
our best testers once said to me, "Y ou have what | need to be agreat tester." | have never received a higher
compliment.

	Bio
	Paper

