
Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 1 of 20

Test Result Handling

Determining how a test case detects a product failure requires several test case design trade-offs.
These trade-offs include the characteristics of test data used and when comparisons are done.
This document addresses how result checking impacts test design. The following questions are
grouped into the areas addressed by this document about where and when do you check results.

Test Data Location questions: Where do the input, expected output, and actual output reside? In
the test case code? In a separate set of files or a database?

Comparison Timing questions: How close in time after the execution of a test is the check of the
result made? As each step of the test is made? After the entire test? After a set of tests?

If there were only one answer to these questions, they would have been solved long ago. Instead,
a series of trade-offs (forces), helps determine when each method is most appropriate. This
paper uses the concept of patterns [MESZ] and anti-patterns to describe the details of why you
choose a particular test result handling method to automate a test design. A pattern is a solution
to a problem in a given context. Each pattern is a three-part rule, which expresses a relation
between a certain context, a certain system of forces which occurs repeatedly in that context, and
a certain software configuration which allows these forces to resolve themselves. An anti-
pattern is a pattern that tells how to go from a problem to a bad solution. A good AntiPattern
also tells you why the bad solution looks attractive (e.g. it actually works in some narrow
context), why it turns out to be bad, and what positive patterns are applicable in its stead. A
well know Anti-Pattern is Big Bang Testing.

Context
You are designing tests and need to consider how to check the results of the test.

If you don’t agree that conceptually all tests have the three parts below, then you won’t find
these patterns helpful.

q the input (including the environment and internal state) is the stimulus provided by a test
designer

q the expected output (including environment and internal state) is what the test requires to
consider the software correct; it is generated via some Test Oracle

q the actual output (including environment and internal state) is the result of executing the
software with the given input.

The output is a result or post-condition of a set of effects associated with the software being
tested.

The above description and these patterns apply to the three most common testing interfaces:
Graphical User Interfaces (GUI), Command Line Interface (CLI), and Application Programming
Interface (API). Most of the examples show CLI and API tests because of their brevity. Most
automated GUI tests are tightly related to a test tool, typically Capture/Replay.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 2 of 20

You are choosing how to automate tests that have been designed and need to make the tests as
understandable and maintainable as possible.

If your test oracle is composed of stored expected output and a test result oracle which compares
expected and actual output, then the storage of the expected output is an issue you must deal with
in creating an Automated Test Oracle.

This paper doesn’t apply to ad hoc testing, exploratory testing or testing without an Oracle.

Test Data Location (data patterns):
The input, expected output, and actual output may be coded directly into the test (program code,
test script, etc.) or apart from it (input file, expected result database, etc.). The Co-locate Data
pattern proposes that we make the data all internal or all external for increased readability,
understandability, and maintenance, and compares contexts for further pattern choosing.

Co-location of the data results in either the Self-contained data pattern for all internal data or
Data-driven data pattern for all external data. When the input and expected output are co-
located, but not the actual output, then the helper patterns Move actual to Internal and Move
actual to External facilitate transformations into the all internal or all external patterns.

The anti-patterns, Cause without Effect and Effect without Cause, show what results from
separating the input from the expected output.

Comparison Timing (check patterns)
You can Check as you Go the post-conditions or Batch check them depending on the context.
While Batch check is frequently used, it has several potential problems that mean sometimes it is
chosen incorrectly as the pattern to follow.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 3 of 20

Check as you Go Context Batch check

Forces on Repeatable Tests
q Repeatable tests require a clear set of inputs and expected outputs, and an understanding

of how to generate actual outputs.
q Comparisons of actual and expected outputs must be efficient, preferably both in time

and space. Efficient in space means using very little data to represent the expected
output. Efficient in time means using the most efficient comparison algorithms and
avoiding unnecessary comparisons.

q Clarity of which actual and expected outputs don’t match is paramount.
q Avoiding false positives is more important than avoiding false negatives:

People usually question and investigate a failure, so if it is false it will be discovered1.
People rarely question (or audit) the desired outcome (Pass) to see if it really was
correct2.

 Actual Output
 Correct Incorrect

Pass OK False positive Test
Result Fail False negative OK

q Hard-coding data in a test makes it difficult to update if the software under test changes.
q Input and Output are naturally separated streams and are usually not mixed.

