
P R E S E N T A T I O N

International Conference On

Software Testing, Analysis & Review
MAY 10-14, 1999 • ORLANDO, FL

Presentation
Paper
Bio WG3

Wednesday, May 12, 1999
4:30PM

HOW TESTERS CAN USE A
SOFTWARE RELIABILITY
ENGINEERING MATURITY

MODEL

John Musa
International Consultant

SREMM-1

1

Copyright John D. Musa 1999

How Testers Can Use a
 Software Reliability Engineering (SRE)

Maturity Model

John D. Musa

j.musa@ieee.org

SREMM-2

2

Copyright John D. Musa 1999

Outline

• What is SRE?
• SRE process
• What is the SRE Maturity Model?
• Effects of SRE maturity level
• What SRE does for testers
• To explore further

Introduction

SREMM-3

3

Copyright John D. Musa 1999

What is SRE?
SRE is a practice that reduces risks of unreliability or
unavailability of released product, missed schedules,
and cost overruns by quantitatively planning and
guiding software development and test to meet user
needs.

What is SRE?

SREMM-4

4

Copyright John D. Musa 1999

How Does SRE Work?

• SRE improves all major quality characteristics (reliability,
availability, delivery time, life cycle cost) of product by
quantitatively characterizing expected use and employing
this information to

– Precisely focus resources on most used and/or
most critical functions or modules

– Make test more effective by realistically
representing field conditions

What is SRE?

SREMM-5

5

Copyright John D. Musa 1999

How Does SRE Work?

What is SRE?

• SRE matches major quality characteristics to user needs
more precisely by:

– Setting quantitative objectives for availability and/or
reliability as well as schedule and life cycle cost

– Engineering project strategies to meet objectives
– Tracking reliability of each system in test against its

objective as one of the release criteria

SREMM-6

6

Copyright John D. Musa 1999

Reliability and Availability
Definitions

• Failure: departure of system behavior in execution
from user needs

• Failure intensity (FI): failures per unit time
• Reliability: probability a system functions without

failure for a specified time in a specified environment
• Availability: the probability that a system is functional

at a given time in a specified environment

What is SRE?

SREMM-7

7

Copyright John D. Musa 1999

1. List Associated
 Systems

Activities of SRE Process and Relation
to Software Development Process

5. Execute Test

6. Guide Test

Requirements
and Architecture

Design and
Implementation

Test

SRE Process

2. Define “Just Right”
Reliability

3. Develop Operational
 Profiles

4. Prepare for Test

SREMM-8

8

Copyright John D. Musa 1999

Illustration - FONE FOLLOWER (FF) -
Product Description

• Subscriber calls FF and enters planned phone
numbers for where he/she plans to be vs time

• Incoming calls (voice or fax) from network to
subscriber are forwarded as per program.
Incomplete voice calls go to pager (if user has one)
and then voice mail.

SRE Process

SREMM-9

9

Copyright John D. Musa 1999

Define “Just Right” Reliability

• Set FIO for each associated system as part of
requirements, balancing among major quality
characteristics users need, using data from similar
release or product

– Customer satisfaction surveys vs failure
intensity

– Analysis of competing products
• Engineer project software reliability strategies to

meet these objectives

SRE Process

SREMM-10

10

Copyright John D. Musa 1999

Develop Operational Profiles -
What Are They?

Operational profile: complete set of functions with
probabilities of occurrence
Illustration - FF:

SRE Process

Operation Occ. Prob.

