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Abstract 
 
Since the completely random software fault insertion techniques suggested in much of the research 
literature[1] are not practical for most software products, this paper suggests that a modest targeted 
software fault insertion effort for a few common error conditions can have a dramatic impact on defect 
detection rates and quality. The paper uses the example of a software fault insertion subsystem, code-
named Faulty Towers, which was added to Mangosoft Incorporated’s test automation in order to target 
common failures and errors. Mango software, like so much other software, obeys the maxim that 90% of 
the code is written to handle error conditions. To help target the bulk of the code, Mango software can 
simulate common failures and errors, which are referred to as faults. With precise fault insertion rates 
intentionally selected by a test, the exact stimulus that led to a failure is often well understood. This leads to 
quicker problem isolation and allows QA to return to the exact failure environment when attempting to 
reproduce a problem or to validate a fix. This paper presents data on the effectiveness of software fault 
insertion, discusses the advantages and risks of fault insertion, provides tips on gaining cultural acceptance 
for fault insertion and suggests high payback areas for fault insertion which have proven themselves over 
multiple products. In a typical software development cycle, defect detection starts to trail off once the 
mainline code stabilizes. With software fault insertion, it was found that the defect detection rate does not 
level off and the hardest task becomes not one of finding defects but one of prioritizing the stream of 
defects.  
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Why Read This Paper? 
In a busy world, the idea of software fault insertion (actually faking errors within software) seems hard to 
justify. Doesn’t software and testing generate enough errors on its own? Why bother with the extra expense 
and infrastructure? These are some of the questions answered by this paper. The data in the next section 
documents the compelling payback of an organized software fault insertion approach to testing error 
handling code paths. Having considered the data, the paper describes the benefits and risks of software fault 
insertion and shows that the costs of the fault insertion infrastructure can be minimal. It then presents a 
process to identify and prioritize faults.  
 

Fault Insertion Testing Data 
Distributed caching is a key Mangosoft specialty. The data in this section is for a product called Medley 
which is a distributed file system for Microsoft’s Windows-95, Windows-98 and Windows NT operating 
systems that provides performance exceeding the fastest server hardware. While the Medley drive appears 
like a local PC drive, it is really a distributed, peer-to-peer LAN disk spread over up to 25 PCs. Files on the 
distributed LAN drive migrate to the local disk of the user who accesses them the most. The product also 
has data mirroring built in to eliminate single points of failure that are common in most client server 
solutions. Thus drive data can reside anywhere on 25 PCs and yet Medley must maintain drive reliability in 
the face of different operating systems, device errors and PCs that randomly crash or shutdown. 
 
The fault insertion data in this section was gathered at Mango where we have combined substantial test 
automation with fault insertion to produce a prodigious testing capacity [2]. An extensive database stores 
test results on every automated test ever run in the history of the company. Figure 1 is derived from this 
database and shows the testing volume differentiating non-fault tests from fault tests which reflects the 
classic fault insertion cycle. In this cycle, fault testing is not needed in the early stages of a product version 
when defects are spread uniformly throughout the code. However, as the mainline code paths stabilize, 
fault testing of error code paths becomes a sizable percentage of testing. Near the end of a product version, 
fault testing is reduced in favor of maximum stabilization of mainline code paths, although fault testing is 
never entirely stopped. Overt control of the testing mix is a great advantage during the product lifecycle. 
 
The term fault is used in this paper to mean an externally controlled mechanism to alter code path 
execution within a program in order to increase error handling code coverage and robustness. External 
control allows the tester as well as developers to manipulate the fault. In QA research literature, fault has a 
negative connotation, synonymous with code defect. But at Mango, a fault is considered a good thing, used 
more in the hardware testing sense as a powerful tool to exercise challenging areas of the product to assure 
that the highest levels of quality are consistently attained in the shortest amount of time.  

 
 

Figure 1: Mango Monthly Test Counts
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Figure 2 shows the new product problem reports (excluding duplicate reports and test automation 
problems) that were produced from the testing in Figure 1 starting in July 1998, when a new version of 
Medley was begun. Data from 98-Jul to 98-Aug shows that initially, faults are not needed, as simple non-
fault tests find plenty of problems. However, as the mainline code stabilizes, non-fault tests find fewer 
problems. The tremendous insight offered by the volume of fault insertion problem reports dispelled any 
illusion about error handling code path quality, greatly informing the entire development process. 
Interestingly, at the end of the Medley version in May 1999, even though fault insertion testing was cut 
way back (see Figure 1), fault insertion problem reports equaled the number of non-fault problem reports. 
The sustained effectiveness of fault insertion testing is visible in the graph. Over the entire period covered 
by Figure 2, non-fault testing produced 37 % of all problem reports while fault testing produced 63 % of all 
problem reports.  
 