For example, the input is located in a file separate from the output in the Unix filter style
of transformations.

q Placing data externally makes it easier to lose or to get out of synchronization with the
test code. It also means reviewers have two things to look at and compare to verify
correctness.

q Constantly interspersing checking code in testware can make the logic of a test case
unclear. This is similar to the error checking code in software. One reason for adding
exception handling to modern languages is to make the main logic clearer.

q Most software changes over time, producing new (different) actual output.
Expected output must change to match changes in software output.

1 However, a common problem is a known failure that continues to occur because its fix has been

deferred. Some people stop running the test or discount its result. Now if a new type of failure
is discovered, it will be ignored since the test is already known to find a failure. This can be
avoided by distinguishing between unexpected (or new) failures and known (or old) failures.

2 False positives are usually discovered only when a failure is noticed in the field and is traced
back to a test reporting passed (when it should have reported failed). This is of course way too
late – the test didn’t do its job.

Expensive to make checks?
Performance sensitivity?

Cheap
Insensitive

Expensive
Sensitive

Separate inputs& results? Easy Difficult

Sequence of checks? Unordered Ordered

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 4 of 20

Test Maintenance cost is frequently ignored or deferred.
For repeatable tests, Test Maintenance cost should be a consideration.

q Some software behavior is timing dependent. Adding checks slows down tests which
may affect their ability to trigger the timing dependencies of the software.

Pattern Summary

Question Answer Pattern / Anti-Pattern
All internal Self-Contained Data Where to store test results?
All external Data-Driven Data
At each step Check as you Go When to check?
At the end Batch Check

The first pair of patterns for test data location conceptualize where the input and outputs are
stored.

The second pair of patterns are complementary comparison timing patterns for solving the same
problem of when to check. Check as you Go is the generally preferred method for ease of
understanding. Batch check (or Benchmark) is particularly useful for changing the manual
judging of result into a solved example [see Related Patterns in Appendix].

Note that patterns can be combined as the situation demands. You might use Check as you Go
for some of the post-conditions, and yet use Batch check for voluminous post-conditions which
may change frequently.

Pattern Usage Example
The table below contrasts bad and good practice. On the left is the frequently followed anti-
pattern Pass Each Post-Condition solution and not following the Co-Locate data pattern. On
the right is a solution following Whole Function, Check as you Go and Self-contained data
patterns. An alternative solution using Batch check and Data-driven data patterns is also shown.
Problematic solution Pattern-following solution
BeginTest
Test operation:
Insert database record
Verify successful return code
post-condition1:
EndTest

BeginTest
Retrieve same database record
post-condition2:
Print actual retrieved record
Verify actual printout matches
 expected printout
EndTest

BeginTest
Insert database record
Test operation:
Verify successful return code
post-condition1:
Retrieve same database record
post-condition2:
Verify actual retrieved record
 matches (expected output)
 input record.
EndTest

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 5 of 20

BeginTest [Batch check using Data-driven data]
Read input for database record
Insert database record # Test operation
Print return code # post-condition1 - external
Retrieve same database record
Print actual retrieved record # post-condition2 - external
Verify actual printout matches expected printout
EndTest

Notice that there are two verify steps in the Check as you Go case, right column, above. Either
verify step can cause the test to mark the feature as failed. The timing and number of verifies is
not prescribed. It is not even required that verify be a direct part of the test code. Sometimes
several tests will output their results before any of the comparison (verification) is done.
However, each test is not considered complete until the results of all necessary comparisons are
successful. It is acceptable to not complete the comparisons if a discrepancy has already been
shown. The primary consideration for continuing comparisons after a discrepancy is whether it
would provide additional useful information for diagnosing the failure. It does not impact the
outcome of the test.

The rest of this paper presents the patterns followed by an appendix with pointers to other
patterns and references.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 6 of 20

Pattern Name: Co-Locate Data

Context

You are creating reusable tests and must store the test data for usage from one test run to another.

Problem

Where do you store the test data? Inputs come from various sources including the test script,
environment, or internal state. Similarly output consists of various sources including the
environment, internal state, test script, or output files (including standard out, standard error, log
files, and database files).

Forces

q Input and Output are naturally separated streams and are usually not mixed.
q It is easiest to keep data where it naturally occurs (in code or external to the code).
q Reviewers need to see input and output together to judge correctness.