Process voice call, no pager, ans. 0.18
Process voice call, no pager, no ans. 0.17
Process fax call 0.15

•
•
•

1

SREMM-11

11

Copyright John D. Musa 1999

Some Applications of Operational
Profiles

• System engineering: reduce number of low use
operations, focus resources

• Allocate test cases to operations
Illustration - FF:

Allocate 15% of test cases to Process fax
call operation

• Allocate test time among operations

SRE Process

SREMM-12

12

Copyright John D. Musa 1999

Guide Test

• Use failure data from test to:
– Track reliability growth of developed software using

software reliability estimation program
– Certification test (accept or reject) certain systems

such as acquired components

SRE Process

SREMM-13

13

Copyright John D. Musa 1999

Estimate Total FI / FIO Ratio and Plot
Trend : Illustration - FF

SRE Process

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Failures

FI/FIO

SREMM-14

14

Copyright John D. Musa 1999

FF Illustration: Certification Test

SRE Process

0

Failure
number

Reject

Continue

Accept

Norm. Measure (MTTFs)

16

14

12

10862
0

2

4

4

6

8

10

SREMM-15

15

Copyright John D. Musa 1999

Purposes of SRE Maturity Model

• Provide SRE implementers with guideline for staging SRE
deployment, relating benefits realized with level of SRE
process improvement

• Provide SRE implementers with guideline for self-
assessment

SRE Maturity Model

SREMM-16

16

Copyright John D. Musa 1999

SRE Maturity Model Levels

• Optimized Level (5)
• Measured Level (4)
• Quality-aware Level (3)
• Use-aware Level (2)
• Ad Hoc Level (1)

SRE Maturity Model

Risk

Confidence

SREMM-17

17

Copyright John D. Musa 1999

Definition of Levels
Activity Level

1

Set FIOs Remove bugs

Engineer strategies in time available

Develop, apply OPs Uniform

Test emphasis Feature

SRE Maturity Model

SREMM-18

18

Copyright John D. Musa 1999

Definition of Levels - Notes
• “Uniform” means resources (effort, test cases, test

time, etc.) are divided among all functions equally,
except for critical functions

• Feature test executes all the test cases
independently of each other

• Load test executes all the test cases together, with all
the many combinations of interactions and different
conditions of the field environment

• Prerequisites to attaining Level 2:
– Awareness activities, training, planning, acquiring

SRE estimation program
– Listing associated systems

SRE Maturity Model

SREMM-19

19

Copyright John D. Musa 1999

Definition of Levels
Activity Level

2

Set FIOs Remove bugs

Engineer strategies in time available

Develop, apply OPs E

Test emphasis Load

E = Estimated as necessary

SRE Maturity Model

SREMM-20

20

Copyright John D. Musa 1999

Definition of Levels
Activity Level

3

Set FIOs E

Engineer strategies E

Develop, apply OPs E

Test emphasis Load

Track rel. growth M

E = Estimated as necessary, M = Measured in test

SRE Maturity Model

SREMM-21

21

Copyright John D. Musa 1999

Definition of Levels
Activity Level

4

Set FIOs F1

Engineer strategies F1

Develop, apply OPs E

Test emphasis Load

Track rel. growth M

Certification test M

Measure field FI F1

E = Estimated as necessary, M = Measured in test , F1 = Using field
data from similar release or project

SRE Maturity Model

SREMM-22

22

Copyright John D. Musa 1999

Definition of Levels
Activity Level

5

Set FIOs FM

Engineer strategies FM

Develop, apply OPs F1

Test emphasis Load

Track rel. growth M

Certification test M

Measure field FI F1

Measure field OPs F1

M = Measured in test, F1 = Using field data from similar release or project,
FM = Using field data from multiple projects

SRE Maturity Model

SREMM-23

23

Copyright John D. Musa 1999

Definition of Levels
Activity Level

1 2 3 4 5

Set FIOs Remove bugs E F1 FM

Engineer strategies in time available E F1 FM

Develop, apply OPs Uniform E F1

Test emphasis Feature Load

Track rel. growth M

Certification test M

Measure field FI F1

Measure field OPs F1

E = Estimated as necessary, M = Measured in test, F1 = Using field data
from similar release or project, FM = Using field data from multiple projects