 
Figure 3 shows data since July 1998 on three automated faults: the number of shutdowns, crashes and 
power cycles by a node participating in a Medley drive. It was clear how central these common computer 
faults would be to the success of a shared, peer-to-peer LAN disk product and Mango would doubtless have 
done quite a few faults by hand if a manual testing approach had been adopted. But by automating these 
faults and combining them with an automated test infrastructure, Mango QA created an army of test lab 
machines performing these faults around the clock, day in and day out. [8] From July 1998 until October 
1999, using test automation, Mango QA inserted into Medley drive configurations 76,482 shutdowns, 
53,898 crashes and 72,725 power cycles. This utterly surpasses by orders of magnitude what Mango QA 
could have achieved manually, at much greater expenditure of money, time and resources. 

 

Figure 2:  Problem Reports by Month
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Figure3:  Insertion Counts for Three Faults
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The Problems 
 
Grasping the complexity of modern software products layered on multiple operating systems, databases, 
run time libraries, third party products and various hardware platforms is akin to the job of astronomers 
who attempt to grapple with all the known matter in the universe. There are infinities layered upon 
infinities: countless galaxies containing countless solar systems, containing countless planets. The limitless 
nature of the universe is comparable to the states entered by complex software products like operating 
systems that run on millions of PCs. The problems only increase in distributed software where algorithms 
are spread over multiple computers. At half a million lines of code, Medley is a distributed file system that 
can be spread over 25 PCs running Microsoft’s Windows 95, Windows 98 or Windows NT operating 
system. A file’s data can reside anywhere on the 25 PCs but Medley must provide the highest of data 
integrity guarantees in the face of different operating systems, device errors and PCs which can shutdown 
or crash at will. The combinatorial complexity is exponential.  
 
The current state of the art is inadequate to the task of producing software able to encompass all of this 
complexity or to cost-effectively test this complexity. Typically, development design specifications focus 
on the mainline structure and flow of information through the subsystem and do not focus on what errors 
might occur and how they might be handled. The error handling and exception processing are often left as 
details for implementation, making them subject to error-prone code rewrites and re-design late in the 
development cycle. This occurs despite the fact that mainline code comprises only about 1-10 % of the 
code, while the bulk of the code is devoted to error handling. Added to this situation, there is constant 
pressure to produce software faster and cheaper. Time to market can spell the difference between success 
and failure for a startup software company.  
 
The problems resulting from these development realities are: 
 
• Defects in error handling code are not discovered until the very expensive latter stages of the 

development cycle. The lack of a formal focus on errors means that the bulk of defects in error 
handling code paths are left to be discovered at the most expensive step in the development cycle – 
system integration testing [3]. The chaos that results when all the subprojects in a new version are first 
integrated can be dramatic. Engineers in their unit testing cannot easily insert common failures in their 
subsystem or failures in other surrounding subsystems. This results in unit testing that is less 
systematic and less robust. The bulk of the error handling code is left to be exercised when integrated 
with all the other changes in the system. The resulting chaos produces a system that is not even useable 
for days or weeks, incurring substantial schedule slips.  

• QA testing focus on error handling code paths is often undirected and without prioritization. With no 
error or fault insertion controls available to testers, testing is often relegated to varying user loads and 
types of user transactions. Testers focus on what they believe to be “typical” user interactions, 
exercising only mainline code paths. Error handling code path testing is often undirected, relegated to 
those errors that happen to occur accidentally in the course of testing. Testers are also unable to 
prioritize testing, targeting the most important error handling code paths first.  

• Manual QA fault testing is typically tedious and very expensive. The faults that are intentionally 
applied are often manual, tedious and time consuming. In the case of a distributed product that relies 
on network communication, there are just so many times one will pull out the network cable between 
two machines to verify that the resulting communication failure is handled appropriately. To test disk 
full handling, it takes time to fill a disk completely full. Perhaps the most expensive single area of 
testing is large scale testing. Medley supports configuration of 25 computers which can be an unwieldy 
distributed testing environment. Time consuming testing of such large configurations is often 
expensive to configure and manipulate, therefore it rarely receives adequate coverage. The manual 
aspects of such fault testing are very expensive and take great discipline on the part of the tester to be 
rigorously performed the same way for each release of the product. What is tedious and time 
consuming is less likely to be done thoroughly in every release cycle. Without automation of faults, 
testing is thereby more expensive to perform and less comprehensive. 