Solution

Put the input, expected output, and actual output either within the test code or put them all
centralized external to the test code. It should be possible to see the input and expected output
together (either in the code, in a file, or in an extract from a database). Transform input or output
from other sources either into the code (perhaps using Move actual to Internal to get Self-
contained data) or the centralized external location (perhaps using Move actual to External to get
Data-Driven data).

Generally, tests are designed to transform the cases where the expected and actual output reside
in different locations, into the cases where they are all the same.

Indications
Input data and expected output data are separated.

Rationale
Having the input and expected output in the same place (either internal or external) increases
readability and understandability (including for maintenance). If you separate them, then you
end up with the anti-patterns: Cause without Effect and Effect without Cause.

Resulting Context/Consequences
Verification of the correct expected output is easier since it is all in one place.
Filtering logic may be needed to separate input from output.

Related Patterns
See Self-contained data for putting the data inside the test script or program.
See Data-driven data for keeping the data outside the test script or program.
See Move actual to Internal or Move actual to External to make the actual data co-located with
the input and expected output.
The anti-patterns Cause without Effect and Effect without Cause describe problems with the
bad solution of having the input not co-located with the expected output.
The table below lists patterns in (blue for link) italics and anti-patterns using bold blue text.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 7 of 20

Output – Effect Input -
Cause Expected Actual

Pattern / Anti-Pattern

Internal Internal Internal Self-contained data
Internal Internal External Move actual to Internal
Internal External Internal Cause without Effect
Internal External External Cause without Effect
External Internal Internal Effect without Cause
External Internal External Effect without Cause
External External Internal Move actual to External
External External External Data-driven data

Context affecting choice of Self-contained versus Data-driven data:

Self-Contained (internal) Context Data-Driven (external)

Similarity to other tests? Unique Similar

Updates? Seldom Frequent

Intricacy of logic? Simple

Amount of output? Small Large

Complex

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 8 of 20

Pattern Name: Self-contained data

Aliases: internal data

Context

You are creating a repeatable test where the test data must be preserved. The test design
indicates amount of test data and other tests that might be similar. The test is relatively unique in
it its parameters or sequences of actions (e.g. navigating in a GUI).
The Move actual to Internal pattern may already have been applied to transform actual output
from external to internal to match the other data.

Problem

Where do you keep the test input data and test expected output data?

Forces

q Putting all pieces of test in one place makes it easier to find them.
q Reviewing is easier when cause and effect are clear.
q Data hard-coded within the test increases future maintenance effort.
q Data hard-coded within the test reduces future reusability of the test.
q External data can be hard to review and can get out of synchronization with the code.

Solution

Because of the relative uniqueness of the test data or its small size, we can emphasize putting all
pieces in one place and ignore the reusability and future maintenance costs as they are unlikely to
have a great effect in this context. Include the data in the test script or test code. You may still
wish to avoid totally hard-coding the data by using constant names or literals within the code.
Thus MaxInt is still better than 32,767 because it conveys more meaning.

Indications
The amount of input and output per result is relatively small, easy to understand and verifiable
with the test.

Rationale
Test script logic becomes less complicated or more obvious when data is included directly with
the logic.

Resulting Context/Consequences
Makes it impossible to lose part of the test, if it is only in one file. It is easier to run the test
because if has fewer dependencies.
Sometimes reduces maintainability if bulk updates of expected results are needed.
Reduces code reusability if inputs and results are hard-coded or expressed as symbolic constants
in the code.

Related Patterns
Frequently used with Check as you Go.
Contrast with Data-driven data which has same problem, but different context (as illustrated in
Co-locate data).

Examples/Known Uses
Typically used in API tests, for example Posix Verification Suite.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 9 of 20

Code Samples
The Check as you Go pattern Code Sample demonstrates simple Self-contained data.
The Batch check pattern Code Sample demonstrates input and output contained within the test
script.

BeginTest
Insert database record # database record value in code
Verify successful return code # successful value in code
Retrieve same database record
expected output same as input database record from the code:
Verify actual retrieved record matches (expected output) input record.
EndTest

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 10 of 20

 Pattern Name: Data-driven data3

Aliases: external data

Context

You are creating a repeatable test where the test data must be preserved. The test design
indicates amount of test data and other tests that might be similar. You have many data
combinations to be tested. The output may be voluminous. The output may be difficult to
predict and can frequently change from release to release. The test data shouldn’t intricately
drive the test logic.
The Move actual to External pattern may already have been applied to transform actual output
from internal to external to match the other data.