SRE Maturity Model

SREMM-24

24

Copyright John D. Musa 1999

Benefits of SRE Maturity Model

• Guide to adopting SRE by stages
• Framework for characterizing your practice
• Understand your practice better in relation to best

practice
• Can help you communicate with management, get

support for change

SRE Maturity Model

SREMM-25

25

Copyright John D. Musa 1999

Productivity Improvement

Level Improvement

1 0

2 ++

3 +++

4 ++++

5 +++++

Effects of SRE Maturity Level

SREMM-26

26

Copyright John D. Musa 1999

Confidence Improvement- Matching
Quality Characteristics

Level Improvement

1 0

2 0

3 +

4 ++

5 +++

Effects of SRE Maturity Level

SREMM-27

27

Copyright John D. Musa 1999

What SRE Does for Testers

• Reduces end of project time squeeze through better,
earlier planning

• Increases productivity and efficiency by focusing efforts
with operational profile

• Clarifies user needs and makes test more user-focused
by participation in system engineering

• Reduces risk by providing greater visibility into test
process and its current status

• Gives concrete powerful tool for arguing for more time or
money for test when needed

• Makes you more competitive

What SRE Does for Testers

SREMM-28

28

Copyright John D. Musa 1999

To Explore Further

• Software Reliability Engineering website: lots of useful
material including bibliography of articles by software
reliability engineering users, course information:

 http://members.aol.com/JohnDMusa/
• Musa, J. D., Software Reliability Engineering: More

Reliable Software, Faster Development and Testing,
ISBN 0-07-913271-5, McGraw-Hill, 1998.

• Lyu, M. (Editor), Handbook of Software Reliability
Engineering , ISBN 0-07-039400-8, McGraw-Hill, 1996
(includes CD/ROM of CASRE software reliability
engineering estimation program).

To Explore Further

SREMM-29

29

Copyright John D. Musa 1999

To Explore Further

• Musa, Iannino, Okumoto; Software Reliability:
Measurement, Prediction, Application, ISBN 0-07-044093-
X, McGraw-Hill, 1987.

• Musa, J. D., “Software Reliability Engineering,” Duke
Distinguished Lecture Series Video, University Video
Communications, 415-813-0506.

• IEEE Computer Society Technical Committee on
Software Reliability Engineering (publishes newsletter,
sponsors ISSRE annual international conference):
membership application at
http://www.tcse.org/tcseform.html

 To Explore Further

SREMM-30

30

Copyright John D. Musa 1999

To Explore Further

• Electronic mailing list: send email to:
 sw-rel@computer.org

– Subscribe: put ONLY “subscribe” in body of
message

– Post (you must first subscribe): put text to be
posted in body

To Explore Further

How Testers Can Use a
 Software Reliability Engineering (SRE) Maturity Model

John D. Musa
j.musa@ieee.org

Recent rapid growth of interest in the application of software reliability engineering (SRE)
(Musa 1998a, Musa 1998b, Tierney 1997) has raised the issue of how to best deploy this
very promising practice. The rapid growth of interest has come about because SRE helps
solve the most important software development problem, making you and your
organization more competitive, by quantitatively planning and guiding software
development and test to meet user needs.

Experience in helping many organizations deploy SRE has convinced me that a staged
deployment has many advantages. Change, no matter how beneficial, always causes some
disruption. A staged deployment lets you control the rate of change and hence the degree
of disruption by spreading the deployment over a period of time. It gives practitioners
more time to learn SRE and to integrate it with the development process they are using.
And it helps practitioners predict how the benefits they realize should increase as more and
more of SRE is deployed.

Thus there is a need to determine a set of levels of deployment, with each step being part
of an overall plan. Each step should consist of an integrated set of SRE tasks that
function together to yield some concrete benefits and reflect a higher level of maturity in
using SRE. The levels have been determined from a careful delineation and analysis of the
SRE process, and the interdependencies and benefits associated with various process
tasks. This paper outlines the levels, providing the basis for a project to plan a staged
deployment. It also furnishes to projects the means for self-assessing their present status
in deploying SRE.

First we will examine what SRE is and the we will outline the SRE process. After
defining the Software Reliability Engineering Maturity Model, we will show how maturity
level affects project productivity and improvement in the confidence level with which you
meet user needs for the major quality characteristics of reliability, availability, delivery
time, and life-cycle cost.

What is SRE?