• Tempted to ship product as ”illusion of quality” sets in. Once the mainline code stabilizes, fewer 
“accidental” errors arise to exercise the error handling code paths. Problem reports tend to trail off.  
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This leads to the illusion of quality, the fatally attractive notion that since mainline code paths are 
exhibiting a level of stability and quality, that error handling code paths likewise have this same level 
of quality and maturity. Unless the tester can make plain the level of quality over the whole product, 
there can be tremendous time-to-market pressure to ship software once the problem reports trail off. 
The time it typically takes to stabilize the mainline code paths, coupled with the high cost of traditional 
approaches to testing error code paths, means that error handling is invariably the least well tested 
aspect of the software.  

 

The Solution 
 
How do developers test failures from other subsystems with which their code interacts? They might set a 
breakpoint and fake an error. By changing a success return status from an I/O system service into an error 
status they can test how their code handles I/O failures. This is a powerful concept but isn’t very flexible 
and doesn’t scale. If one wanted to fail all I/O, this technique would result in a lot of breakpoints firing and 
a lot of success statuses to override. Once the breakpoint is removed, the knowledge of the most effective 
point for fault insertion is lost, it can’t be used by other developers in unit testing or by testers in their 
system testing.  
 
The solution of software fault insertion builds on this simple unit testing technique. The first step is to add 
code to simulate the fault in the subsystem. In the I/O error example, the developer creates code to replace 
the success status with an error. The next step is to build a fault infrastructure that allows external control 
over the frequency that the fault insertion code executes. The fault insertion code for the I/O Error example 
would be surrounded by an IF statement containing a call to the fault infrastructure to determine if the fault 
is to be inserted for this I/O.  With the fault and fault infrastructure in place, a tester can externally request 
that the fault be inserted 25 % of time, that is, 25 % of all I/Os will fail with the selected error. 
 
The fault infrastructure should also provide external reporting on the number of fault insertions that have 
occurred in order for a tester to tell how many faults have actually been inserted. This reporting is vitally 
important, as it is very easy for product code and test loads to change in subtle ways such that the targetted 
error handling code paths are no longer being exercised. Typically all fault and fault infrastructure code is 
conditionally compiled so that it only appears in debug builds and there is no risk of an accidental fault 
insertion in a shipping version.  
  
At Mango, the fault infrastructure is called Faulty Towers. It was originally conceived as a software tool 
designed to facilitate fault insertion into the layers of protocol code towers. Faulty Towers is a database of 
fault objects that resides in kernel mode so that internal kernel mode driver code can benefit from its 
services. The fault object largely contains information on how frequently to insert the fault and on the 
number of insertions that have occurred. Faults are enabled at a specific frequency from a user mode 
command line interface that allows another developer or a tester to enable faults, disable faults and report 
on fault insertions. The initial development of the Faulty Towers infrastructure to support the insertion of 
faults took one developer only two weeks. Development of the product code to actually insert the fault was 
a modest additional cost but, with practice, it naturally flowed out of the development process. 
 
The faults and fault infrastructure provide control and repeatability, which are key ingredients to a 
disciplined process. The problems listed previously are addressed as follows: 
 
• Defects in error handling code are discovered earlier in the development cycle. Developer unit testing 

benefits from a rich palette of faults. In a timely and efficient manner, developers can subject code 
changes to all the major faults that their subsystem must handle before subjecting the entire 
organization to the changed code. Their unit testing can also tap faults from subsystems adjacent to 
their subsystem for an extra degree of quality assurance. This goes a long way towards avoiding 
chaotic integration and the accompanying schedule slips. 

• QA testing focus on error handling code paths can now be directed and prioritized. Instead of mere 
“accidental” testing of error handling code paths, testers can now target different sets of error handling 
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code paths as they become available for testing. Error handling code path testing can now be scheduled 
and those of highest priority to the quality goals of the product can be targeted first.  

• QA fault testing becomes easy and cheap. A fault that simulates a device failure is now easy to insert 
and at any desired frequency. There is no need for tedious manipulation of the test environment and no 
time consuming delays in simulating the fault. Using faults to vary internal timings in a smaller, more 
manageable test configuration can reveal defects normally only seen in large hard-to-test 
configurations. This can greatly reduce, but not eliminate, the need for expensive large scale testing. 
Faults are now easy and cheap to insert, providing cost-effective, repeatable testing of error handling 
code paths. The cost of fault testing can further be reduced by incorporating faults into test automation. 
Mango has combined faults with test cases in a database of over 13,000 automated tests, which greatly 
increases error handling code coverage.  