Problem

Where do you keep the test input data and test expected output data?

Forces

q Putting all pieces of test in one place makes it easier to find them.
q Reviewing is easier when cause and effect are clear.
q Data hard-coded within the test increases future maintenance effort.
q Data hard-coded within the test reduces future reusability of the test.
q External data can be hard to review and can get out of synchronization with the code.

Solution

Because of the amount of change or reuse anticipated, it is best to avoid hard-coding the data.
Separate test data from scripts. This makes it easier to create multiple related tests. The greater
difficulty in finding the pieces is more than made up by lower maintenance and creation costs.

3 Much of this material is a derivation from Data-driven testing pattern by Bret Pettichord and
Paul Szymkowiak presented at PoST 1, Jan. 2001

Expected
output

Test Result
Oracle

Software
Under
Test

Logic to apply
inputs and retrieve
outputs

input

Environment Internal State

Actual
Output

New Environment
New Internal State

Test Oracle

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 11 of 20

Indications
Test data is to be provided externally, for example from domain experts.
You have existing legacy data.

Rationale
Separating data from procedure is a classic computer science technique for structuring code.

Resulting Context/Consequences
Mentally tracing through the test requires an extra level of indirection to substitute the data-
driven values in the specific situation. Sometimes, the test script logic may become more
complicated or less obvious when data is separate. Other times there is cleaner indication of test
data versus the test logic.

Related Patterns
Frequently used with Batch Check. Contrast with Self-contained data.

Examples/Known Uses
Compiler tests.
SQL optimizer tests showing optimizer strategy (which may change release to release).
Stub generation for distributed methods (for example CORBA IDL, or Java RMI) as protocols
evolve or the implementation improves, e.g. adding caching may cause the stubs to change from
version to version.

Code Samples

If the Batch check pattern Code Sample had an external existing actualOutput file, instead
of creating it on the fly, it would demonstrate Data-driven data.

The Move actual to External code sample also shows Data-driven data.

The Cause without Effect code sample also shows Data-driven data.

BeginTest
Read input for database record # External input
Insert database record
Print return code # internal input converted to external
Retrieve same database record
Print actual retrieved record # External output created
Verify actual printout matches expected printout
EndTest

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 12 of 20

Anti-Pattern Name: Effect without Cause
Aliases: output only
Context
Expected output is recorded without knowing the input. Output is in separate stream from input.
Output changes more frequently than the input (e.g. each release of a product might have
different output for the same input).

Problem

Outputs can match, but for the wrong reasons.
Forces

q Avoiding false positives is more important than avoiding false negatives.
q Store output separately from input to ease maintenance of changing output.

Solution

Record input with the outputs. It is also possible to derive the input as an extraction from the
expected output.

Rationale
It is easier to review for correctness when the inputs and outputs are together.
It is easily verified if each effect occurs due to its cause.

Resulting Context/Consequences
Test may have to echo or otherwise copy the input into the output stream.

Code Sample
Input file:
 set onn # should fail because it should be “set on”
 set Off # should succeed because Off should be case insensitive
Actual & expected outputs:
 Illegal Set argument

Test marks product as passed because it got expected output. Although this has the input,
expected output, and actual output all as external files, this input is separate from the expected
output file. Correct way is shown below::

Expected output:
 set onn # should fail because it should be “set on”
 Illegal Set argument
 set Off # should succeed because Off should be case insensitive
Actual output:
 set onn # should fail because it should be “set on”
 set Off # should succeed because Off should be case insensitive
 Illegal Set argument

Test marks product as failed.
The product only looks at first 2 letters (“on”) and is not case insensitive.

Notice how the expected output is easy to understand since both the cause and effect show up in
the file.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 13 of 20

Anti-Pattern Name: Cause without Effect
Aliases: input only

Context
Input is recorded externally to the expected output.
Problem
Matching the expected output with the input is error-prone during maintenance.
Forces
q Input and Output are naturally separated streams and are usually not mixed.
Solution
Record expected output with the input.

Rationale
It is easier to review for correctness when the inputs and outputs are together.
It is easily verified if each effect occurs due to its cause.
Additional inputs can be easily added since their expected output is recorded with them.