SRE reduces the risks of unreliability or unavailability (in the sense of service) of a
released product, missed schedules, and cost overruns. These risks can all lead to loss of
market share and profitability.
Reliability is the probability that a system or a capability of a system functions without
failure for a specified time in a specified environment. Availability is the probability at any

given time that a system or a capability of a system functions satisfactorily in a specified
environment. For a given average down time per failure, availability implies a certain
reliability. A failure is a departure of system behavior in execution from user needs.
Failure intensity is simply the number of failures per unit time. Because of its simplicity,
failure intensity is often used instead of reliability in the software reliability engineering
field.

SRE improves all the major quality characteristics (reliability, availability, delivery time,
and life cycle cost) of the product by quantitatively characterizing expected use and
employing this information to precisely focus project resources on the most used and/or
most critical functions or modules. Also, the expected use information makes test more
effective by creating a test environment that realistically represents field conditions.

SRE matches major quality characteristics to user needs more precisely by setting
quantitative objectives for availability and/or reliability as well as schedule and life cycle
cost, and engineering project strategies to meet these objectives. Then it tracks reliability
of each system in test against its objective as one of the product release criteria.

SRE is a proven, standard, widespread best practice that is widely applicable (Musa
1998a, Musa 1998b). As an example, Tierney (1997) reported the results of a survey
taken in late 1997 that showed that Microsoft has applied software reliability engineering
in 50 percent of its software development groups, including projects such as Windows NT
and Word. The benefits they observed were increased test coverage, improved estimates
of amount of test required, useful metrics that helped them establish ship criteria, and
improved specification reviews.

SRE is low in cost and its deployment has only minor schedule impact. It encourages
greater communication among different project roles. This is particularly true for testers
and systems engineers. When SRE is implemented, testers typically participate as
members of the system engineering team. They help develop operational profiles, set
failure intensity objectives, and select project reliability strategies.

SRE is very customer-oriented. It involves direct interaction with customers, and this
enhances your image as a supplier if you have any reasonable degree of competence,
improving customer satisfaction. SRE is highly correlated with attaining Levels 4 and 5 of
the SEI Capability Maturity Model.

SRE Process

The SRE process is illustrated in Figure 1. There are six principal activities. The software
development process is shown side by side with the SRE process, so you can relate the
activities of one to those of the other. Both processes follow spiral models, but the
feedback paths are not shown for simplicity.

Requirements
and Architecture

Design and
Implementation

Test

5. Execute Test

6. Guide Test

1. List Associated

 Systems

2. Define “Just Right”
Reliability

3. Develop Operational

 Profiles

4. Prepare for Test

Figure 1. SRE Process

We will illustrate the SRE process with Fone Follower, an example adapted from an actual
project at AT&T. The name and certain details were changed to keep the explanation
simple and protect proprietary data. Subscribers to Fone Follower call and enter the
phone numbers to which they want their calls forwarded as a function of time. Incoming
calls (voice or fax) from the network to the subscriber are forwarded in accordance with
the program the subscriber entered. Incomplete voice calls go to the subscriber’s pager (if
the subscriber has one) and then to voice mail.

The first activity is to list all the systems that are associated with the product that for
various reasons must be tested independently.

To define the “just right” level of reliability for the product, you set the failure intensity
objective (FIO) for each associated system as part of the requirements, balancing among
major quality characteristics users need. To determine this need you will require field data
for a similar release or product. This data includes customer satisfaction surveys related
to measured failure intensity, and an analysis of competing products. Then you engineer
project software reliability strategies to meet these objectives.

An operational profile is a complete set of functions with their probabilities of occurrence.
Table 1 shows an illustration of an operational profile from Fone Follower.

You can use operational profiles in system engineering to reduce the number of operations
to those that are cost effective with respect to life-cycle system costs and benefits, to plan
a competitive release strategy (schedule a small number of most-used operations for a
speeded-up first version and defer the others to a later version), and to focus resources on
the functions and modules that are most used or most critical.