• Product ship decisions are better informed about the quality of error handling code paths. The power 
of fault insertion to exhaustively test the most common errors under a broad range of states helps 
identify serious defects before products ship. Indeed, the degree of testing resources devoted to 
mainline code paths and error handling code paths can now be a conscious project decision. The mix 
varies throughout a Mango project’s lifecycle as shown in the Fault Insertion Testing Data section. The 
insights provided by being able to control testing code coverage throughout the project lifecycle 
greatly inform and validate each project milestone. 

 
This solution also provides the following additional benefits: 
 
• Problem reproduction is quicker. Many problems cannot be diagnosed completely with one system 

crash or assert. More extensive logging may need to be added in order to see the sequence of events 
that lead up to the failure. Multiple crashes may also be needed by troubleshooters to isolate the 
common patterns underlying the failure. Relying solely on “accidental” errors, it may be impossible to 
reproduce a problem. With faults, a tester can immediately return to the precise level and mix of fault 
insertion. The ability to replay at exact fault levels usually leads to quick reproduction of failures.  

• Problem troubleshooting is easier.  With the set of faults that were active at the time of a system crash 
or assert clearly reported, problem isolation is normally quicker. The troubleshooter knows the overt 
target of the test, which errors were inserted, and what code paths to be looking at carefully. Without 
faults, any random “accidental” error could have occurred and lead to the crash, resulting in many 
more leads to run down. 

• Fix validation is more reliable. Validation of fixes can now use faults to target the changed error 
handling code paths. Once a fix is in hand for the defect, the fix can be validated with the exact pattern 
of fault insertion that caused the initial system crash. 

• Controlling the fault’s scope means less time wasted on “red herrings”. By implementing the fault, the 
developer exerts precise control over the fault’s scope. If fault insertion is done in a shotgun fashion, 
problems may be triggered in code that is not under examination. For example, if a tester tries to 
restrict physical memory available to the OS in order to test “out of memory” error handling in their 
code, they are just as likely to encounter failures outside their code in the operating system or in other 
third party products. By constructing the “out of memory” fault so that it only targets allocations in the 
code under test, time wasted on defects in someone else’s software can be minimized.  

 
Fault insertion is especially effective if developers create a rich mix of asserts that are constantly validating 
the software activity. This can drastically reduce problem isolation costs. Developers should be encouraged 
to add debug build asserts when adding new code and especially when troubleshooting problems[4]. Since 
the asserts are only in the debug build, performance and reliability of the release build will not be impacted.  
 

Risks with This Solution 
 
Software fault insertion can also create problems especially if a fault is combined with automated tests. A 
test becomes a unique combination of user loads and fault frequencies. For Medley, Mango has created 209 
faults and has automated much of the testing. Mango has created a huge battery of tests/fault combinations 
totaling over 13,000. With all of this flexibility at the tester’s command, there are risks: 
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• Avoiding meaningless fault chaos is essential to establishing the credibility of fault insertion. The 
existence of new faults that stretch the product in various dimensions does not mean that all 
dimensions need to be stretched, and certainly not to the absolute limits of the dimension. Testers must 
deeply immerse themselves in the operation of the product and in all the nuances of customer 
expectation for the product. For example, a fault might exist to fake I/O errors but at what rate should 
the fault be inserted? What does the user expect of the product if an I/O fails once a week? Fails once a 
day? Fails once a minute? Fails once a second? Fails all the time? Such questions can help prioritize 
the important testing dimensions and set reasonable testing limits for each dimension. Another 
technique for setting reasonable limits on test dimensions is to have the developers who have designed 
the subsystem with specific tolerances set the limits on the fault as it is created. This helps make plain 
the limits of the product and, by providing the supported limits, encourages developers to buy into the 
concept of fault insertion. Good limits help the tester assure that faults are operating within valid 
operating limits that the software is reasonably expected to handle.  

 
• Test combinations become unmanageable. With the creation of a large number of faults and test 

program variables, managing the nearly infinite number of possible combinations given finite test time 
becomes a major challenge. A single Medley test tool has 85 test load variables. If 2 settings exist for 
each of the 209 faults and 85 testing control variables, the number of combinations is 2294. This is 
clearly an unmanageable number, even before acknowledging that faults and test variables seldom 
have just two settings. Once fault limits are agreed to, faults can usually be inserted at thousands of 
frequencies. For the Medley file system, test variables like the size of data files, the number of reads, 
the number of writes, the number of updates, the degree of sharing, and the number of sharers, each 
have a large number of settings. Assuring uniform coverage of a complex domain is probably the 
toughest aspect of a tester’s job [5]. One solution is  to profile the most common user operations and 
create tests to cover these profiles. To these key tests, the tester would then add the important faults.  