Code Samples
Input file: 1 4 9 –1 0
Test code:
For I=1 to 3; do get num;

if (square(squareRoot(num)) != num) print “fail $num”;
done

For I= 1 to 2; do get num;
if (squareRoot(num) != “illegal”) print “fail $num”;
done

Note that the test code (internal effects) is tightly tied to the input (external cause) and changing
either creates test (not product) failures. This is a very brittle coding style.
Better, using Data-driven data pattern is:
Input file:

 1 1
 4 2
 9 3
-1 illegal
 0 illegal

Test code:
While read in_num, out_result; do

if (out_result = “illegal”)
then if (squareRoot(in_num) != “illegal”) print “fail

$in_num”;
else if (squareRoot(in_num) != $out_result) print “fail

$in_num”;
done

This prevents the brittle code and is easily expandable. You can add additional test cases by
changing the input file without changing the test code. This is an example of Data-Driven Data.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 14 of 20

Pattern Name: Check as you Go

Aliases: In-Line check

Context

You have pre-specification of the test results.
Data from the environment is dynamically needed to evaluate correctness.4
Either the checks are very cheap to make or the test is not highly performance sensitive, that is,
you can afford to spend time to do the checks during the test.
Correctness requires specific relationships to occur, for example complex data structures like
trees or receiving an asynchronous event within a specific time period.

Problem

Do you compare actual results to expected results at each step as you go, or all at the end?

Forces

q Future results may be invalid if early results don’t pass.
q Special code may need to be run to gather diagnostic info depending on the failure.
q Output data may have specifics (e.g. node name or time) the test doesn’t care about.
q Constantly interspersing checking code in testware can make the logic of a test case unclear.

Solution

Check each result or post-condition in-line as finely as possible immediately after its inputs are
submitted. You may need to incorporate current specific data to have the results compare.
If a validation fails, then log the failure and optionally don’t proceed forward with the rest of the
test. For example, when bounding the time of the result, if a connection isn’t made within a
timeout period, abort the test rather than waiting to get more output. This concept applies both to
testing post conditions within an individual test case and execution of test cases within an
automated test suite. A major feature of Check as you Go is to only log the software under test
as passing after all relevant post-conditions have been checked. Typical GUI Testing using
Check as you Go might look like:

Produce Screen1
 Verify Screen 1
Produce Screen2
 Verify Screen 2
 . . .

Indications
q The desired results of a test input are precisely known ahead of time.
q The test is programmable, that is, the result of each set of inputs is easily checked.
q The test is long running, and could be meaningless if there is an early discrepancy for one of

the post-conditions.

4 For example, you want to verify the timestamp on a log record. You can print the time before
and after you expect the log record, but now your batch comparison requires relative checks (less
than and greater than) instead of just equals. This is usually a significantly more difficult
comparison algorithm.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 15 of 20

Rationale
It generally aids comprehensibility of the tests if the expected results appear in the same file and
as close to the inputs as possible.

Resulting Context/Consequences
Complete list of post-conditions being checked may be spread throughout the test code.

Related Patterns
See Batch check for the same problem, but different context.

Examples/Known Uses
Frequently used for API/Class Drivers approach.

Junit – See http://www.junit.org/
Expect tool – See http://expect.nist.gov/
POSIX Verification Test Suite – See http://www.opengroup.org/testing/downloads/vsx-pcts-
faq.html

Code Samples
Note below that the result is checked as you go in the code and not by some external entity.
Java/C++

result = squareRoot(1);
if (result != 1) {

LogFail(“squareRoot(1) resulted in “+result
 +” where 1 was expected”)

}
else LogPass(“squareRoot(1)”);

result = squareRoot(4);
if (result != 2) {

LogFail(“squareRoot(4) resulted in “+result
 +” where 2 was expected”)

}
else LogPass(“squareRoot(4)”);

Shell
result=`squareRoot 1`
if [“$result” != “1”] ; then
 logFail “squareRoot 1 resulted in $result, where 1 was expected.”
else

logPass “squareRoot 1”
fi
result=`squareRoot 4`
if [“$result” != “2”] ; then
 echo “squareRoot 4 resulted in $result, where 2 was expected.”
else

logPass “squareRoot 4”
fi

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 16 of 20

Pattern Name: Batch check

Aliases: Benchmark, baseline, golden results, canonical results, gold master, reference checking
 - where a benchmark file containing expected results is used.