Operation
Occurrence
Probability

Proc. voice call, no pager, ans. 0.18
Proc. voice call, no pager, no ans. 0.17
Proc. voice call, pager, ans. 0.17
Proc. fax call 0.15
Proc. voice call, pager, ans. on page 0.12
Proc. voice call, pager, no ans. on page 0.10
Phone number entry 0.10
Audit sect. - phone number data base 0.009
Add subscriber 0.0005
Delete subscriber 0.0005
Recover from hardware failure 0.000001

Total 1

Table 1. Fone Follower Operational Profile

A very important use of the operational profile (plus criticality information) is in allocating
test cases to operations during the Prepare for Test activity. For example, in Fone
Follower we allocated 15% of the test cases to the Process fax call operation. We also
use the operational profile and criticality information to allocate test time among
operations during the Execute Test activity.

Execute Test includes feature test, load test, and regression test. Feature test executes all
the test cases independently of each other. Load test executes all the test cases together,
with all the many combinations of interactions and different conditions of the field
environment. Regression test executes some (including all critical operations) or all of
feature test after each system build with significant change; it is designed to reveal failures
caused by faults introduced by program changes.

During the Guide Test activity, we apply failure data collected during Execute Test to
track reliability growth and conduct certification tests. We track reliability growth of
developed software using a software reliability estimation program. Reliability growth test
couples test with attempts to remove faults and hence cause reliability growth. You input
failure data that you collect during reliability growth test to a reliability estimation
program such as CASRE (Lyu 1996). Normalize the data by multiplying by the failure
intensity objective in the same units. Execute this program periodically and plot the
FI/FIO ratio as shown in Figure 2 for Fone Follower.

0

2

4

6

8

10

12

14

16

10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95
Fa ilures

F I/FIO

Figure 2. Plot of FI/FIO Ratio

Note that the FI/FIO ratio is close to 16 early in system test, a not unusual situation. The
failure intensity at this point in test is almost 16 times what users want it to be in the
released product. This is not a cause for concern unless time remaining for system test is
short. The two substantial upward swings that you can see in the ratio may signify a
problem that needs your attention. The most common causes are system evolution, which
may indicate poor change control, and changes in test selection probability, which may
indicate a poor test process. In theory, when the FI/FIO ratio reaches 1, you should
consider release. However, we wait until it reaches 0.5 to allow for the error involved in
any statistical estimation. Also, we require that essential documentation be complete and
that outstanding high severity failures be resolved (the faults causing them have been
removed).

We also certification test (accept or reject) certain systems such as some acquired
components. For certification test you also first normalize failure data by multiplying by
the failure intensity objective, yielding a measure in MTTFs. Plot each new failure as it
occurs on a reliability demonstration chart as shown in Figure 3. Note that the first two
failures fall in the Continue region, which signifies that there is not enough data to reach
an accept or reject decision. The third failure falls in the Accept region, which means that
you can accept the software, subject to the levels of risk associated with the chart you are
using.

16
Failure
number

Reject

Continue

Accept

Norm. Measure (MTTFs)

14

12

108620
0

2

4

4

6

8

10 FAIL.
NO.

MCALLS
AT

FAILURE MTTFs

1
2
3

0.1875
0.3125
1.25

0.75
1.25
 5

Failure intensity objective:
 4 failures / Mcalls

Figure 3. Reliability Demonstration Chart

What is the SRE Maturity Model?

As we have already pointed out, the principal reasons for creating the SRE Maturity
Model were to:
1. Provide SRE implementers with a guideline for determining how to stage the
deployment of SRE, by relating a given deployment stage or level with the amounts of
improvement expected in productivity and confidence in matching the balance among
major quality characteristics users need.
2. Provide SRE implementers with a guideline for self-assessment.

The levels defined for the SRE Maturity Model are:
• Optimized (5)
• Measured (4)
• Quality aware (3)
• Use aware (2)
• Ad hoc (1)

The detailed definitions of the levels are illustrated in Figure 4. Level 1 represents
software development without SRE. Projects are allotted a certain amount of test time and
are expected to remove as many faults or bugs as possible during that time. Test emphasis
is on feature test. There is either no load test, or load test that is very limited in
representing field conditions accurately. “Uniform” in Figure 4 means resources (effort,
test cases, test time, etc.) are divided among all functions equally, except for critical
functions.