 
Once limits on individual faults and test variables are agreed upon, the tester now faces the problem of 
which faults to combine with what loads. A simple strategy of only employing one fault at a time and 
varying both fault frequency and user loads as widely as possible is a responsible approach. The chaos 
is minimized and the defects in the code are likely to be easily identified. Combining multiple faults 
into the same test should be approached with caution. Each fault adds complexity that can push testing 
over the edge into extreme chaos so divorced from reality that it is seen as wasting testing and 
troubleshooting resources. This can be costly and non-productive. 

 
• Prioritizing the flood of problem reports is difficult. Mango’s experience with combining fault 

insertion and test automation is that prioritizing the flood of problem reports is not a simple task. 
Mango is at the stage where QA can control the stream of problem reports and manage it to match the 
organization’s capacity to process them. The controls also allow us to target areas based on change 
history. With the ability to generate any number of problem reports, it becomes necessary to direct the 
testing to the most appropriate areas and to prioritize problems that are in a “must fix” category. Once 
again it comes down to identifying the essential user expectations for the product and establishing a 
categorization methodology to assure essential areas/problems are addressed first. Otherwise the QA 
and development response to problem reports is random and chaotic. Losing focus in a substantial 
stream of problem reports can cause serious schedule slips. 

 
 

The Process of Fault Creation  
 
Once the fault infrastructure is in place, the highest payback faults need to be identified and implemented. 
This section describes sources for faults, suggests fault areas to investigate, and discusses fault 
prioritization.  

Fault Sources  
When beginning the task of identifying promising faults, the mainline structure contained in development 
design specifications can be a great aid. The structure, operations and assumptions of the mainline flow in a 
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subsystem should be clear in a good design specification. Each of these mainline code path areas provides 
good opportunities for faults, as described in the next section. 
 
Code inspections are a good vehicle for identifying faults as the whole structure of a subsystem flows 
before the inspection team. It is very productive to take time to identify the key interfaces and the central 
error handling focus which could profit from fault insertion. This also helps build team confidence in fault 
insertion and starts changing developer mind set about faults and error handling. Developers should be 
evaluating all substantial blocks of error handling code for testability, asking themselves: “How can I 
package this code so that a fault would allow myself and QA to test this block efficiently and rigorously?”  
 
Another good source of faults for the tester is the collection of unit testing tools created by developers to 
fake important failures. These tools may be created if other pieces of the system were not ready in time or 
other subsystems don’t inter-operate in a developer’s private unit test environment. With a modest amount 
of effort these tools can often be made into outstanding faults. By enhancing the developer’s tools and 
ideas, the tester continues to build credibility for fault insertion. The developer now has a stake in making 
fault insertion work.  
 
The final source of faults results from a careful examination of each product defect for the root cause 
(referred to as causal analysis). Its goal is to learn where the system that produced the software has broken 
down. This technique is covered in more detail by other authors [6]. However past defects are often 
repeated and instituting faults to catch past and possibly future defects can be very cost-effective. The only 
tip offered here is that causal analysis is very hard to do thoroughly after the fact. Only at the time of the fix 
are all the factors known, including the history of changes, the design implications, and the changed code. 
It is only at this point that effective causal analysis can occur at low cost. To wait even a day is to forget 
context relevant to causal analysis. A good example of this practice is the NT Driver Verifier in the 
Windows NT operating system [7]. Through careful analysis of the common failures in kernel mode 
drivers, Microsoft has created a powerful tool to insert faults that isolate/eliminate these failures cost-
effectively during testing. The utility allows one to insert memory exhaustion faults and a fault that 
invalidates page-able code and data sections in order to identify memory accessed at invalid IRQLs. Such 
problems are normally only seen in systems extremely tight on memory. NT Driver Verifier also 
demonstrates the effective use of asserts to validate operating system interfaces commonly used by drivers, 
doing a superb job on the memory allocation and de-allocation interfaces.  

Fault Focus Areas 
The following questions can help identify promising areas for fault insertion. At Mango, these areas have 
had the biggest payback in both user mode and kernel mode software. Some of the questions move beyond 
an exclusive focus on error handling code paths. 
 
• What are the common faults that customers expect the product to tolerate? Any user of a personal 

computer experiences many failures. What are their expectations? Do they expect to never lose any 
data? If the machine crashes in the middle of an extended edit, do they expect to be able to retrieve 
most of their edit? If a media failure occurs on a disk do they expect to be able to retrieve all data 
except for the failed disk sectors? These types of reliability expectations need to be discussed, written 
down and agreed to while implementing a product, something that is rarely done.  
 