Context

You have pre-specification of the test results or you can manually judge the output for
correctness when exact expected results are not necessarily known. The post-conditions are
independent, that is don’t use when you need to check one post-condition before choosing to
check another one. The set of inputs is not easily separable (for example compiler input file).
The output can be compared easily with minimal filtering. The checks are expensive to make or
the test is highly performance sensitive, and it is relatively cheap to just record the results.
Don’t need to check result of each step to determine if future steps of the test are valid.

Problem

Do you compare results at each step as you go or all at the end?

Forces

q Future results may be invalid if early results don’t pass.
q Special code may need to be run to gather diagnostic info depending on the failure.
q Output data may have specifics (e.g. node name or time) the test doesn’t care about.
q Constantly interspersing checking code in testware can make the logic of a test case unclear.
q Avoiding false positives is more important than avoiding false negatives

Solution
Provide a benchmark file of expected results. Collect actual results as the test executes. At the
end, compare the expected and actual results. Use filtering programs to ignore specifics the test
doesn’t care about.

Indications
q A failure near the start of the test doesn’t invalidate the results that follow.

Rationale
Tests are very easy to develop. Expected results can be generated by the program once, hand-
checked for accuracy once, then reused again and again. Expected results can be updated
without affecting any code (since they are in a separate file). Batch processing may be the nature
of Item Under Test (IUT).

Resulting Context/Consequences
One dangerous Consequence frequently seen is testers get lazy when the expected output has to
change, and don’t scrutinize the initial results carefully enough for correctness. In this case, the
incorrect actual output gets canonized as the expected output [BACH] creating a false positive!
A way to ameliorate this is to occasionally have an independent person spot check the results.

Batch check can make maintenance more difficult if the relationship between inputs and outputs
is not very clear.

Frequently special filtering patterns (regular expressions) are needed to ignore uncontrollable
extraneous differences, for example machine names, time stamps, etc. This filtering has a small

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 17 of 20

risk of missing incidental problems, such as the time being reported incorrectly. Generally you
rely on other tests to specifically verify what most tests are ignoring.

Related Patterns
See Check as you Go with an alternate solution due to different context.

Examples/Known Uses
Compiler testing or any transformation type program. It is generally too expensive to test each
feature completely individually, and a great deal of common setup exists to test any one feature.

An example of expensive checks goes like this:
The author was testing a new transactional capability of a database. The transactions allowed the
commit or abort of a set of operations (insert, update, delete). The original test was written to
update the database and keep a separate file of the expected results. The extra logging of
expected results allowed enough time that many race conditions in the transaction system were
missed when several transactions were supposed to be occurring in parallel. The Batch check
solution was to rely on the concept of database integrity via a constraint. A particular column
had the constraint that it was always divisible by 10,000. Transactions could do a series of
operations such that the constraint would continue to hold if all or none of the operations
occurred. For example, insert record A with column value of 5,000 and update record B’s
column value by adding 5,000. This allowed large numbers of concurrent transactions to be run
at once. The batch check was to verify the integrity of the column constraint at the end of a set
of transactions.

Code Samples
The abbreviated example below shows the expected output stored in a separate file followed by a
batch comparison. Pattern Name: Data-driven data has an illustration typical of Batch check
where the test executes first gathering output and then results are compared.
Shell:cat <<EOINPUT >|expectedOutputinput output1 14 2EOINPUT# Set
up for read from fd=4 with above data
exec 4<expectedOutput

Read (heading) line from expectedOutput file into input_value & output value
read -u4 input_value?"headings " output_value
Put heading line in actualOutput file
echo $input_value $output_value >| actualOutput
While lines to read, put value into input_value & output_value
while read -u4 input_value?"input and output" output_value; do
 # Echo input to actualOutput (without a linefeed/newline)
 echo "$input_value \c" >> actualOutput
 # Put actual result on end of previous line
 squareRoot $input_value >> actualOutput
done

diff expectedOutput actualOutput

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 18 of 20

__

Appendix

Inconsquential Pass (unwritten) describes how input data and test actions must be set up to
distinguish if test actions really had any effect, and not whether the result is coincidentally
correct.

Related Patterns
The patterns derived from Co-Locate Data are a linkage between the Test “Oracle Micro-
Patterns” for “Pre-Specification Oracles” (Solved Example, Simulation, Approximation, and
Parametric) and “Test Automation Design Patterns” approaches of Built-in Test and Test Cases
as described in Testing Object-Oriented Systems: Models, Patterns, and Tools [BIND]

Batch check (or Benchmark) is particularly useful for changing the Oracle Judging pattern into
Solved Example.