Activity Level

1 2 3 4 5

Set FIOs Remove bugs E F1 FM

Engineer Strategies in time available E F1 FM

Develop, apply OPs Uniform E F1

Test emphasis Feature Load

Track rel. growth M

Certification test M

Measure field FI F1

Measure field OPs F1

E = Estimated as necessary, M = Measured in test, F1 = Using field data from similar
release or project, FM = Using field data from multiple projects

Figure 4. Definitions of SRE Maturity Model Levels

In order to attain Level 2, an organization must conduct awareness activities and training.
Awareness activities typically involve the presentation of an overview of about two hours
to an organization by an SRE expert, someone who has experience in helping projects
implement SRE. The presentation should be very interactive, with about half the time
devoted to questions and comments. Practitioners need to explore how SRE can help
them. Training generally involves a two day course in which participants learn the SRE
process in detail. The course should incorporate workshops in which participants apply
what they have learned to their own projects. Thus they learn how to integrate SRE into
their own development processes. The organization must plan the SRE deployment and
acquire an SRE estimation program such as CASRE (Lyu 1996).

To reach Level 2, you must implement the development of operational profiles for the
associated systems you have listed, using measured field data whenever it is available, but
making estimates when necessary. You must also apply the operational profiles. This
involves employing them in system engineering to reduce the number of low use
operations and to plan a competitive release strategy. In test, you apply them in allocating
both test cases and test time to operations. And throughout the project, you use
operational profiles to allocate development resources to different functions, resulting in
greater efficiency by focusing on the functions that receive the greatest use (critical
functions also receive special attention). Although your reliability strategy is still the
simple one of removing as many bugs (faults) as possible in the time available to you, the
primary emphasis in test shifts from feature test to load test. At Level 2, you are “Use
aware.”

In order to move to Level 3, you must implement those activities of SRE that set failure
intensity objectives, engineer strategies for meeting them, and track reliability growth,
using failure data collected during system test. By dealing with reliability quantitatively, as
one of the major quality characteristics that you fit to user needs, you have become
“Quality aware” in the most sophisticated sense.

Reaching Level 4 requires that you measure failure intensity of your product in the field
and use this data for setting failure intensity objectives and engineering reliability strategies
for the next product release. Hence Level 4 is known as the “Measured” level. You also
start employing certification test as appropriate; for example, for certain acquired
components.

Finally, you attain the “Optimized” level , Level 5, by even more sophisticated collection
and use of field data. You collect failure intensity and development strategy information
on multiple projects and use this to extract guidelines for future projects. For example, a
guideline for most rapidly and inexpensively attaining a particular range of failure intensity
objectives might be to devote 50 percent of your resources to fault prevention, 30 percent
to fault removal, and 20 percent to fault tolerance. There might also be more detailed
guidelines, such as allocating 8 staff hours per thousand source lines for requirements
inspection for a given failure intensity objective. At Level 5, you also measure the actual
operational profiles experienced in the field and use this information to improve the
operational profiles for the next release of the product.

Effects Of SRE Maturity Level

The productivity improvement and the improvement in confidence in matching quality
characteristics resulting from an increase in level is shown in Figure 5. The plus signs
indicate the cumulative amount of improvement.

Level Improvement

Productivity Confidence

1 0 0

2 ++ 0

3 +++ +

4 ++++ ++

5 +++++ +++

 Figure 5. Effects of SRE Maturity Level

The SRE Maturity Model provides a framework for characterizing your practice. With it,
you can understand your practice better in relation to the best practice. It provides a
guide to adopting SRE by stages. And it can help you communicate with management
and get support for change.