The challenge for Medley, which is a distributed file system, is that the data for a file can exist on any 
computer that is part of the shared Medley drive. Thus a computer participating in the Medley drive 
that crashes or shuts down can impact the data access of a user on another computer. As in many 
distributed systems, the loss and gain of participating computers is a reality that users expect to be 
handled seamlessly. At Mango, the most fruitful Medley faults have been three faults that shut down, 
crash, or power cycle a single PC participating in the shared Medley drive1.  

                                                       
1 Interestingly, we found that crashing a PC and power cycling a PC were not quite the same fault. We 
speculate that the power cycle was more abrupt and less synchronized with other PCs. 
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Other common Medley failures involved persistent or transitory device errors. Since the product is 
distributed, network device failures were highly relevant. Disks can also have media failures that cause 
a read I/O or write I/O to fail. And since this is a file system, it was important to handle the ever-
present disk full condition gracefully.  
 

• What are the key widely-used interfaces? The more widely-used the interface, the more error handling 
code is associated with it. By exercising the error returns of such interfaces, the fault will achieve the 
widest possible coverage. Of course, each widely-used interface must be evaluated for the likelihood 
that errors will occur. Since Medley is a distributed product, most functions have to perform network 
I/O to synchronize and communicate with other PCs involved in the Medley Drive. Thus the Network 
I/O interface is a good candidate as the interface is subject to frequent failures and is widely-used 
throughout the product. Other widely-used interfaces are those used for locking and for memory 
allocation and de-allocation.  

 
As errors are inserted into widely-used interfaces, the likelihood increases that exception handlers will 
be exercised. Exception handling in a language like C++ has all the risks associated with an 
infrequently executed GOTO. Exception handlers must be able to sense, rollback and cleanup all the 
possible state in code that throws an error. In a large routine with many throws, it can be hard to keep 
the context from all throws straight. Additionally, it is easy to overlook code in the disconnected 
exception handler when making bug fixes to the body of the routine. Since exception handlers are 
rarely executed and involve an interrupted flow of execution, they are fraught with potential defects. 
The ideal of being able to exercise every exception handler is normally hard to realize. However the 
pervasiveness of memory allocation makes memory allocation failures among the most universal of all 
faults, ideal for getting at such error handling code paths. 

 
• What assumptions are made in the design? If a design uses a strict lock acquisition ordering to avoid 

deadlock then be sure that faults check that the order is never violated. Waiting for a deadlock between 
two locks to occur is an expensive way to remove deadlocks from the product. Deadlocks are better 
detected by checking on the acquisition of a new lock that no others locks are currently held which 
would violate the locking order. Detecting the ordering violations before the deadlock occurs is a 
cheaper way to eliminate the threat of deadlocks. 
 
Another example of a fault testable design assumption would be a queue which is unordered. If the 
design states that objects can be placed on a queue in any random order, then create a fault to verify 
this assumption. Maximize randomness with a fault that always reorders objects on the queue before 
removing an object from the queue. Stating the idea more abstractly, the randomness of reality is the 
enemy; seek to make it your friend. Acknowledge that tests artificially order the product’s code into 
pseudo-random sequences. When the code ships, the richer mix of real customer loads and events may 
expose problems as code executes in different sequences. Whenever some entity is known to be 
random, always ask: Is the randomness of the test environments sufficient? What is the payback of 
adding a fault to minimize or maximize the randomness to better simulate the random order of the real 
world?  
 
Other assumptions may be unstated characteristics of certain hardware or interfaces. For example, any 
network protocol has to deal with three important contingencies: a given message can be re-sent, 
reordered or discarded. How does the product cope with this reality? Creating faults to randomly 
reorder messages, re-send messages, or drop messages is an ideal way to assess how a distributed 
product handles these fundamental network failures. Discussion with developers who are experts on a 
device or interface may be the best way for a tester to isolate these assumptions. 

 
• What are the error retry policies? Faking a single error from an interface in a fault can be defeated if 

all callers simply retry the call five times before giving up. The error will not percolate up through all 
the layers, perhaps all the way to the user, as was intended by the tester. Understanding a product’s 
retry policies is very important to effective fault insertion. In general, all retry mechanisms should be 
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under the control of a fault. Being able to disable all retries allows single fault insertions to have their 
most dramatic impact on error handling code paths. 