From http://www.rbsc.com/TOOSMPT.htm:

Oracle Patterns (micro-pattern schema)
 Approach Pattern Name Intent
Judging Judging The tester evaluates pass/no-pass by looking at the

output on a screen or at a listing, or by using a
debugger or another suitable human interface.

Pre-
Specification

Solved Example Develop expected results by hand or obtain from a
reference work.

 Simulation Generate exact expected results with a simpler
implementation of the IUT (e.g., a spreadsheet.)

 Approximation Develop approximate expected results by hand or
with a simpler implementation of the IUT.

 Parametric Characterize expected results for a large number of
items by parameters.

Test Automation Design Patterns

Capability Pattern Name Intent
Built-in Test Percolation Perform automatic verification of super/subclass

contracts.
Test Cases Test Case/

TestSuite
Method

Implement a test case or a test suite as a method.

 Catch All
Exceptions

Test driver generates and catches IUT's exceptions.

 Test Case /
Test Suite Class

Implement test case or test suite as an object of class
TestCase.

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 19 of 20

Acknowledgements:

Luke Hohman inspired me to write the first draft in my Design Patterns course. A very early
draft of this was workshopped at [PoST1] and a revised draft was workshopped at [PoST2] by
Paul Szymkowiak, Melissa Mutkoski, Jennifer Smith-Brock, Florence Mottay, Nadim H.
Rabbani, Amit Singh, Scott Chase, Cem Kaner, and Bret Pettichord. I also thank Brian Marick
and the other PoST sponsors for setting up the PoST forum.

References

[BACH] “Test Automation Snake Oil” by James Bach
http://www.satisfice.com/articles/test_automation_snake_oil.pdf

[BIND] Testing Object-Oriented Systems: Models, Patterns, and Tools by Robert Binder.
(http://www.rbsc.com/TOOSMPT.htm)

[HOFF] Oracle Strategies for Automated Testing by Douglas Hoffman,
Quality Week (tutorials) 2000
1
[MARI] Craft of Software Testing by Brian Marick

[MESZ] “A Pattern Language for Pattern Writing” by Gerard Meszaros and Jim Doble at
http://www.hillside.net/patterns/Writing/patterns.html

[PoST1] Patterns of Software Testing workshop1, Jan. 2001, Lexington, MA

[PoST2] Patterns of Software Testing workshop2, April. 2001, Melbourne, FL

[TET] Test Execution Toolkit http://tetworks.opengroup.org/
Documentation: http://tetworks.opengroup.org/download.html

Keith Stobie Test Result Handling Version 3.2

 13Aug01 Page 20 of 20

Test Result Handling... 1
Context .. 1
Test Data Location (data patterns):.. 2
Comparison Timing (check patterns)... 2
Forces on Repeatable Tests ... 3
Pattern Summary... 4
Pattern Usage Example ... 4
Pattern Name: Co-Locate Data... 6
Pattern Name: Self-contained data ... 8
Pattern Name: Data-driven data... 10
Anti-Pattern Name: Effect without Cause .. 12
Anti-Pattern Name: Cause without Effect .. 13
Pattern Name: Check as you Go ... 14
Pattern Name: Batch check ... 16
Appendix... 18

Related Patterns... 18
Acknowledgements:.. 19
References... 19

Keith Stobie

Keith plans, designs, and reviews software architecture and tests for Microsoft.
Keith directed and instructed in QA and Test process and strategy at BEA Systems. His
most recent project was BEA WebLogic Collaborate, and previously WebLogic
Enterprise. Keith was Test Architect at Informix, designing tests for the Extended
Parallel Server product, and Manager of Quality and Process Improvement. With over 20
years in the field, Keith is a leader in testing methodology, tools technology, and quality
process. He is a qualified instructor for Systematic Software Testing and software
inspections. Keith is active in the software task group of ASQ, participant in IEEE 2003
and 2003.2 standards on test methods, published several articles, and presented at
many quality and testing conferences. Keith has a BS in computer science from Cornell
University.

ASQ certified Software Quality Engineer,
Member: ACM, IEEE, ASQ
--
Keith Stobie
Test Architect

16541 Redmond Way PMB 321-C U6
Redmond, WA 98052-4482
e-mail: sqe@stobie.org

	Paper
	Bio