A related model, the Testing Maturity Model, has been recently proposed for testing
(Burnstein, Homyen, Grom, and Carlson (1998)). Some of the concepts of the Testing
Maturity Model were derived from Gelperin and Hetzel’s Evolutionary Testing Model
(Gelperin and Hetzel 1988). And obviously, the SRE maturity model owes some of its
concepts to the SEI Capability Maturity Model (Humphrey 1989), which deals with the
entire software development process.

For testers, SRE reduces the end of project time squeeze with better, earlier planning. It
increases productivity and efficiency by focusing efforts with the operational profile. SRE
clarifies user needs and makes test more user-focused by having testers participate in
system engineering. It reduces risk by providing greater visibility into the test process and
its current status. SRE provides a concrete tool for arguing for more time or money for
test when needed. Overall, SRE is a powerful practice that makes you more competitive.

Acknowledgements

I am indebted to Dr. Nancy Eickelmann of the NASA Independent Verification and
Validation Facility, Software Research Laboratory, Fairmont, WV and Dr. Bill Everett,
Software Process and Reliability Engineering, Inc., Albuquerque, NM for their very
helpful reviews and many comments. I also wish to thank Dr. David Gelperin, Software
Quality Engineering, for issuing the challenge that led to this work.

References

Burnstein, Homyen, Grom, and Carlson. 1998. “A model to assess testing process
maturity.” Crosstalk, Nov. 1998, pp. 26-30.

Gelperin, D. and B. Hetzel. 1988. “The growth of software testing,” CACM, Vol. 31,
No. 6, pp. 687-695.

Humphrey, W.S. 1989. Managing the Software Process, ISBN 0-201-18095-2, Addison-
Wesley, Reading, MA.

Lyu, M. (Editor). 1996. Handbook of Software Reliability Engineering, ISBN 0-07-
039400-8, McGraw-Hill, New York (includes CD/ROM of CASRE program).

Musa, J. D. 1998a. Software Reliability Engineering: More Reliable Software, Faster
Development and Testing, ISBN 0-07-913271-5, McGraw-Hill, New York.

Musa, J. D. 1998b (updated regularly). Software Reliability Engineering website:
overview, briefing for managers, bibliography of articles by software reliability engineering
users, course information, useful references, Question of the Month:

 http://members.aol.com/JohnDMusa/

Musa, J.D., A. Iannino, and K. Okumoto. 1987. Software Reliability: Measurement,
Prediction, Application, ISBN 0-07-044093-X, McGraw-Hill, New York.

Tierney, J. 1997. SRE at Microsoft. Keynote speech At 8th International Symposium On
Software Reliability Engineering, November 1977, Albuquerque, NM.

John D. Musa
John D. Musa is an Independent Senior Consultant in software reliability engineering. He
has more than 30 years’ experience as software practitioner and manager in a wide variety
of development projects. He is one of the creators of the field of software reliability
engineering and is widely recognized as the leader in reducing it to practice. He was
recently Technical Manager of Software Reliability Engineering (SRE) at AT&T Bell
Laboratories, Murray Hill, NJ.

He has been involved in SRE since 1973. His many contributions include the two most
widely-used models (one with K. Okumoto), the concept and application of the operational
profile, and the integration of SRE into all phases of the software development cycle. Musa
has published some 100 articles and papers, given more than 175 major presentations,
and made a number of videos. He is principal author of the widely-acclaimed pioneering
book, Software Reliability: Measurement, Prediction, Application and author of the new
book, Software Reliability Engineering: More Reliable Software, Faster Development and
Testing.

He organized and led the transfer of SRE into practice within AT&T, spearheading the effort
that defined it as a “best current practice.” He was actively involved in research to advance
the theory and practice of the field. Musa has been an international leader in its
dissemination.

Listed in Who’s Who in America and American Men and Women of Science, he is an
international leader in software engineering and a Fellow of the IEEE, cited for
“contributions to software engineering, particularly software reliability”. He was recognized
in 1992 as the individual who had that year contributed the most to testing technology. He
was co-founder of the IEEE Committee on SRE. He has very extensive international
experience as a lecturer and teacher.

	Title Page
	Presentation
	Paper
	Bio