 
• What timeouts or delays exist? Every complex product will have some timeouts or delays built into 

them. Medley, for example, places a timeout on requests that are sent to a remote computer in the 
Medley Drive before declaring the remote computer to have failed. Since different network requests 
can take different times to complete, this timeout is really an arbitrary boundary with regard to the 
processing of the request. The request’s response might arrive just before the timeout. Will the sending 
computer handle this correctly? What if the response arrives just after the timeout? What happens on 
the sending computer? Is everything cleaned up correctly? Will the sender try to re-send the message? 
Will this confuse the remote computer? By creating faults to manipulate these arbitrary fixed timeouts 
and delays that are placed in code, these values can be varied, achieving a higher level of robustness in 
the algorithms.   

 
• What code is under-executed? Code that is rarely executed will contain defects. Such code receives 

only the most cursory of testing by nature and yet the defects may be so catastrophic as to force a 
company to immediately generate a new release once the code is in the field. The astute tester will 
constantly be on the lookout for large blocks of code that are under-executed. A tester might be able to 
spot such code merely from design specifications. Rare and esoteric states in a design could hide 
defects. Faults that force these states to occur at higher frequencies allow the tester to vary the 
execution frequency to assure higher reliability. Code coverage tools can be of some assistance, but it 
is hard to obtain code coverage for kernel mode code. A close look at problem reports filed on a 
product can often reveal code that is under-executed and that might be an excellent target for fault 
insertion.  

 
The startup and shutdown paths in a product often fall into this category. Typically they are executed 
only once at system startup and shutdown. Faults to introduce errors in the startup and shutdown 
sequences can be fruitful. Tests that loop repeatedly starting up and shutting down the product are also 
a big assist. In an operating system, process creation and process deletion are good examples of under-
executed functions that are not relatively common and thereby typically not as robust as more mainline 
code paths. For a binary-tree implementation the very complex operations of splitting and merging 
data buckets are normally among the most complex operations and yet they may occur infrequently. 
These operations involve simultaneous locks on multiple buckets and shuffling data between two or 
three buckets. The splits and merges can propagate all the way up to the root of the tree. Creating faults 
to force these bucket splits and merges to occur at a higher frequency, even though a bucket doesn’t 
really need this maintenance operation, allows targeting of these complex under-executed operations. 

 
• What controls the frequency of background operations? Many complex software products boost 

mainline performance by off-loading large non-essential functions onto background threads. However, 
these background threads or daemons can hide a lot of defects. Because background daemons don’t run 
at a high frequency, conflicts with the mainline operations are not readily observable. If the 
background daemon is driven by a work queue, what happens if there are huge delays in processing 
transactions? What if a single big delay stops all processing and then the huge backlog of work items 
on the work queue is processed in a frenzy? Creating faults that control how frequently background 
daemons are requested to run, or that place stalls around the processing of the work queue, are 
effective tools to assure that background daemons are robust with regard to foreground mainline 
operation. Any timer-based routine that runs on a regular interval can fall into this category. 

 
• What optimizations are frequently used? An optimization in the code that is used at a high frequency 

can hide the fact that the non-optimized code path is not robust under all circumstances. Medley has an 
in-memory cache of data to reduce the number of I/Os required from local disk or from a remote 
system for metadata or data. While this is a vital ingredient to superb user performance, it means that 
requests to the disk subsystem are rare. Does the complex disk subsystem perform flawlessly in the 
face of PCs leaving and joining the Medley drive? Creating a fault that drops data from the in-memory 
cache when the user is finished accessing it allows Mango to effectively deactivate the cache. This puts 
extra stress on the disk subsystem and allows it to achieve a new level of reliability. Implementing a 
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fault for every optimization in the system, no matter how trivial, may not be practical. But a developer 
should at least consider the payback for creating a fault to deactivate every optimization that is added. 

 
• What are the synchronization primitives? The locking primitives tend to order the execution of code 

into set patterns. Only when the patterns are stretched to their limits do problems become visible. If 
locks are held unusually long, this can perturb the execution order of others threads. In addition, there 
can be tiny windows where context is not properly synchronized via locks. In order to detect these 
windows and reorder external execution, create faults to insert stalls within the locking primitives. 
Stalling for a few milliseconds before taking the lock gives other threads ample opportunity to modify 
the stalled thread’s data structure context before the lock is taken. Stalling to open wide similar 
windows after taking the lock but before returning to the caller, and on the release of the lock, are 
powerful fault insertion techniques. 

 
One of the most vulnerable areas in any system is thread stall and resumption. Unless very disciplined, 
it becomes easy to stall holding locks that should have been released or to restore locks and context 
incorrectly when the thread is resumed. A big advantage of faults that stall within locking primitives is 
that this forces other threads to stall and resume more frequently than normal, thus improving the 
coverage of these sensitive thread stall and resume operations. Trying to identify and exercise all 
thread stalls and resumes is a worthwhile goal.  

 
• What resource exhaustion and reclamation conditions exist? Resource exhaustion is another important 

failure. What happens if there is no free memory or no free disk space? At Mango, faults exist to fake 
resource exhaustion conditions such as out of memory errors and disk full errors. However the notion 
of a persistent fault is useful here. Normally, when a fault is inserted, a single error is returned. But in 
reality, memory exhaustion states or a disk full states tend to persist for a sustained period of time. A 
feature of Faulty Towers is the ability to create persistent faults that will fire multiple times in a row. 
When memory is to appear exhausted, the fault fires for the next N memory allocations in a row.  
When a disk full error is returned, the next N disk space allocations will fail. Persistence can also exist 
on a resource by resource basis. If a disk sector goes bad due to a media failure, then in order to 
simulate disk device reality, the sector should remain bad. An error should be returned on all reads 
until the sector is written again. In this case, fault specific storage allows tracking of the addresses of 
the disk sectors that have been declared bad so that media failures can be simulated consistently.  
 
Associated with Medley memory pools is a memory pool reclamation mechanism. When memory is 
running low on the system, Medley triggers callbacks that force subsystems to return unused memory 
in their pools. Forcing maximum reclamation of idle data structures is an excellent means of stressing 
memory resource handling and assuring that access to data structures is fully synchronized in a 
subsystem. Note that while only two resources have been mentioned, these techniques could apply to 
any resource. 
 

• What “accelerated life” testing opportunities exist? It is not widely appreciated that, like manufactured 
machines, data structures age. As persistent data structures stored on disk are used continuously over a 
number of years they are stretched in different directions which are not always robustly handled by 
software. For example, Medley has 128-bit addressing objects. While new systems operate fine within 
the first few gigabytes of the 128-bit addressing scheme, what happens when operating in the middle 
of the range? What happens when operating in the last gigabyte of this range? It can take months, 
years, or decades of testing to achieve this aging via the normal file creation/deletion paths. However, 
with a fault, one can arbitrarily override the next free address in the object’s range. The next 
addressing object created will use this address. Thus one can easily test operation of this object over its 
entire range. Another opportunity lies in Medley continuation data structures that only exist if many, 
many files are added to the same directory on a drive. To simulate this condition, a fault exists to 
control the number of files that triggers the creation of these continuation data structures. Thus these 
continuation data structures which were once quite rare are now common and easy to test. 
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Fault Prioritization 
Of course not every problem can or should be targeted by a fault. If, to simulate an esoteric failure, one 
would have to double the size of the product’s code, then this is clearly unfeasible and unwarranted. The 
fault code itself would be so complex as to introduce errors of its own. A tough cost/benefit analysis has to 
be done on each fault idea. What is the impact of the failure on the user? Does the failure result in data 
corruption or is it undetectable to the user? What is the likelihood of the failure occurring? If very 
infrequent, it is harder to justify enormous effort in creating and maintaining the fault. How maintainable is 
the proposed fault? If the fault is spread all over the system instead of being isolated to one place then long-
term maintenance becomes more costly. If the fault requires a substantial amount of code be implemented 
then the payback of problems it finds had better be worth the investment. 
 
In general it is good for QA to write down the error recovery priorities for a product and those QA intends 
to target in testing so that all can see these priorities and validate that they are in line with the quality goals 
of the product. Obtaining buy-in from developers, managers and the salesforce on these priorities can 
smooth the introduction of fault insertion and short circuit the contention that inevitably arises when 
problem reports from fault insertion start to pour in. Unless the path is carefully prepared, QA may face the 
charge that the problem reports were produced by some chaotic, invalid methodology that bears no relation 
to actual product usage.   
 

Summary  
This paper has presented compelling data on the benefits of software fault insertion. A modest investment 
has reaped huge benefits. While data was presented for only one product, software fault insertion has been 
used effectively on several software products. This paper outlined a process where one person can identify 
and target a small number of their most significant faults and build from there. Tips were provided at each 
step to build the credibility of fault insertion, starting down the road towards full cultural acceptance of 
fault insertion. 
 
Software fault insertion is most useful if adopted by the culture of the entire organization. If requirement 
documents and design documents clearly spell out the faults the product is expected to survive, and if 
developers are aggressively creating and testing with faults, then the tester’s job of merely incorporating 
the faults into the test structure is easy. When an organization’s culture has achieved this level of 
acceptance of fault insertion, then the level of product quality begins to rise dramatically.  
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